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ABSTRACT 
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1. Introduction 

In this talk I would like to review some recent work 11~2,3~41 done on the 

t-expansion at SLAC and Tel-Aviv University. 

Consider a quantum mechanical Hamiltonian H. Suppose now that you have 

some initial guess I&) for the ground state wavefunction. I$o) can be expanded 

in a complete set of the eigenstates of H: 

where 

H In> = en In> and C )cn12 = I 
n 

It is easy to write down a wavefunction which is a better approximation to the 

ground state. Let us apply the operator emtHi2 to I&) and normalize the result: 

Itit> = 
(?jol ,A.: ltio)1/2 e-tH’2 Wd ’ 

I$t) can again be expanded in the eigenstates of H: 

I!Jw o! c Cn e-‘nti2 In) . 
n 

(1.1) 

(l-2) 

For any finite value of t, the contribution of the excited eigenstates In) , n # 0 

is suppressed relative to the exact ground state IO) by exponential factors of 

the form e--t(rn-Eo). Clearly, as t + 00 , I+t) converges to the true vacuum, 

-provided that the initial state I$o) h as nonzero overlap with IO). The overlap 

can be very small, but the normalization factor in (1.1) compensates for that. 

The wavefunction is contracted onto the lowest eigenstate of the Hamiltonian. 
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In the same fashion, the expectation value 

of any operator 6 converges to its ground state expectation value as t -+ 00. In 

particular, 

E(t) e bl He -fH MO> 

($1~1 e-tH Itio) = (+tl H Itit> + EGS 

For any finite value of t, EGS is an upper bound on the ground state energy, 

since it is the expectation value of the Hamiltonian in a properly normalized trial 

wave function. 

2. Cluster Expansion 

For the sake of definiteness, consider again 

E(t) G  Wol HestH I&) 

Wol e-tH I$o) ’ (24 

Eq. (2.1) is reminiscent of the expression for the expectation value of a 

Hamiltonian that one encounters in classical statistical mechanics, the numerator 

being the quantum mechanical analogue of a partition function. As we shall see, 

this is a useful analogy and we will be able to use some of the methods familiar 

from statistical mechanics in order to calculate quantities of interest. 

So far, we have seen that E(t) converges to the true vacuum energy as t + 00. 

- However, in (2.1) H appears in the exponential. In general we do not know 

how to exponentiate quantum Hamiltonians, so we must devise some systematic 

approximation procedure which will yield an accurate estimate of E(t). We start 
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with a power series expansion of the exponential 

,-tH - 00 (-t)n 
- 

c ,r Hn 
n=O ’ 

in both the numerator and denominator of (2.1) . After collecting powers of t, 

we obtain an expression for E(t): 

where oi’s are defined in terms of moments of H, ($01 Hm I&). 

At this point, it is important to notice that ($01 Hm I$u) scales with the 

volume V of the system like Vm. On the other hand, E(t) being the expectation 

value of H in some properly normalized wavefunction, must scale like V. Thus, 

the oi’s must also scale like V. In order for that to happen, all higher powers of 

the volume must cancel in the expressions defining ai’s in terms of moments of 

H. 

In fact, the coefficients ai axe the connected matrix elements of H: 

E(t) = 

where, ( Hn+l )” is defined recursively, 

( Hn+l >” = ($01 Hn+’ I&I) - F (;) (HP+1 >c (tiol Hn-P Illto) 
p=o 

P-2) 

- 
Not surprisingly, if we express the series (2.2) in terms of diagram expansion, the 

connected matrix elements will correspond to connected diagrams. 
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In analogy with (2.2) we can write the expectation value of any operator 0 

as: 

(OHrn)’ = (OHm) - 2 (;) (O=m-p)c ($01 HP I&,) , 
p=l 

(2.3) 

where (OHm) is defined to be 

(OHm)=$ ($01 =POHm-p It,bo) . 

3. Pad6 Approximants 

In practice we can calculate the expansion 

N 1 
O(t) = C J %b(-t)n 

n=O ’ 

P-4) 

(3.1) 

to some finite order N. The question then is how to extract the limiting value of 

the function O(t) for t + 00 from its Taylor series expansion around t = 0. We 

know that O(t) + const. as t + 00. From (1.2) we expect O(t) to approach its 

limiting value exponentially in t. We may therefore make use of Pad6 approxi- 

mants which are a well known technique for extracting the behavior of a function 

of the type (3.1) away from the origin of its power series expansion: 

Any series of the type SJJ = CEO aixi can be approximated by a ratio of 

two polynomials: 

N 

c 
aiti = PO + pd’ + p# . . . + p& 

QO + q1tl yt q2t2 . . . + q&4 
+ O(tN+‘); N = L+M 

i=O 

Such a ratio is referred to as the [L/M] Pad6 . In principle, if the function 

which we wish to approximate converges to a constant as t -+ 00, in order - 
to reconstruct that behavior we should use the so called diagonal Padd , i.e., 

L = M, and watch for convergence of the series , [M/M] M = 1,2,3.. . . 
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At this point we encounter a generic problem which is common to all functions 

of the type O(t) = ($tl 0 I$+). To illustrate the problem, let us consider the 

power series for hyperbolic tangent of t: 

tanh(t) = t - kt3 + &t5 - &t7 + &tQ - at” + &&t13 - . . . (3.2) 

tanh(t) goes to a constant as t + 00 and so our first guess would be to use a 

diagonal Pad4 . But the series for tanh(t) contains only odd powers of t so that 

the diagonal Pad4 does not exists ! We have to use some other method. The 

method which works very well in practice is the following. 

We form non-diagonal [L/M] D-Pad6 approximants to the derivative 

aO(t)/%, taking M 2 L + 2. Such a D-Pad& goes to zero as t + co 

as expected of aO(t)/at and is integrable in t since M - L 2 2. O(t) is then 

obtained by integrating the Pad& with respect to t: 

t 

0(t) = 
J 

0W[L/A@ P-3) 
0 

In (3.3) the integrand is a ratio of two polynomials, and the denominator may 

in general have zeros on the positive real axis. In such a case the integrand will 

have poles along the path of integration. Nevertheless, the integral can still be 

defined using the Cauchy principal value: 

J f(x) 
x - x0 q= ic 

dx = P J f(x) =-x f irf(xo) . (3.4 

O(t) is an expectation value of a hermitian operator and therefore must be real. 

Consequently, in what follows we take the real part of the integral: 

t 

0(t) = p J Wd[L/M]d~ (3.5) - 
0 

In our case M 2 L + 2 and it turns out that the integral in (3.5) can easily be 
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computed analytically. For our test case, O(t) = tanh(t) we have, 

$ tanh(t) = 1 - t2 + $4 - $6 + &ts - $!$‘O + 21844t12 _ . . . 467775 (3.6) 

Following the procedure described above we can recover the limiting value of 

tanh(t) as t _+ 00 by forming Pad& of the series (3.6) and integrating with 

respect to t from 0 to 00. The table below shows the results of this integration, 

00 

P tanh’(t)[Llwdt J 
0 

(3.7) 

for all possible values of L and M. 

(M 1 L 

Empty entries correspond to either M < L + 2 or L + M > 12. A u-n means 

that the Pad6 does not exist. 

The convergence of the approximants to the limiting value of 1 is clear. It is 

also pretty obvious from this exercise that in order to get accuracy of the order 

of 1% one needs to have at least order of 8 terms in the series. 
- 

In practice we have found that yet another enhancement to the usual Pad4 

technique yields very good results. Usually we deal with Hamiltonians of the 
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form H = HO + a V. Our choice of I&) was usually the lowest eigenstate of 

Ho. Therefore the coefficients in the t power series will be polynomials in CL We 

are interested in some observable 0 as function of cr: O(o) =t%l& O(a, t). 

We will proceed as follows: given a series for O(cy, t), i.e. 

O(a,t) = $+$cij t’aj 
i=O j=O 

we differentiate it to obtain 

Next, we form Padd approximants with respect to the variable t to obtain 

6y”I (a, t) 

and integrate this with respect to t to obtain 

~@Wl 
00 

da a o=J dt’ ,;;‘w ( CY, t’). 

0 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Finally, we use this approximation to do/% to reconstruct O(o) by integration, 

O(a) = a da’ J 
0 

(3.12) 

We have found that for the class of functions with which we are dealing this is 

the simplest and best way to proceed. - 



4. What Has Been Done ? 

Obviously, the method as we have discussed it is only partially analytic. In 

particular, unlike the situation in perturbation theory, we are not expanding in a 

small parameter and have no control over the rate of convergence of the technique. 

Also, the use of Pade approximants introduces an element of uncertainty into the 

result. At present the only thing we know to do is to apply this technique to a 

variety of problems and see how well it works. The problems which have been 

discussed to date are: 

1. Lattice spin systems in l+l dimensions.[ll 

The two dimensional non-linear sigma model exhibits many of the interest- 

ing phenomena found in four dimensional gauge theories. Thus the results 

for lattice Heisenberg model are a good testing ground for the method. For 

this case the t-expansion was carried out up to t7, with a rather modest 

computational effort. The ground state energy was then reconstructed us- 

ing Pad6 approximants, as described beforehand. The result was between 

0.27% and 0.75% off the exact answer. This should be compared with 

Anderson’s[51 calculation of this quantity in the spin-wave approximation 

which is on the order of 4%. 

For the two-dimensional Ising model the expansion was carried out up to t6 

and both the ground state energy and the magnetization were reproduced 

with high accuracy. 

2. SU(2)-lattice gauge theory in 3+1 dimensions.[21 

We have computed the vacuum energy density, specific heat, string tension 

u, mass of the lowest lying 0 ++-glueball M and the ratio R = M2/a. Our 

computations converge best for the energy density, specific heat and R, and 

these quantities exhibit behavior which agrees with what we expect on gen- 

eral grounds and what is known from Euclidean Monte Carlo calculations. - 
In particular we see a broad lump in the specific heat and determine &? 

to be 0 = 3.5 f .2, a value which lies in the ballpark of values obtained 
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0.0 

. . . . . . . Pade(L7) 
-.-.- Pade(2,8) 

--- Pade(3,5) 
Pert. Theory - 

. . . . . . . . . . . . . . . . Mean Plaquette- 

FIG. 1. Curves showing the energy density & (y) obtained by inte- 
grating the corresponding [L/M]-Padd approximants to d& /dy. 
SU(2), D=3+1. 

from Monte Carlo calculations. Our previously published results for these 

quantities are shown in figures 1 to 3. 

3. SU(3)-lattice gauge theory in 3+1-dimensions.[31 

The calculation here is much more complicated than for SU(2). The ex- 

pansion for vacuum energy has been carried out up to t7. The same series 

was used to obtain the mass M of the lowest lying O++-glueball to order 

t5. Evaluation of the string tension Q to the same order in allows one to 

- construct the ratio R = M2/u. This yields a dimensional result for M 

which is consistent with Monte-Carlo analyses. Higher t-series are needed 

to obtain an accurate estimate for M. 
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FIG. 2. Plot of Specific heat”, -d2& /dp2 for various D-Pad6 
approximants. 
Continuous lines correspond to [L/ (8 - L)] Pad&s. 
Dashed Lines correspond to [L/(5-L)] Pad6-s. su(2), D=3+1. 

. 

4. Simple quantum mechanical models like the one plaquette gauge theory.i41 

It is important to know how many terms in the t-expansion one needs in 

order to get results accurate up to a few percent. From the SU(2) pure 

gauge calculation we learn that we must go beyond tQ. To find out how 

much farther one needs to go, one can look at an exactly soluble model - 

one plaquette Hamiltonian: 

- H=c [Ef+Ez+Eg+EJ +s [2-TrUplocl] (4-l) 

where Uplaq = UIU~U~U~. Comparison of the t-expansion results for this 
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2- 

l- 

- Pade(O.5) direct in J _ 
- . . . . . Pade( 1.4) direct in y 

- - Pade(O.5) from d.R/dy - 
- . - Pade( 1,4) from dR/dy _ 

FIG. 3. A plot of the approximants to dm = Ml& 
obtainable from the full series in t. su(2), D=3+1. 

model with the exact answer shows that at order tQ the ground state energy 

exhibits the same sort of inaccuracy for g2 < 1 as the infinite lattice. To 

obtain accurate results, with relative errors about 10s3, one needs to carry 

the expansion up to t r3. We therefore expect the infinite lattice calculation 

to require at least a comparable number of terms in the t series, in order 

to yield accurate results. The connected matrix elements can probably be 

computed to such a high order only with the help of computer algebra. 

Suitable algorithms are currently being studied. 
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5. bi-state contraction 

Here I would like to describe briefly an extensionl’] of the formalism, which 

might possibly facilitate the approach to the weak coupling regime. 

Suppose that our Hamiltonian can be written as H = HO + g2V where g2 

is a coupling constant. In many cases we can diagonalize H exactly in both the 

g2 + 0 and g2 --$ 00 limit. 

Let I+) be the lowest eigenstate of Ho and 

strong coupling ‘limit. 

For some general value of g2 we may expand 

Ix) be the ground state in the 

both I$) and Ix): 

Ill)=CCnIn), CIGa12=l 
n n 

IX)=CdmIm), Cldrn12=1 
m m 

where 

H In> = en In) 

Now, in complete analogy with (2.1) , we may define 

E(t) tcl(t) - (xl HestH Iti> czo dicneeEnten 
X (xl emtH I$) = Cr!, dkcne-Q (5.1) 

From (5.1) it is obvious that as t + 00 Ex+(t) + EGS. Both E(t) and 

E,+(t) converge to the vacuum energy in the formal sense. However, in (5.1) 

we are performing simultaneous expansion around the weak and strong coupling 

vacua. Thus, for intermediate values of the coupling constant, we have a good 

reason to expect E,J, to converge more rapidly to the exact value of EGS when 

_only finite number of terms .in the t-expansion is taken. On the other hand, the 

calculation of the higher order terms in this approach is usually more complicated. 

It remains to be seen whether the trade-off is really there. 

13 



ACKNOWLEDGEMENTS 

The work described in this talk has been done in collaboration with David 

Horn and Marvin Weinstein. 

I wish to thank Stan Brodsky and Ernie Monitz and the ITP, Santa-Barbara, 

for organizing such a pleasant workshop. 

REFERENCES 

1. D. Horn, M. Weinstein, Phys.Rev. D30 (1984) 1256. 

2. D. Horn, M. Karliner and M. Weinstein, Phys. Rev. D31 (1985) 2589. 

3. D. Horn and K. Van den Doel, Tel-Aviv University preprint TAUP 1371/85. 

4. M. Weinstein, private communication. See also M. Karliner and M. Wein- 

stein, “t-expansion - Status Report” in the proceeding of the Workshop on 

Quark Confinement and Liberation, Lawrence Berkeley Laboratory, May 

22-24, 1985. 

5. P. W. Anderson, Phys. Rev. 88 (1952) 694. 

14 


