
SLAC - PUB - 3781
September 1985

(1)
SLAC SCANNER PROCESSOR APPLICATIONS IN THE DATA

ACQUISITION SYSTEM FOR THE UPGRADED MARK II DETECTOR*

T. BARKLOW, T. GLANZMAN, A. J. LANKFORD AND K. RILES
Stanjord Linear Accelerator Center, Stanjord University, Stanford, California 94805

ABSTRACT

The SLAC Scanner Processor is a general purpose, pro-
grammable FASTBUS crate/cable master/slave module. This
device plays a central role in the readout, buffering and pre-
processing of data from the upgraded Mark II detector’s new
central drift chamber. In addition to data readout, the SSPs
assist in a variety of other services, such as detector calibration,
FASTBUS system management, FASTBUS system initialization
and verification, and FASTBUS module testing.

1. INTRODUCTION

The SLAC Scanner Processor (SSP) is a general-purpose
FASTBUS module combining the functions of a FASTBUS mas-
ter and slave on both crate and cable segments, a large buffer
memory, and a programmable central processing unit.’ FAST-
BUS I/O is accomplished by dedicated hardware, and many of
the standard protocols are supported. Processing power is pro-
vided by a 32bit bit-slice CPU implementing a subset of the
IBM System/370 integer instruction set supplemented by a set
of FASTBUS I/O instructions. The main buffer memory con-
sists of 128K bytes, but can be expanded to 512K bytes through
the use of 64K static RAM chips.

Although this device was specifically designed to support
crate level readout and processing of TDC and FADC modules
within the data acquisition for the upgraded Mark II detector,s

complete set of diagnostic routines which test both the internal
(arithmetic and logical) and FASTBUS I/O instructions, and
the memory.

This paper will present a summary of some SSP operational
details, and will then discuss the specific applications of the SSP
to the Mark II system.

DECnet ---
T----

T----

Coble
Emulator Cluster ,,

I
, Segments l 3081/E 1 1 1 3081/E 1

\ I I -'
Drift Chomber Timing *'

I I I

its capabilities are sufficiently general for other applications within

at PEP (See Fig. 1). Each FASTBUS crate of data acqui-
sition modules is directly controlled by its own ‘remote’ SSP.

the FASTBUS system. The Mark II, which will begin operation

All of these crates are grouped together on a small number of
FASTBUS cable segments. Each cable segment is managed by a
‘system SSP which communicates directly with the VAX host.

at the SLAC Linear Collider3 in early 1987, provides an exam-

Finally, a cluster of 3081/E processors’ are controlled by a pair

ple of a FASTBUS system utilizing multiple SSP’s with different

of SSP’s which manage the inward and outward data flow and

responsibilities. SSP’s occupy three distinct positions and many

monitor processor status. In addition, SSPs are used offline in

more roles within the present Mark II data acquisition system4

the FASTBUS test bench for the checkout of new FASTBUS
modules, the diagnosis and testing of faulty modules, and soft-
ware development.

(“.SD

@ @ @ @

IILIT^,

Drift Chamber dE/dX (1/3system)

Fig. 1. Mark II FASTBUS System at PEP.

*'

.^ ̂ = LI)L,II.

2. SSP I/O Operation

A partial operational description of the SSP has already
been given in Ref. 1, which discusses the hardware instruction
set, memory configuration, processing speed, and other features.
The utility of the SSP is largely due, however, to its FASTBUS
I/O characteristics. Control of the SSP is exercised through two
front panel LEMO connectors, and via FASTBUS through a set
of control registers and memory locations.

The SSP supports programs coded in either IBM assembly
language or FORTRAN 77. Special functions such as FAST-
BUS I/O are provided by assembler macros and a library of
FORTRAN-cal lable subroutines. Object files are then trans-
lated, a process which modifies the code to accomodate the
special features of the SSP, and linked to construct an exe-
cutable image. Images are downloaded first to the VAX host,
and then to the SSP itself through the VAX-FASTBUS inter-
face and FASTBUS system. SSP operation can be verified by a

* Work supported by the Department of Energy, contract
DE-AC03-76SFOO515.

In addition to an assortment of informative LEDs, the SSP’s
front panel contains START input and DONE output connec-
tions. The START signal is ORed with bit 11 in CSRO, and
serves ss a means for starting the SSP with a simple NIM level
pulse, such as an event trigger. The DONE output is a reflec-
tion of bit 5 in CSRO, and is a convenient means for the SSP to
signal some condition to an external logic module.

There are six special registers and memory locations within
the SSP used to control its operation. With the exception of the
PSW, all are directly accessable via the connected FASTBUS
segments.

CSRO: This register contains the primary control bits gov-
erning SSP I/O operation. Each bit is described in Table 1.

Presented at the Nuclear Science Symposium, San Francisco, CA, October 23-25, 1985.

TABLE 1: CSRO

:SP Power-on Meaning on READ Meaning on WRITE

Bit default if bit is set if bit is set

0 0

1 0

2 0

3 0

4 0 I- 5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 -

13 -

14 -

15 -

16 0

17 1

18 1

19 0

20 0

21 0

22 0

23 0

24 1

25 0

26 0

27 0

23 0

29 0

30 0

31 0

SR (crate)

RUN enabled

STOP

Enable RB (crate)

Enable RUN state

SR (cable)

SR enabled (crate)

DONE (SR) status

Single rtep enabled

GKUP (maintain GK)

crate segment selected

(0=> cable selected)

SR enabled (cable)

Timeout (TO) inhibited

Issue RB p&e

Enable SR (crate)

Assert DONE (SR)

Enable single step mode

Enable GKUP

Select crate segment

Enable SR (cable)

Enable TO inhibit

START processor

Device Class: Chit

value used in

broadcasts (case 1)

Mfg. ID (0106 hex)

Mfg. ID

Mfg. ID

Mfg. ID

Device Class: Chits

(these bits arc set

only when bit 16

is also set)

Enable Device Class

Enable RB (cable)

Disable RUN (hard STOP)

Mfg. ID Disable SR (crate)

Mfg. ID Lower DONE (SR)

Mfg. ID Disable single step

Mfg. ID Disable GKUP

Mfg. ID

Mfg. ID

Mfg. ID

Mu. ID

Select cable segment

Disable SR (cable)

Disable TO inhibit

Mfg. ID

Mfg. ID

Mfg. ID

Mfu. ID

Note: SR is asserted on either or both FASTBUS segments when
both DONE is azserted and SR is enabled. RB is issued as a
one microsecond pulse on only one segment at a time. Bit 3 in
addition to either bits 1 or 17 are necessary to assert RB.

CSR8: This register contains the arbitration vector used for
both crate and cable operation, and is write only.

DMO: Data memory location 0 is used to contain the initial pro-
gram status word (PSW). When an idle SSP receives a START,
the PSW is loaded from DMO and execution commences. Any
action resulting in an error condition causes the current PSW
to be dumped to DMO.

DM4: The second full-word in data memory is used to dump
the contents of the memory address register (MAR) whenever
an error condition occurs. The contents of this register are wed,

for example, when an SS=2 response is encountered during a
block read in order to compute the word count transferred.

PMO: The first location in program memory is the hardware trap
location upon detection of any error. This location generally
contains a branch instruction to an error handling routine.

PSW: The Program Status Word contains the program counter
(PC) and 20 status bits used to describe processor status. These
bits are described in Table 2. Note that the PSW is generally
not available for reading except after an error occurs at which
time it is dumped into DMO.

TABLE 2: THE PROGRAM STATUS WORD

E T 89 B E A M S R W EX N 8 0 CC PC

x 0 CODE It G 8 D A P M M

c u E A I A 8 8

(MSB)

y; ;$l,;;;;,;;;;,;; :;I;;

INTR - External interrupt (attached as FASTBUS slave)
EXCP - Exception (divide by 0, overflow, unsupported

opcode, or block transfer word count overflow)
TOUT - Timeout during FASTBUS operation

SS - Slave status at t ime of I/O error
BREQ - Arbitration cycle in progress at time of error

EG - Address cycle in progress at time of error
ASAK - ASAK lock present at t ime of error

MS - Mode select bits (MSO, and MSl) at t ime of error
RD - Read in progress at time of error (else,

write in progress)
WAIT - WT was being asserted at time of error

EX - Exception code:
00 [O] => divide by zero
01 [1] => overflow
10 [2] => unsupported opcode
11 [3] => block transfer count overflow

NPA - Next PROM Address. This bit is set during
execution of a multiple PROM cycle instruction.
if set, the PC must be decremented by one
upon an error in order to return to the next
instruction in sequence.

SMSK - IBM system mask (enables external interrupt)
OMSK - IBM overflow mask (enables overflow interrupt)

CC - IBM encoded condition code
PC - Program counter (or instruction address in

Program Memory)

Initial PSW: PC = starting address of program
Error PSW: PC = one beyond instruction causing error

Special attention is directed to PSW bit 15 (SMSK) which
governs how the SSP responds az a FASTBUS slave while it is
running. If enabled (SMSK=l), once an AS/AK lock is estab-
lished, DS up results in the SSP returning WT (wait). This
condition persists while the current instruction completes, and
the error handler is called upon to halt the CPU (the PSW
dumped to DMO has bit 31 set). Once halted, WT is dropped,
DK raised and the transaction resumes. If SMSK is disabled,
DS up results in an SS=l (busy) response. Note that any suc-
cessfully interrupted SSP must be explicitly restarted.

2

3. SYSTEM SSPs

System SSPs reside in a FASTBUS crate directly accessible
to the VAX host. Within the Mark II architecture, system SSPs
mediate all transactions between the VAX and remote SSPe,
hence replace segment interconnects. In addition, system SSPs
participate in system initialization and verification and are uzed
as event builders during event acquisition. Each system SSP is
attached, via a FASTBUS cable segment, to some number of
remote SSPs.

At system initialization and verification time, the system
SSP is used 8s a convenient memory buffer with which to test
the VAX-FASTBUS interface, crate segment operation, and to
some extent the SSP itself. (-4 set of integer diagnostics verify
internal SSP operation.) Software is then loaded into the system
SSP which maps the FASTBUS occupancy of the attached cable
segment. It then proceeds with a series of data transfers to
each cable device, usually SSPs, verifying the integrity of the
data path, cable segment operation, and memories of the remote
modules.

During all other operations, the system SSPs all execute a
general purpose service program called SYSCAN. The SYSCAN
program contains two main algorithms: a command list pro-
cessor and an interrupt handler. Commands serviced by the
command list processor include requests for FASTBUS I/O op-
erations and system SSP memory allocation and deallocation
requests. The interrupt handling algorithm checks for interrupt
messages from remote SSPs. If an interrupt message is found,
the interrupt handler can perform any or all of the following
tasks: read remote SSP memory; pack together data read from
other remote SSPs; and, send an interrupt message to the VAX.

To illustrate a typical transaction, consider a request to load
a COMMON block into a remote SSP’s data memory. A single
call is made to the routine SSP-WR-COMMON on the VAX.
This routine causes a command list and data buffer be sent to
the appropriate system SSP. The system SSP is then started by
a random write to CSRO. The command list causes the system
SSP to perform the requested block write to the appropriate re-
mote SSP. A FASTBUS interrupt message is then sent from the
system SSP to the VAX indicating completion of this request.

The SYSCAN program is used during event acquisition, cal-
ibration, and all other applications requiring communication
with remote SSPs.

4. REMOTE SSPs

Remote SSPs reside, one each, in FASTBUS crates filled
with data acquisition modules, either TDC or FADC modules
which provide timing and pulse height information from the cen-
tral drift chamber.

Once the internal operation of a remote SSP has been ver-
ified via the attached cable segment, it then completes cable,
crate and module verification. This is accomplished by software
which addresses each module on the cable and crate segments
in turn and performs comprehensive memory tests. These tests
are customized for the various types of modules in the system
reflecting their unique memory features. All modules present in
the system are tested. A package of interactive routines may be
invoked at any time which allows additional testing of my part
of the system.

The final phase of system initialization consists of data M-
quisition module initialization. This step includes downloading
registers and tables necessary for proper operation during cal-
ibration and event acquisition. Verification and initialization
occur once at the beginning of each data run or about every two
to three hours, and requires about one minute.

Event acquisition is the primary task for remote SSPs. This
program for TDC crates, for example, consists of six steps: di-
rect FASTBUS readout of TDC modules; data sorting and trans-
lation; calculation of pulse widths; time offset correction; con-
struction of the final data format; and, notifying the system SSP
that processing is complete. The data translation step involves
changing FASTBUS geographical addresses and channels into
layer, cell, and wire numbers. Data reduction may also be ap-
plied, such as a minimum pulse width requirement. In addition,
a simple error log is maintained for I/O and processing errors
encountered. Event acquisition processing completes within 20
ms, even for large events.

Control of event acquisition is achieved through a series of
VAX-CAMAC-SSP interactions. An event trigger (NIM pulse)
iz used to start each remote SSP via its front panel. Upon com-
pletion of event processing a short interrupt message is sent to
the system SSP, followed by a write to CSRO to start the sys-
tem SSP. This action causes the system SSP to. read the remote
SSP’s data buffer, and then re-enable it for the next event. A
master system SSP builds the event with data from remote SSPs
on its cable segment, and from other system SSPs on its crate
segment. After all remote and system SSPs have responded,
the master system SSP sends a FASTBUS interrupt message to
the VAX. The VAX reads the event buffer from master system
SSP memory with a single FASTBUS block read, and resets the
trigger logic allowing the cycle to repeat.

Corrections for channel-to-channel variations in electronic
response are applied by the remote SSPs during event acqui-
sition. The remote SSPs also participate in the determination
of these corrections by computing for each electronics channel
the sum and sum of squares of the of the responses to a set of
identical calibration pulses. As sets of pulses are applied to var-
ious portions of the electronics, the remote SSPs read out the
data acquisition modules and compile statistics for each set of
pulses. In addition, an error log is maintained which is used
to identify faulty electronics channels. After all channels have
been pulsed, the results are read from the remote SSP memories.
Thus, remote SSPs perform parallel, local processing. The VAX
host sees data only from a complete set of pulses to all chan-
nels. Complete sets of pulses of several different values enable
the VAX to parameterize the response of each channel. Detailed
descriptions of the drift chamber and calibration systems can be
found in Refs. 6 and 7.

Calibration control is similar to that for event acquisition.
Calibration signals and triggers are issued by special hardware
under CAMAC control. Trigger pulses are fed to each remote
SSP’s front panel START. The system SSP is notified by each
of the four remote SSPs ss they finish. The system SSP then re-
enables the remote SSPs and, after waiting for all to complete,
issues a DONE signal through its front panel to a CAMAC mod-
ule at which point the cycle repeats. At the end of each set of
calibration pulses, remote SSP memory is read by the VAX for
final processing. The entire TDC calibration program requires
between 30 and 40 seconds to complete, is performed once about

3

every eight hours and represents less than a 0.1% contribution
to the total detector dead time. An analogous program is being
developed for the FADC system.

5. 3081/E MANAGERS

On-line 3081/E processors will be used for event reconstruc-
tion, and analysis. Data from each event will be channeled to
an available processor. After processing is complete, the results
must be read from 3081/E memory and transferred to the VAX
for display and logging. The SSPs managing the 3081/E cluster
will run a modified system SSP program. One important differ-
ence between these programs is the added task of SR scanning.
Since the 3081/E’s are FASTBUS slave@ they must indicate
their readiness for event readout via the service request (SR)
line. Software for 3081/E management is currently being de-
signed and expected to be running concurrent with delivery of
the first 3081/E. The first 3081/E with a dual-ported FASTBUS
slave interface is expected to be delivered by the end of 1985.

6. FASTBUS TEST BENCH

The FASTBUS test bench is based upon a MicroVAX I com-
puter with dual DRVll-J/IORFIe interfaces serving two inde-
pendent FASTBUS crates (see Fig. 1). Software running on
the VAX 8600 need only be linked with one alternate library to
run on the MicroVAX: all VAX-FASTBUS subroutine calls are
nearly identical on the two machines. The MicroVAX is also
able to field FASTBUS interrupt messages in the same manner
as the VAX 8600. While the IORFI provides a relatively slow ac-
cess to the FASTBUS system (arbitrarily slow to m 1300 32bit
words/s during block transfers), the addition of an SSP pushes
this rate into the five to ten million words/s range.

The SSP can provide, for example, a series of repetitive
FASTBUS operations in a debugging environment using an os-
cil loscope to search for intermittant problems. Simple programs
of this type may be hand-loaded into SSP memory using the SSP
debugger program, SNOOPY. More sophistocated test software

containing more complex operations and options is generally
coded on the IBM, following the normal sequence of process-
ing steps. The SNOOPY program is also the primary tool for
debugging new SSP software, as it provides simple access to
all SSP registers and memory locations, de-assembles hardware
instructions, and recognizes symbolic variable names.

1.

2.

3.

4.

5.

6.

7.

8.

9.

REFERENCES

YThe SLAC Scanner Processor: A FASTBUS Module for
Data Collection and Processing,” H. Brafman, T. Glanz-
man, A.J. Lankford, J. Olsen, and L. Paffrath, IEEE Trans-
actions on Nuclear Science (NS-32), No.1, February 1985,
p. 336.

‘Proposal for the Mark II at SLC,” CalTech document
CALT-681015, April 1983.

“SLAC Linear Collider Conceptual Dezign Report,“, SLAC-
Report-229, June 1980.

“Data Acquisition and FASTBUS for the Mark II Detec-
tar”, A.J. Lankford, and T. Glanzman, IEEE Transactions
on Nuclear Science (NS-31), No. 1, February 1984, p. 225.

“The 3081/E Processor and its On-line Use,” P. Rankin,
et. aJ., IEEE Transaction on Nuclear Science (NS-32), No.
4, August 1985, p. 1321.

“The New Drift Chamber for the Mark II Detector at the
SLAC Linear Collider,” Patricia R. Burchat, et. al., IEEE
Transactions on Nuclear Science (NS-32), No. 1, February
1985, p. 600.

YThe SLAC Mark II Upgrade Drift Chamber Front End
Electronics,” D. Briggs, ct. al., IEEE Transactions on Nu-
clear Science (NS-32), No. 1, February 1985, p. 653.

‘A FASTBUS Interface for the 3081/E,” L. Barker, et. al.,
these proceedings.

“An I/O Register to FASTBUS Interface,” C.A.Logg, and
L. Paffrath, IEEE Transactions on Nuclear Science (NS-
30), No. 1, February 1983, p. 228.

