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ABSTRACT 

The SLAC Scanner Processor is a general purpose, pro- 
grammable FASTBUS crate/cable master/slave module. This 
device plays a central role in the readout, buffering and pre- 
processing of data from the upgraded Mark II detector’s new 
central drift chamber. In addition to data readout, the SSPs 
assist in a variety of other services, such as detector calibration, 
FASTBUS system management, FASTBUS system initialization 
and verification, and FASTBUS module testing. 

1. INTRODUCTION 

The SLAC Scanner Processor (SSP) is a general-purpose 
FASTBUS module combining the functions of a FASTBUS mas- 
ter and slave on both crate and cable segments, a large buffer 
memory, and a programmable central processing unit.’ FAST- 
BUS I/O is accomplished by dedicated hardware, and many of 
the standard protocols are supported. Processing power is pro- 
vided by a 32bit bit-slice CPU implementing a subset of the 
IBM System/370 integer instruction set supplemented by a set 
of FASTBUS I/O instructions. The main buffer memory con- 
sists of 128K bytes, but can be expanded to 512K bytes through 
the use of 64K static RAM chips. 

Although this device was specifically designed to support 
crate level readout and processing of TDC and FADC modules 
within the data acquisition for the upgraded Mark II detector,s 

complete set of diagnostic routines which test both the internal 
(arithmetic and logical) and FASTBUS I/O instructions, and 
the memory. 

This paper will present a summary of some SSP operational 
details, and will then discuss the specific applications of the SSP 
to the Mark II system. 
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its capabilities are sufficiently general for other applications within 

at PEP (See Fig. 1). Each FASTBUS crate of data acqui- 
sition modules is directly controlled by its own ‘remote’ SSP. 

the FASTBUS system. The Mark II, which will begin operation 

All of these crates are grouped together on a small number of 
FASTBUS cable segments. Each cable segment is managed by a 
‘system SSP which communicates directly with the VAX host. 

at the SLAC Linear Collider3 in early 1987, provides an exam- 

Finally, a cluster of 3081/E processors’ are controlled by a pair 

ple of a FASTBUS system utilizing multiple SSP’s with different 

of SSP’s which manage the inward and outward data flow and 

responsibilities. SSP’s occupy three distinct positions and many 

monitor processor status. In addition, SSPs are used offline in 

more roles within the present Mark II data acquisition system4 

the FASTBUS test bench for the checkout of new FASTBUS 
modules, the diagnosis and testing of faulty modules, and soft- 
ware development. 
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Fig. 1. Mark II FASTBUS System at PEP. 
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2. SSP I/O Operation 

A partial operational description of the SSP has already 
been given in Ref. 1, which discusses the hardware instruction 
set, memory configuration, processing speed, and other features. 
The utility of the SSP is largely due, however, to its FASTBUS 
I/O characteristics. Control of the SSP is exercised through two 
front panel LEMO connectors, and via FASTBUS through a set 
of control registers and memory locations. 

The SSP supports programs coded in either IBM assembly 
language or FORTRAN 77. Special functions such as FAST- 
BUS I/O are provided by assembler macros and a library of 
FORTRAN-cal lable subroutines. Object files are then trans- 
lated, a process which modifies the code to accomodate the 
special features of the SSP, and linked to construct an exe- 
cutable image. Images are downloaded first to the VAX host, 
and then to the SSP itself through the VAX-FASTBUS inter- 
face and FASTBUS system. SSP operation can be verified by a 

* Work supported by the Department of Energy, contract 
DE-AC03-76SFOO515. 

In addition to an assortment of informative LEDs, the SSP’s 
front panel contains START input and DONE output connec- 
tions. The START signal is ORed with bit 11 in CSRO, and 
serves ss a means for starting the SSP with a simple NIM level 
pulse, such as an event trigger. The DONE output is a reflec- 
tion of bit 5 in CSRO, and is a convenient means for the SSP to 
signal some condition to an external logic module. 

There are six special registers and memory locations within 
the SSP used to control its operation. With the exception of the 
PSW, all are directly accessable via the connected FASTBUS 
segments. 

CSRO: This register contains the primary control bits gov- 
erning SSP I/O operation. Each bit is described in Table 1. 
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TABLE 1: CSRO 

:SP Power-on Meaning on READ Meaning on WRITE 

Bit default if bit is set if bit is set 

0 0 

1 0 

2 0 

3 0 

4 0 I- 5 0 

6 0 

7 0 

8 0 

9 0 

10 0 

11 0 

12 - 

13 - 

14 - 

15 - 

16 0 

17 1 

18 1 

19 0 

20 0 

21 0 

22 0 

23 0 

24 1 

25 0 

26 0 

27 0 

23 0 

29 0 

30 0 

31 0 

SR (crate) 

RUN enabled 

STOP 

Enable RB (crate) 

Enable RUN state 

SR (cable) 

SR enabled (crate) 

DONE (SR) status 

Single rtep enabled 

GKUP (maintain GK) 

crate segment selected 

(0=> cable selected) 

SR enabled (cable) 

Timeout (TO) inhibited 

Issue RB p&e 

Enable SR (crate) 

Assert DONE (SR) 

Enable single step mode 

Enable GKUP 

Select crate segment 

Enable SR (cable) 

Enable TO inhibit 

START processor 

Device Class: Chit 

value used in 

broadcasts (case 1) 

Mfg. ID (0106 hex) 

Mfg. ID 

Mfg. ID 

Mfg. ID 

Device Class: Chits 

(these bits arc set 

only when bit 16 

is also set) 

Enable Device Class 

Enable RB (cable) 

Disable RUN (hard STOP) 

Mfg. ID Disable SR (crate) 

Mfg. ID Lower DONE (SR) 

Mfg. ID Disable single step 

Mfg. ID Disable GKUP 

Mfg. ID 

Mfg. ID 

Mfg. ID 

Mu. ID 

Select cable segment 

Disable SR (cable) 

Disable TO inhibit 

Mfg. ID 

Mfg. ID 

Mfg. ID 

Mfu. ID 

Note: SR is asserted on either or both FASTBUS segments when 
both DONE is azserted and SR is enabled. RB is issued as a 
one microsecond pulse on only one segment at a time. Bit 3 in 
addition to either bits 1 or 17 are necessary to assert RB. 

CSR8: This register contains the arbitration vector used for 
both crate and cable operation, and is write only. 

DMO: Data memory location 0 is used to contain the initial pro- 
gram status word (PSW). When an idle SSP receives a START, 
the PSW is loaded from DMO and execution commences. Any 
action resulting in an error condition causes the current PSW 
to be dumped to DMO. 

DM4: The second full-word in data memory is used to dump 
the contents of the memory address register (MAR) whenever 
an error condition occurs. The contents of this register are wed, 

for example, when an SS=2 response is encountered during a 
block read in order to compute the word count transferred. 

PMO: The first location in program memory is the hardware trap 
location upon detection of any error. This location generally 
contains a branch instruction to an error handling routine. 

PSW: The Program Status Word contains the program counter 
(PC) and 20 status bits used to describe processor status. These 
bits are described in Table 2. Note that the PSW is generally 
not available for reading except after an error occurs at which 
time it is dumped into DMO. 

TABLE 2: THE PROGRAM STATUS WORD 

E T 89 B  E  A  M S  R W  EX N 8 0 CC PC 

x 0 CODE It G 8 D A  P M M  

c u E  A  I A  8 8 

(MSB) 

y; ;$l,;;;;,;;;;,;; :;I;; 

INTR - External interrupt (attached as FASTBUS slave) 
EXCP - Exception (divide by 0, overflow, unsupported 

opcode, or block transfer word count overflow) 
TOUT - Timeout during FASTBUS operation 

SS - Slave status at t ime of I/O error 
BREQ - Arbitration cycle in progress at time of error 

EG - Address cycle in progress at time of error 
ASAK - ASAK lock present at t ime of error 

MS - Mode select bits (MSO, and MSl) at t ime of error 
RD - Read in progress at time of error (else, 

write in progress) 
WAIT - WT was being asserted at time of error 

EX - Exception code: 
00 [O] => divide by zero 
01 [1] => overflow 
10 [2] => unsupported opcode 
11 [3] => block transfer count overflow 

NPA - Next PROM Address. This bit is set during 
execution of a multiple PROM cycle instruction. 
if set, the PC must be decremented by one 
upon an error in order to return to the next 
instruction in sequence. 

SMSK - IBM system mask (enables external interrupt) 
OMSK - IBM overflow mask (enables overflow interrupt) 

CC - IBM encoded condition code 
PC - Program counter (or instruction address in 

Program Memory) 

Initial PSW: PC = starting address of program 
Error PSW: PC = one beyond instruction causing error 

Special attention is directed to PSW bit 15 (SMSK) which 
governs how the SSP responds az a FASTBUS slave while it is 
running. If enabled (SMSK=l), once an AS/AK lock is estab- 
lished, DS up results in the SSP returning WT (wait). This 
condition persists while the current instruction completes, and 
the error handler is called upon to halt the CPU (the PSW 
dumped to DMO has bit 31 set). Once halted, WT is dropped, 
DK raised and the transaction resumes. If SMSK is disabled, 
DS up results in an SS=l (busy) response. Note that any suc- 
cessfully interrupted SSP must be explicitly restarted. 
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3. SYSTEM SSPs 

System SSPs reside in a FASTBUS crate directly accessible 
to the VAX host. Within the Mark II architecture, system SSPs 
mediate all transactions between the VAX and remote SSPe, 
hence replace segment interconnects. In addition, system SSPs 
participate in system initialization and verification and are uzed 
as event builders during event acquisition. Each system SSP is 
attached, via a FASTBUS cable segment, to some number of 
remote SSPs. 

At system initialization and verification time, the system 
SSP is used 8s a convenient memory buffer with which to test 
the VAX-FASTBUS interface, crate segment operation, and to 
some extent the SSP itself. (-4 set of integer diagnostics verify 
internal SSP operation.) Software is then loaded into the system 
SSP which maps the FASTBUS occupancy of the attached cable 
segment. It then proceeds with a series of data transfers to 
each cable device, usually SSPs, verifying the integrity of the 
data path, cable segment operation, and memories of the remote 
modules. 

During all other operations, the system SSPs all execute a 
general purpose service program called SYSCAN. The SYSCAN 
program contains two main algorithms: a command list pro- 
cessor and an interrupt handler. Commands serviced by the 
command list processor include requests for FASTBUS I/O op- 
erations and system SSP memory allocation and deallocation 
requests. The interrupt handling algorithm checks for interrupt 
messages from remote SSPs. If an interrupt message is found, 
the interrupt handler can perform any or all of the following 
tasks: read remote SSP memory; pack together data read from 
other remote SSPs; and, send an interrupt message to the VAX. 

To illustrate a typical transaction, consider a request to load 
a COMMON block into a remote SSP’s data memory. A single 
call is made to the routine SSP-WR-COMMON on the VAX. 
This routine causes a command list and data buffer be sent to 
the appropriate system SSP. The system SSP is then started by 
a random write to CSRO. The command list causes the system 
SSP to perform the requested block write to the appropriate re- 
mote SSP. A FASTBUS interrupt message is then sent from the 
system SSP to the VAX indicating completion of this request. 

The SYSCAN program is used during event acquisition, cal- 
ibration, and all other applications requiring communication 
with remote SSPs. 

4. REMOTE SSPs 

Remote SSPs reside, one each, in FASTBUS crates filled 
with data acquisition modules, either TDC or FADC modules 
which provide timing and pulse height information from the cen- 
tral drift chamber. 

Once the internal operation of a remote SSP has been ver- 
ified via the attached cable segment, it then completes cable, 
crate and module verification. This is accomplished by software 
which addresses each module on the cable and crate segments 
in turn and performs comprehensive memory tests. These tests 
are customized for the various types of modules in the system 
reflecting their unique memory features. All modules present in 
the system are tested. A package of interactive routines may be 
invoked at any time which allows additional testing of my  part 
of the system. 

The final phase of system initialization consists of data M- 
quisition module initialization. This step includes downloading 
registers and tables necessary for proper operation during cal- 
ibration and event acquisition. Verification and initialization 
occur once at the beginning of each data run or about every two 
to three hours, and requires about one minute. 

Event acquisition is the primary task for remote SSPs. This 
program for TDC crates, for example, consists of six steps: di- 
rect FASTBUS readout of TDC modules; data sorting and trans- 
lation; calculation of pulse widths; time offset correction; con- 
struction of the final data format; and, notifying the system SSP 
that processing is complete. The data translation step involves 
changing FASTBUS geographical addresses and channels into 
layer, cell, and wire numbers. Data reduction may also be ap- 
plied, such as a minimum pulse width requirement. In addition, 
a simple error log is maintained for I/O and processing errors 
encountered. Event acquisition processing completes within 20 
ms, even for large events. 

Control of event acquisition is achieved through a series of 
VAX-CAMAC-SSP interactions. An event trigger (NIM pulse) 
iz used to start each remote SSP via its front panel. Upon com- 
pletion of event processing a short interrupt message is sent to 
the system SSP, followed by a write to CSRO to start the sys- 
tem SSP. This action causes the system SSP to. read the remote 
SSP’s data buffer, and then re-enable it for the next event. A 
master system SSP builds the event with data from remote SSPs 
on its cable segment, and from other system SSPs on its crate 
segment. After all remote and system SSPs have responded, 
the master system SSP sends a FASTBUS interrupt message to 
the VAX. The VAX reads the event buffer from master system 
SSP memory with a single FASTBUS block read, and resets the 
trigger logic allowing the cycle to repeat. 

Corrections for channel-to-channel variations in electronic 
response are applied by the remote SSPs during event acqui- 
sition. The remote SSPs also participate in the determination 
of these corrections by computing for each electronics channel 
the sum and sum of squares of the of the responses to a set of 
identical calibration pulses. As sets of pulses are applied to var- 
ious portions of the electronics, the remote SSPs read out the 
data acquisition modules and compile statistics for each set of 
pulses. In addition, an error log is maintained which is used 
to identify faulty electronics channels. After all channels have 
been pulsed, the results are read from the remote SSP memories. 
Thus, remote SSPs perform parallel, local processing. The VAX 
host sees data only from a complete set of pulses to all chan- 
nels. Complete sets of pulses of several different values enable 
the VAX to parameterize the response of each channel. Detailed 
descriptions of the drift chamber and calibration systems can be 
found in Refs. 6 and 7. 

Calibration control is similar to that for event acquisition. 
Calibration signals and triggers are issued by special hardware 
under CAMAC control. Trigger pulses are fed to each remote 
SSP’s front panel START. The system SSP is notified by each 
of the four remote SSPs ss they finish. The system SSP then re- 
enables the remote SSPs and, after waiting for all to complete, 
issues a DONE signal through its front panel to a CAMAC mod- 
ule at which point the cycle repeats. At the end of each set of 
calibration pulses, remote SSP memory is read by the VAX for 
final processing. The entire TDC calibration program requires 
between 30 and 40 seconds to complete, is performed once about 
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every eight hours and represents less than a 0.1% contribution 
to the total detector dead time. An analogous program is being 
developed for the FADC system. 

5. 3081/E MANAGERS 

On-line 3081/E processors will be used for event reconstruc- 
tion, and analysis. Data from each event will be channeled to 
an available processor. After processing is complete, the results 
must be read from 3081/E memory and transferred to the VAX 
for display and logging. The SSPs managing the 3081/E cluster 
will run a modified system SSP program. One important differ- 
ence between these programs is the added task of SR scanning. 
Since the 3081/E’s are FASTBUS slave@ they must indicate 
their readiness for event readout via the service request (SR) 
line. Software for 3081/E management is currently being de- 
signed and expected to be running concurrent with delivery of 
the first 3081/E. The first 3081/E with a dual-ported FASTBUS 
slave interface is expected to be delivered by the end of 1985. 

6. FASTBUS TEST BENCH 

The FASTBUS test bench is based upon a MicroVAX I com- 
puter with dual DRVll-J/IORFIe interfaces serving two inde- 
pendent FASTBUS crates (see Fig. 1). Software running on 
the VAX 8600 need only be linked with one alternate library to 
run on the MicroVAX: all VAX-FASTBUS subroutine calls are 
nearly identical on the two machines. The MicroVAX is also 
able to field FASTBUS interrupt messages in the same manner 
as the VAX 8600. While the IORFI provides a relatively slow ac- 
cess to the FASTBUS system (arbitrarily slow to m  1300 32bit 
words/s during block transfers), the addition of an SSP pushes 
this rate into the five to ten million words/s range. 

The SSP can provide, for example, a series of repetitive 
FASTBUS operations in a debugging environment using an os- 
cil loscope to search for intermittant problems. Simple programs 
of this type may be hand-loaded into SSP memory using the SSP 
debugger program, SNOOPY. More sophistocated test software 

containing more complex operations and options is generally 
coded on the IBM, following the normal sequence of process- 
ing steps. The SNOOPY program is also the primary tool for 
debugging new SSP software, as it provides simple access to 
all SSP registers and memory locations, de-assembles hardware 
instructions, and recognizes symbolic variable names. 
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