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ABSTRACT 

We present a formalism for the evolution in Q2 of multiquark systems as an appli- 
cation of perturbative quantum chromodynamics (QCD) to asymptotic, exclusive L 
nuclear amplitudes. To leading terms in log Q2 our formalism is equivalent to 
solving the renormalization group equations for these amplitudes. Completely 
antisymmetric multiquark color-singlet representations are constructed and their 
evolution is investigated from the one-gluon exchange kernel. We argue that the 
evolution equation, together with a cluster decomposition, demonstrates a transi- 
tion from the traditional meson and nucleon degrees of freedom of nuclear physics 
to quark and gluon degrees of freedom with increasing Q2, or at small internucleon 
separations. As an example, we derive an evolution equation for a completely an- 
tisymmetric six-quark distribution amplitude and solve the evolution equation for 
a deuteron S-wave amplitude. The leading anomalous dimension and the corre- 
sponding eigensolution are found for the deuteron in order to predict the asymp- 
totic form of the deuteron distribution amplitude (i.e., light-cone wave function 
at short distances). The fact that the six-quark state is 80 percent hidden color 
at small transverse separation implies that the deuteron form factor cannot be 
described at large Q2 by meson-nucleon degrees of freedom alone. Furthermore, 
since the N-N channel is very suppressed under these conditions, the effective 
nucleon-nucleon potential is naturally repulsive at short distances. 

1. INTRODUCTION 

Nuclear chromodynamics is concerned with the application of quantum chro- 
modynamics (QCD) to nuclear physics. 11 Its goal is to give a fundamental descrip- 
tion of nuclear dynamics and nuclear properties in terms of quark and gluon fields 
at short distance, and to obtain a synthesis at long distances with the normal 
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nucleon, isobar, and meson degrees of freedom. If we define Q2 as a scale of mo- 
mentum square involved in a certain reaction, then there are two complementary 
approaches to nuclear chromodynamics: one for high Q2 region and the other 
for low Q2 region. The essential criteria for the high and the low Q2 regions are 
based on two principles in QCD; asymptotic freedom and confinement respectively. 
Whereas many models such as Skyrmions and soliton bags, etc., are available as 
viable approaches in the low Q2 region,2] perturbative QCD is the only consistent 
approach in high-Q2 region. Therefore, it is worthwhile looking at the implications 
of exact perturbative QCD predictions on various effective nuclear phenomena. 

One of the main ingredients in the perturbative QCD approach is the fac- 
torization theorem for both inclusive and exclusive processes which separates the 
hadronic bound state physics from perturbative dynamics. The processes which 
are easily analyzed are those in which all final particles are measured at large 
invariant masses compared to each other, i.e.: large momentum transfer exclusive 
reactions. This includes form factors of hadrons and nuclei at large momentum 
transfer Q and large angle scattering reactions such as photoproduction 7p + rr+n, 
nucleon-nucleon scattering, photodisintegration yd + np at large c.m. angles and 
energies, etc., which can be analyzed in terms of a simple picture for exclusive 
processes based on light-cone perturbation theory. A key result is that such am- 
plitudes factorize at large momentum transfer in the form of a convolution of a 
hard scattering amplitude TN which can be computed perturbatively from quark- 
gluon subprocesses multiplied by process-independent “distribution amplitudes” 
+(z,Q) which contain all of the bound-state non-perturbative dynamics of each 
of the interacting hadrons.3] For example, the baryon form factor at large Q2 is 
represented by the factorized form [see fig. 1(a)14] 

J%(Q2) = jjdxjjjdyl ~*(ari,g~)TH(xi,~i,Q)~(xirQz) [l+ 0 ($)I 
0 0 

_ 32~~ ~i(Q”l 
9 Q4 

-& b,, (Ln $)-‘n-‘m [I + 0 (,,(Q2), $)] 
, 

--) C (a6$?2))2 (Ivz$)-~‘~ (a Q2 + large) , (1.1) 

where xi is the light-cone longitudinal momentum fraction of ith quark 
xi = (k: + kf)/(pO + p3), [dx] E dxl dx2 dx36 (1 - Cixi) and 0% E mini(ziQ). 
The dominant Q2 dependence (cE~(Q~)/Q~)~ is derived from the hard scattering 
amplitude Z’H(zi,yi, Q) of the subprocess 7* + 3q + 3q [see fig. l(b)] with the 
only weak (logarithmic) Q2 dependence coming from quark distribution ampli- 
tude 4(xi, Q) (70 is the leading anomalous dimension) [see fig. l(c)]. The essential 
feature- of eq. (1 .l) is that a very complicated process can be simply represented 
by the factorization into product of three amplitudes. 
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Fig. 1. (a) Factorization of the nucleon form factor at large Q2 in QCD. (b) 
The leading order diagrams for the hard scattering amplitude TH. The dots 
indicate insertions which enter the renormalization of the coupling constant. (c) 
The leading order diagrams which determine the Q2 dependence of +B(x, Q). 

The quark distribution amplitude 4(zi,Q) is the amplitude for converting 
the baryon into three valence quarks at impact separation bl - 0 (l/Q). It is 
related to the equal r = t + z hadronic wave function $(zi, Lli)51: 

Q3 
4(xi,Q) 0~ / JJ d2zli62 +(Xi,zli) 3 (1.2) 

i=l 

and contains the physics of that part of the hadronic wave function which affects 
exclusive processes at large momentum transfer. Therefore, constructing 4(zi, Q) 
is an essential part of developing the perturbative QCD approach to the nuclear 
chromodynamics. 

In this talk we will present a generalized method of constructing d(zi, Q) for 
multibaryon systems of 3n quark81 which satisfies the evolution equation derived 
basically from the Bethe-Salpeter equation [see, e.g., fig. l(c)]. For the baryon 
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(three-quark) system the evolution equation has been derived and solved by Brod- 
sky and Lepage. 3l However, their method of solving the evolution equation cannot 
be simply extended to multibaryon systems. Recently, Brodsky and I71 developed 
a new method in order to extend the simple baryon analysis to the case of multi- 
baryon systems. 8391 As a starting point, in the next section we use a simple scalar 
field mod01 2nd clprive an evolution equation for a two-body bound state. Then 
we extend it to a realistic three-quark system and describe our new method of 
solving the evolution equation in section 3. In section 4 we present an analysis of 
a six-quark system as .an example of the extension to multibaryon systems. We 
focus on calculating a leading anomalous dimension for a deuteron S-wave ampli- 
tude. In section 5 we present an application of our formalism. We derive rigorous 
constraints on the short distance effective force between two baryons, using an 
evolution in Q2 of a toy dibaryon system. Discussions and conclusions follow in 
section 6. 

SOLUTIONS OF THE BOUND STATE EQUATION AND THE EVOLU- 
;ION EQUATION 

In this section and as an introduction, we will use (43)s-type theory, which 
shares the asymptotic freedom property of &CD. The model Lagrangian density 
which we consider in this section is 

l = f (q&al”4 + a,x a”)() - f m242 - g(p2x ) (24 

where ~1 runs from 1 to 6, and r$ and x are “quark” and “gluon” fields respectively. 
A conventional tool for dealing with the relativistic two-body problem in 

quantum field theory is the Bethe-Salpeter formalism1ol utilizing the Green func- 
tions of covariant perturbation theory. However this formalism has difficulties with 
the relative time dependence especially for multiparticle states and in systemati- 
cally including higher order irreducible kernels such as cross diagrams and vacuum 
polarizations.lll 

An alternative approach which can remove these difficulties and restore a 
systematic perturbative calculation for obtaining higher accuracy is the reformu- 
lation of the covariant Bethe-Salpeter equation using the light-cone coordinate.121 
This is equivalent to expressing the Bethe-Salpeter equation in the infinite mo- 
mentum frame.lsl The light-cone quantization method141 provides a Fock-state 

- z/c for a bound state IB) representation at equal light-cone time r = t t 

p> I&x)+... , (2.2) 

and removes the difficulty of the relative time dependence of the covariant formal- 
ism. The light-cone wavefunctions (&I B), (&xl B) , . . . provide a physically 
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transparent description of a bound state, since the vacuum fluctuations are sup- 
pressed in the light-cone frame and all constituents are on the mass shell where 

“,: = 
k~i + rni 

, 
Xi 

(2.3) 

with xi = kT/P +. Furthermore, cross diagrams can be included systematically 
when higher Fock-state contributions such as I&xx) are taken into account. 

2.1 Bound State Equation 
By taking into account only two- and three-body sectors, we arrive at the 

effective equation for the two-body wavefunction (x1 = x, 52 = 1 - x, zlr = 
42 = ZJ: 

M2 _ k:+m2 
x(1 - x) 

0 

O(Y - 4 1 
X 

y-x * M2- k: t-m2 
+ (x * Y) 

X 

which we call the light-cone ladder approximation (LCLA).14115] This equation 
provides an eigenvalue problem and the eigensolution is a nonperturbative solution 
in the sense that it includes the effect by summing all orders of ladder diagrams. 
The eigenvalue of the bound state equation is the binding energy in terms of the 
coupling constant. An approximate solution of eq. (2.4) to the ground state has 
been suggested by Karmanov:16] 

rcl(xA) = N 

( 

M2-Lf+m2 

) 

2 

x(1 - x) 
(1+12x-1I) ’ 

where N is a normalization constant. The corresponding eigenvalue (binding 
energy)l’] is given by the following relation between the coupling constant 
(Y = g2/(16nm2) and the binding energy p2 = m2 - (M2 /4): 

where-z = m2/p2. 



2.2 Evolution Equation 
The distribution amplitude in the (43)c model is given by 

where [d4zL] = l/[2(27r)5] d4cl = zi/(64z3) dzt. The variation of 4 with Q 
comes from the upper limit of the integration as well as from renormalization 
scale dependence of the wave function 

G’Q’(x, &) = 22(Q) +(Qo)(~, it,> , 
3’2 (Qo) P-8) 

where 22 (Q) N- $I6 ((8) with E(Q) = 7 [d4cL] [g2(it)]/il because of vertex and 
Q 

self-energy insertions. 14] Therefore, the differentiation of eq. (2.7) yields 

Q2 aQ2 
d +(x, Q> = 92 ae;$;Q) @,Q) + (Q2a)2 3 +'"'(x, Q, - (2'g) 

By taking asymptotic limit (lzll = Q + 00) of eq. (2.4), one can compute 
#Q)(x, Q) in terms of the distribution amplitude 4 which combines with eq. (2.9) 
and ends up with the following evolution equation: 

Q2 aQ2 -?- 4(x,9) = - & g2(Q) { f$+,Q) - / dyV(z.ybb~s,Q)} 9 (2.10) 

where 

V(w) = O(y-x) Z+O(x-Y)E. (2.11) 

This is an integro-differential equation and again provides an eigenvalue prob- 
lem. The general solution of eq. (2.10) is given by a linear combination of the 
Gegenbauer polynomials: 

4(x,9) = x(l - x) g A,C;‘“(2x - 1) e-7nc(Q2) , 
n=O 
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where each eigensolution Cn 3’2 2x - 1) is directly related to a term in the operator- ( 
product expansion of the wave function evaluated near the light cone and the 
eigenvalues are the corresponding anomalous dimensions, 7s given by 

1 7n = -- 
6 (n+l;(n+2) ’ 

To leading terms in ha Q2, the evolution formalism is equivalent to solving the 
renormalization group equation for the distribution amplitude. 

3. EVOLUTION OF THE COLOR-SINGLET THREE-QUARK SYSTEM 

We now extend the evolution formalism to the realistic three-quark system 
using QCD. The evolution equation for the color-singlet three-quark system has 
been derived by Brodsky and Lepage31 

Xl x2 23 (& + $) J(xi, Q) = y ] [dy] V(xi,Yi) J(Yi, 9) 9 (3-l) 
0 

where CB = 213, C F = 4/3 and p = 11 - 2nf/3. The leading order kernel is 
computed from the single-gluon exchange diagram [see fig. l(c)] and V(xi, yi) in 
this case is given by 

v(Xi,Yi) = 2X1X2X3 C o(Yi--Zi)6(2*-Yk): 
‘hi4 A 

+- 
i#i Xi + Xj Yi -Xi > (3.2) 

= v(Yi9xi) 9 (k # ii) , 

where A4(yi) = 4(yi) - 4(zi), and 6h.h. = O(1) when the helicities of constituents 

are antiparallel (parallel). The generiliolution of eq. (3.1) is 

d(xi,Q) = ~1~2~3 2 An Jn (xi) e-7n’(Q) ) P-3) 
n=O 

where the anomalous dimensions 7n and the eigenfunctions &n(zi) satisfy the char- 
acteristic equation 

Xl 52 x3 (-7n + $) &s(xi) = y 1 [dy] V(xi, yi) &(yi) - (3.4) 

0 
. 
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Therefore, the rest of this section is just describing the method to solve the eigen- 
value problem of eq. (3.4). 

Let’s introduce first the Brodsky-Lepage’s method:3l 
(1) Take the basis for Jn(zi) as {x! xt}&, . 

(2) Construct the kernel matrix under the above basis by integrating 
over yi. 

(3) Diagonalize the kernel matrix and find the eigenvalues 7n and the 
eigenfunctions Jn (Xi). 

In the simple three-quark case, the color singlet property guarantees all three 
quarks have different quantum numbers. However, if we consider multibaryon 
systems of 3n quarks,6l then the color singlet requirement does not guarantee that 
all the quarks of the system have different quantum numbers. Thus, we have to 
antisymmetrize the system according to Pauli’s principle and Jn(zi) cannot be 
derived by expanding V (xi, yi) on a simple polynomial basis {x! xi}&,. 

The new method which we developed’] is basically the same as the Brodsky- 
Lepage method except for replacing the basis {x~x~}&, by {completely anti- 
symmetric color-isospin-spin-index power (xt xi XT) representations)&m=O. The 
index power x:x(2 xy is analogous to the orbital dependence of nonrelativistic 
wave functions. The new method can be extended to multibaryon systems of 3n 
quarks8jgl and predicts the correct distribution amplitudes of multiquark systems 
since the basis of the new method is a set of completely antisymmetric represen- 
tations. Furthermore, it has several additional advantages. Among them, 
(1) Even in the three quark system, one can classify the baryon system by ob- 
serving the isospin multiplet (e.g., nucleon and isobar belong to T = l/2 and 3/2 
respectively). Therefore, we predict the difference of en Q2 behavior between the 
form factors of the nucleon (N) and the isobar (A).71 
(2) Combining the results obtained by the new method for multiquark systems 
with the fractional parantage technique 181 which can decompose the systems into 
clusters, one can derive constraints on the effective force among baryons at short 
distances. The analysis for toy dibaryon systems of four quarks*] and the rigorous 
constraints on the effective force between baryons derived from first principle QCD 
will be presented in section 5. 

4. GENERALIZATION TO MULTIQUARK SYSTEMS 

As we have discussed, the eigenvalue problem for the evolution formalism is 
generically given by 

KI+A) = 7 I+A) Y (4-l) 

where K,7 and 14~) represent the kernel, the eigenvalue (e.g., anomalous dimen- 
sions) and the eigenfunction which is given by a linear combination of the antisym- 
metric representations respectively, and the integration over yi [see e.g., eq. (3.1)] . 



is understood. If we consider only the single-gluon exchange and factorize the 
color matrices, then the kernel K can be written as 

(4.2) 

where Vii is the dynamical part obtained by calculating the one-gluon exchange di- 
agrams. For simplicity (but without loss of generality), let us consider a 
six-quark case as an example of multiquark systems. 

The six-quark system has five orthogonal color singlet states l(222)cy) with 
a = 1,2,..., 5 (see below) and the evolution kernel becomes 5 x 5 matrix: 

where 

G&j) = (222) ( ai$ * ~l(222)/3) . (4.4) 

Therefore, the general formula of the evolution equation in terms of a color-singlet 
basis becomes 

(4.5) 

The key observation to simplify the above matrix equation is that K,p can 
be written in terms of Kfy which has a well-defined permutation symmetry1gl 
represented by a Young-tableau f and a certain Yamanouchi-label Y; 

K ap = cx ((w%fwwP) KfY * (4.6) 
f y 

From the Clebsch-Gordan coefficients of the & group, we know that only two 
Young-tableaus are possible for the six-quark one-gluon exchange kernel and they 
are given by (see table I) 

(4.7a) 

K(42)y = K Cxz ((222)~~ (42)YI(222)P) Cc~,(i,j) Vij 3 (4-7b) 

a P i#i 

where only one Yamanouchi-label is allowed in f = (6), and f = (42) has nine 
different Yamanouchi-labels. 
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TABLE I 

K/Y NfY (56) (46) (45) (36) (35) (26) (25) 06) (15) (23) (24) (34) (14) (13) (12) 

&43)[212111] 

K(42)[211211] 

K(42)[122111] 

K(42)[121121] 

K(42)(112211] 

K(42)[112121] 

1 1 1 1 1 

12 -3 -3 -3 -3 

9 -3 -3 1 

6 -2 

3 -1 

4 

1 

-3 

-3 

-3 

3 

1 

-3 

1 

1 

-1 

-1 

-2 

2 

1 

-3 

-3 

-3 

-3 

1 

-3 

1 

1 

1 

-1 

-2 

-2 

1 

2 

1 

-1 

-1 

1 

-1 

-1 

-1 

-1 

1 

2 

-2 

1 

-1 

-1 

1 

-1 

-1 

1 

1 

2 

-2 

-2 

0 

-1 

-2 

2 

1 

2 

-2 

1 

1 

-1 

1 

1 

-1 

-1 

1 

2 

2 

-1 

1 

1 

-1 

1 

-1 

1 

1 

2 

2 

-2 

1 

2 
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As an example, let us calculate the leading anomalous dimension of the 
deuteron state. Since the total index-power is n = 0 for the leading anoma- 
lous dimension and the isospin is fixed as a singlet for the deuteron state, two 
antisymmetric representations are possible and defined by the inner-product of 
Young-tableauslg]: 

IAl) = lPw)c x (4.&z) 

1~42) = l(222))c x IWT x I@% x IWO 9 (4.8b) 

The eigensolutions will be linear combinations of IAl) and IA2), 

IEd = cos 0 IAl) + sin 0 IA2) , (4.9a) 

IE2) = - sin 8 IAl) + cos 8 JA2) , (4.9b) 

where 1 El) and IE2) h ave eigenvalues er and e2 respectively, 

&p/Ef) = el I%? , (4soa) 

&p (Et) = e2 IEf) . (4.10b) 

As we have pointed out, an essential simplification can be obtained by replacing 
K,p with Kfy. Projecting out a certain state which has common color (C), isospin 
(T) and index-power (0) representations, we get a set of equations for spin states: 

K(6) I(% = (elcos’d + e2sin2B) 1(6))s , 

K(42)Y I(% = (el - e2) cosBsinB 1(42)Y)S , 

(4.11a) 

(4.11b) 

g c c ((42)Ys, (42)Y~ 1 (43)Y > K(42)y~ l(42)yS)s 

yS yK 

= (el - e2) (sin20 - cos2B) 1(42)Y)s . (4.11~) 
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Since the kernel of each equation has a definite symmetry and its explicit 
representation is known (see table I), we can determine relative weighting fac- 
tors among the independent equations (4.11a),(4.11b) and (4.11~) by counting the 
number of spin annihilation terms [see e.g., 6~~ term in eq. (3.2)] in the kernel: \ 

K(6) I(% = 70 I(% 3 (4.12~) 

3& +)y ((6))s = 1670 l(42)y)S ’ 

g cc ((42)Ys, (42)y~ 1 (42)Y > K(42)YK l(42)yS)s 

yS yK 

= $ 70 l(42)% , 

(mb) 

(4.12~) 

where 70 is the eigenvalue of eq. (4.12a). Comparing eqs. (4.11) and (4.12), we 
find 

tanf9=2, d 
25 8 

el= 16 70 , e2 = 5 70 , (4.13) 

and the only equation which we have to solve explicitly is eq. (4.12a), which has 
the symmetric kernel K(s). Solving eq. (4.12a),‘] we find 

6 CF 70 = -- 
5 P 

sz = 0, 

7 CF -- 
=5fl 

=fl. (4.14b) 

Therefore, the leading anomalous dimension for a deuteron state is given by 

min(er, e2) = 3 2 
4 P 

for Sz = 0 , 

7 CF -- 
=8 /3 

= fl . 

(4.15u) 

(4.15b) 
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Using the result of Eq. (4.15), one can calculate the asymptotic deuteron 
form factor &(Q2). The QCD prediction for the asymptotic Q2-behavior of the 
deuteron reduced form factor201 fd(Q2) defined by 

is given by 

(4.16) 

5. APPLICATION: THE EFFECTIVE FORCE BETWEEN BARYONS 

order 
In Section 4, we have shown how we can solve QCD evolution equations in 
to predict the short distance behavior of multiquark systems using Young 

diagrammatic methods. Since the eigensolutions obtained in this way have definite 
permutation symmetry, we can apply the fractional parentage technique181 for the 
multibaryon system in order to relate the eigensolutions to cluster representations 
which have physical baryon, or alternatively, “hidden-color” degrees of freedom. 

For example, if we apply this technique to the simple case of the four- 
quark system under SU(~)C,~] then we find the transition matrix given by Table II 
(T = S = 0 case) which relates the symmetry basis represented by four-quark eigen- 
solutions and the physical basis represented by “toy”-dibaryon and hidden-color 
degrees of freedom. From this table we can expand the distribution amplitudes of 
the physical basis in terms of eigensolutions: 

cj~~(zi,Q) = 0.07&(q) (.f?n~)"~13cp'p -0.64&(q) (,np)-"*06c~'p + . . . 

c$AA(z~,&) = -O.O7&(zi) (h~)"~13cF'~ - 0.59&(si) (t?n~)~".mc~'p +... 

tjcc(zi,Q) = -0.70&(si) (h$)".13c,iB -0.35&(q) (!?n~)~"*06cp'p +... 

(5.1) 
where- Cj7 = 3/4 in this case. 
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Table II. The relationship between four-quark antisymmetric 
SU(2) color representations and effective two-cluster represen- 
tations (T = S = 0 case). Isospin singlet and triplet states both 
with color singlet are denoted N and A, while color triplet state 
is represented by C. The square and curly brackets represent 
orbital (0) and spin-isospin (TS) symmetries separately. 

NN -- :: -- : 1 
AA 1 

2 
i F 

3 
cc 1 

75 
-1 

TE 
0 

Thus, we find that the NN, AA and CC states have completely different Q2 
evolution. As Q2 goes to infinity, the NN and AA components are negligible but 
the CC components are large. In other word, the dominant degrees of freedom at 
the origin of the dibaryon system at zero impact separation are hidden-color states 
rather than physical baryon states. This indicates that the physical dibaryons have 
a repulsive core at the origin 211 while the colorful hidden-color clusters behave as in 
an attractive well. In this way, we derive constraints on the effective force between 
two baryons. 221 We discuss the results for the six-quark states using the realistic 
SU(3)c in the next section. 

6. DISCUSSIONS AND CONCLUSIONS 

By using a new method based on completely antisymmetric representations, 
we have analyzed the quark distribution amplitudes 4(zi,Q) in QCD in order to 
predict the short distance behavior of multiquark systems. Since the new method 
is based on permutation symmetry, we can readily classify the multiquark systems. 
In the 3-quark case, we can resolve the N and A form factors. In the multibaryon 
system, this method is essential since it cannot be guaranteed that all quarks have 
different quantum numbers. 

We have also decomposed the multiquark systems into multibaryon physical 
components and hidden color components, and expanded each component in terms 
of the QCD eigensolutions. Through the evolution of each components we can 
derive constraints on the effective force between the clusters. Using the toy- 
SU(2)c-d b y i ar on analysis, we find that colorless clusters tend to be repulsive but 
colorful clusters are attractive at short distances. 

The deuteron state which has the leading anomalous dimension is related 
to the NN, AA, and hidden color (CC) physical bases, for both the (TS) = (01) 
and (10) cases with Young symmetry of {33}, by the formula171 
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Thus the physical deuteron state, which is mostly $NN at large distance, 
must evolve to the $[s]{ssl state when the six-quark transverse separations 
by 5 0(1/Q) + 0. Since this state is 80% hidden color, the deuteron wave 
function cannot be described solely by the meson-nucleon isobar degrees of 
freedom in this domain. The fact that the six-Quark color singlet state inevit- 

Fig. 2. Schematic representation of the 
deuteron wave function in QCD indicat- 
ing the presence of hidden color six-quark 
components at short distances. 

ablyevolves in QCDto a dominantly 
hidden color configuration at small 
transverse separation also has impli- 
cations for the form of the nucleon- 
nucleon (SZ~- = 0) potential, which 
can be considered as one interaction 
component in a coupled scattering 
channel system. As the two nucle- 
ons approach each other, the system 
must do work in order to change the 
six-quark state to a dominantly hid- 
den color configuration; i.e., QCD 
requires that the nucleon-nucleon po- 
tential must be repulsive at short dis- 
tances [see Fig. 21. 201 Finally, we note 
that the evolution equation for the 
six-quark system suggests that the 
distance where this change occurs is 
in the domain where cr, (Q2) most 
strongly varies. 
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