
SLAC - PUB - 3784
September 1985
(I/A)

SLAC FASTBUS SNOOP MODULE - TEST RESULTS AND SUPPORT SOFTWARE*

DAVID B. GUSTAVSON AND HELMUT V. WALZ
Sianford Linsor Aceclemtor Center, Stanford Univcrrity, Sranford, CA @@IS

ABSTRACT
The development of a diagnatic module for FASTBUS haa

been completed. The Snoop Module is daigned to reside on
a Crate Segment and provide hi-speed diagnatic monitoring
and tating capabilities. Final hardware dctaib and te&ing of
production prototype modules are reported. Features of aoft-
ware under development for a stand-alone single Snoop diagnos-
tic system and Multi-Snoop networks will be discussed.

1. INTRODUCTION

The SLAC Snoop Diagnostic Module for FASTBUS is a pow-
erful singltwidth module which can act es an intelligent logic
malyser for debugging single- or multiplccrate FASTBUS sys-
tems. Tbe Snoop can also be used as the computer for con-
trolling small tit systems, or several Snoops can be used in a
coordinated fashion to diagnose segment interconnection prob
lems.

The Snoop Module can be controlled by a computer or com-
puter terminal connected to its front-panel connector, or by mea-
rages sent over the FASTBUS Serial Diagnostic Network, which
attaches to the FASTBUS backplane. The network connection
is particularly desirable when coordination of several Snoops is
desired, or when remote control of Snoops is no&d. The Snoop
contains a 12 MHz 88ooo microprocessor, with an operating pro-
gram in ROM which allows simple access to Snoop facilities. An
interpreter allows e.ssy interactive entry and exaution of new
programs, such w special test routina, either from a terminal
keyboard or from personal computer dbk or dbkette files.

2. SNOOP MODULE HARDWARE
Progrm on prototype development of the Snoop Module

has been reported previously.’ This work has been completed,
and five preproduction Snoop Modules have been built. The
final hardware configuration of the module incorporates several
improvements in the high-speed ECL front-end section and in
the 68QOQ microprocessor section. Only minor modifications are
planned before moving into full production.

A photograph of the Snoop Module is shown in Fig. 1, and
a block diagram is shown in Fig. 2.

The ECL history-silo memory has been expanded four-fold
to 1K words. Programmin g options for the addras and data
traps and the trigger modes of the silo memory have been made
more versatile. One such trigger option allows real-time ryn-
chronization for recording by several Snoop Modula on different
FASTBUS Segments via front panel interconnections.

The praeesor section utilisee a 12 MHz MC68W6 CPU in a
LCC package and provides 8 pairs of standard memory sockets.
These may be used with various typea of EPROMs and allow a
choice of ROM/RAM con6gurations.

’ Work supported by the Department of Energy, contract
DEAC03-76SFOQ515.

Fig. 1. The Snoop Module fits in a single crate slot.
-. ..

A processor ateusion bus is available via the Module Aux-
iliary Connector. Thii bus may be utilised to expand proces-
sor memory, add pramr peripherals, or implement additional
FASTBUS diagnostic functions in an add-on module to extend
Snoop Module capabilities as needed in the future. This ex-
tension bus also provides the possibility of linking two Snoop
Modules buk-to-back for Snoop tenting and maintenance.

Snoop FASTBUS Segment drive capability in Master and
Slave modes utilizes some of the existing logic from diagnostic
functions. The bus-driving hardware is a mixture of 10K and
1OOK ECL devices. However, 10k ECL drivers are used on all
timing lines (AS, AK, DS, DK, AR, GK) where signal transitions
convey information. Drivers of 1QQK ECL type ue restricted
to control and information signals (AD, MS, SS, etc.), where
settling time is provided before sampling of their levels.

3. SNOOP SOFTWARE

The ROM-resident softwue for the Snoop Module has been
written in the Forth language, providing a compact yet power-
ful on-board system that includes a compiler, interpreter, and
assembler and also supports multi-tasking and interrupt han-
dling. The system is particularly well suited to a hardware-
debugging environment, because it is fully interactive and pro-
vidar nearly instantaneous turn-around for writing and mod-
ifying programs to exercise particular fuets of the hardware.
Forth bypasses the usual edit, compile, link, load, execute cy-
cle required by most batch-oriented language environments, and
runn much fmter than the BASIC-style interpretive languages.
This speed is greatly l ppraiated when a program loop is needed
for generating a repetitive sequence of electrical signals for ob-
servation by oscilloscope. Because a 68QQO assembler is inte-
grated into the system, it is easy to generate the ultimattspeed
machinecoded instructions in the few cases where that extreme
is needed.

Poster paper presented at the Nuclear Science Symposium, San Francisco, CA, October 23-25, 1985.

IOOK ECL FRONT-END SNOOP CONTROL PROCESSOR
AND MASTER/SLAVE
INTERFACE MISC CLOCK 12 MHz

CLOCKS DIVIDER osc MC 68.000 - I2 MHz PROCESSOR
EXTENSION
BUS
(AUXILIARY
CONNECTOR)

TRANSLATORS

I
,BEDB

4 HISTORY MEMORY SILO 1 K MEMORY 1 t 1 1 2853OA-SCC 1

:RIAL CONTR I

/(200 ns)l (IOOns) I 1

FB CRATESEGMENT
-

GEN. PURPOSE
UART PORT

.
dx

FBT:N LINES

SLAC FASTBUS SNOOP MODULE

Fig. 2. A block diagram of the Snoop Module.

The Snoop Module has served as its own development sys- #3FF. AT-IGNORE sets up the comparator masking
tern. Once the processor, memory and terminal I/O were work- #123800. AT-MATCH bits to ignore the low-order 10
ing, ROM containing a small Forth nucleus wss installed. Ad- MAKE WT-ON-TRAP AD bits, sets the AD value to be
ditional features were tested and added incrementally, first by A-TRAP-MODE matched at hexidecimall23800,
keyboard entry, next by downloading from a smart terminal’s then enables WT generation when-
diskette drive, and finally by incorporation into the ROM. The ever the match occurs during an

address cycle. smart terminal currently used is an IBM PC.

The ROM contains a simple but comprehensive user inter-
face, which allows complete control of the Snoop by means of
a simple ASCII terminal. Menus are available to help the in-
experienced user, and the full Forth programming capability is
available as well.

Using a PC (or other computer) instead of a simple terminal
adds disk storage capability, making it possible to create a stored
collection of useful diagnostic routines which support trouble-
shooting work on particular modules, and to share such routines
with others. The PC also adds hardcopy printing capability to
the Snoop, and even testdata storage.

The Forth system provides complete access to all Snoop
hardware feature for those who need it, while presenting a sim-
ple and clean model which hides the dirty details from the nor-
mal user. For example,

MAKE ASU-WT

NO ASU-WT

causes WT to be generated by the
Snoop when AS goes Up, and

turns that feature off.

SNST. displays the current SNOOP STa-
tus in text form.

5 0 SILO. displays the 5 FASTBUS cycles
last recorded in the silo memory,
and

3 5 SILO. displays the 3 cycles before those.

In addition to these simple interfaces to the Snoop Module’s
logic-analyzer capabilities, there are interfaces which allow use
of the Snoop as a FASTBUS master, so that it can exercise
other FASTBUS devices, or perform simple data-collection and
analysis chores. The Snoop acts as a FASTBUS slave using
microprocessor simulation with hardware help for (geographic)
address recognition. The slave registers can also be accessed by
the user, so that (for example) another master could be set up
to read or write data to the Snoop “slave” for testing purposes.

The FASTBUS Master interface uses command names com-
patible with the proposed FASTBUS Standard Subroutines. Only
a subset of those functions will be provided in ROM, but the
user hss building-block routines available for generating any ad-
ditional functions he might wish to have for a particular appli-
cation.

2

4. MULTI-SNOOP NETWORKS

The Snoop Module is also intended for use in large multi-
segment systems: for diagnosing interconnect problems; for act-
ing as a remotely-controlled master to collect data about, or to
stimulate, a broken system; for collecting samples of segment
activity without disturbing a running system; and for gathering
correlated information from intermittently-connected segments.

These functions require a method of controlling and commu-
nicating with multiple Snoops in a coordinated way, something
more effective than separate terminals COMeCted to each Snoop.
The FASTBUS Diagnostic Serial Network was envisioned for
thii purpose, and an experimental version is being implemented
in the Snoop hardware. The FASTBUS specification has not de-
fined this network yet, largely because of a desire to adopt some
industry standard rather than using our own unique (and thus

. expensive) design. Prototype work on the network hss been
carried out using a Manchester-coded low-speed Ethernet-like
scheme, while waiting for industry to come up with the right
answer for FASTBUS.

We are now converting to the AppleTalk network2 used by
Apple Corporation for ita Macintosh computers and Laserwriter
printer. The AppleTalk network uses even less board space than
our prototype network, and a subset of the original hardware, so
we can implement it by simply removing components and insert
ing jumpers. AppleTalk uses the FM0 modulation capabilities of
the Zilog 8536 Serial Communications Controller, and a Carrier
Sense Multiple Access/Collision Avoidance scheme (CSMA/CA)
instead of our prototype Manchester modulation with Carrier
Sense Multiple Access/Collision Detection (CSMA/CD) scheme.

We are, of course, concerned about the future of the Ap-
pleTalk network in the face of competition from higher perfor-
mance IEEE-Standard networks such as the Ethernet (IEEE
802.3), Token Bus (IEEE 802.4) and Token Ring (IEEE 802.5).
We would in principle prefer to use one of those standards, but
several obstacles have made that impractical up to the present
time. First, reliable silicon support for those standards, with ad-
equate density to meet our board space limitations, is just now
becoming available. Unfortunately, the chip sets are generally
not designed in a way which permits wire-OR connection of mul-
tiple nodes on the FASTBUS backplane (an absolutely essential
requirement for any eventual Diagnostic Network standard), and
the more compact implementations are rather processor-specific.

In addition, the high data rates are a problem in two ways:
the demands on the processor may be so great as to require a co-
processor to handle the load of the network, costing additional
board space; and, high data rates place stringent requirements
on cable length and type which are seriously inconvenient in a
typical FASTBUS environment.

It seems clear that there is already sufficient support for Ap-
pleTalk that it will be around for some time, and therefore that
it has significant advantages compared to using our own unique
design. In particular, gateways which connect AppleTalk with
Ethernet are bec.ming available commercially, and this path is

probably the simplest and cheapest way to link the Snoops with
the DEC VAXes and other computers commonly used in data
acquisition systems today.

A software effort is currently beginning at SLAC to imple-
ment the AppleTalk network on the Snoop, using Macintosh
computers as development tools. Protocols appropriate to the
Snoop’s functions remain to be undemtood, selected and imple-
mented. We intend to include the necessary hooks in the Snoop
ROM software so that a Snoop can be activated by either a ter-
minal or a PC connected to its front panel, or by the FASTBUS
Diagnostic Network connection on the backplane.

The CDF group at the Fermi National Accelerator Labora-
tory has debugged and used two Snoop Modules under control
of a program running on a VAX, using the front-panel terminal
connection to the Snoop.S

6. CONCLUSION

Basic functional testing of the Snoop Module prototype is al-
most completed. The module performs very reliably. Additional
testing in more complex and higher-speed FASTBUS environ-
ments still remains to be done, including actual field testing by
usem.

During the next several months, minor hardware corrections
and completion of the documentation package are planned. A
module production run is scheduled during the next 6 months.
It is hoped that this pilot production will be performed un-
der a commercial contract. SLAC is planning to make sample
quantities from this production run available to the FASTBUS
community. The cost for tested Snoop Modules with software
on-board is expected to be U.S. S 6K to 8K.

With the fimt large multisegment FASTBUS systems now
being assembled, we hope that this Snoop Module will become
a valuable tool for diagnosing and solving FASTBUS system
problems.

ACKNOWLEDGEMENT

We are grateful to R. S. Larsen for his support throughout
this project; to Ed Austin for hi work on the PC layout; to V.
Itani for his work on the drawings; to Fred Schinn for his assis-
tance in the hardware checkout, coordination support, engineer-
ing support, wirelist creation and maintenance; and to Sergio
Zimmermann of FNAL for his collaboration and assistance in
the hardware testing.

REFERENCES

1. H. V. Walz and D. B. Gustavson, 9tatus of the SLAC
Snoop Diagnostic Module for FASTBUS”, IEEE Transac-
tions on Nucl. Sci. NS-30, No. 4, 2276 (1983).

2. “Inside AppleTalk”, Apple Computer, Inc., 20525 Mariani
Avenue, Cupertino, CA 95014.

3. S. Zimmermann, Fermi National Accelerator Laboratory,
“A FASTBUS Logic Analyser Based on SLAC Snoop Di-
agnostic Modules”, paper presented at this conference.

