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In this talk we discuss string theories on a background manifold with torsion. ‘I 

The talk contains two parts. In the first part we discuss candidate vacuum config- 

urations for ten-dimensional superstrings. We compactify these on M4 x K, where 

M4 is four-dimensional and K some compact six-dimensional manifold. In par- 

titular we are interested in investigating the existence of solutions with non-zero 

torsion on K. The compactification problem is approached both from the effective 

field theory point of view and directly using string considerations. 

The second part of the talk is devoted to the construction of string theories in 

curved space with torsion. We discuss both the Neveu-Schwarz-Ramond” type 

string and the Green-Schwarz” type string. Particular emphasis is put on the re- 

sulting constraints on space-time supersymmetry in the Green-Schwarz approach. 

We use two-dimensional non-linear sigma models to describe the propagation 

of strings in background geometries with torsion. The background field can be 

understood as arising from condensation of infinite number of strings. Torsion can 

be viewed as the field strength associated with the vacuum expectation value of 

the anti-symmetric tensor field B,, which appears in the supergravity multiplet. 

We show that if the background fields only include the metric and torsion, a 

consistent string theory requires torsion to vanish. The possibility remains that 

torsion is non-trivial when other background fields are included, e.g. gauge fields 

and. dilaton. 
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The effective ten-dimensional field theory which appears in the zero-slope limit 

CX’ = 0 of the superstring is N = 1 supergravity coupled to super Yang-Mills mat- 

ter. The low-energy theory has the supergravity transformations of the Chapline- 

Manton action” modified by the appropriate Chern-Simons terms introduced by 

Green and Schwarz. ‘I The effective Lagrangian contains, even at the classical 

level, operators of arbitrarily high dimensions. These arise from integrating out 

the massive modes. Recently problems associated with this approximation were 

raised by Dine and Seiberg” and Kaplunovsky7’ on the basis of phenomenologi- 

cal considerations. If for the purpose of discussing the vacuum this truncation is 

questionable, then our analysis would need modification. 

To prove that the only viable compactifications of the ten-dimensional manifold 

are on manifolds without torsion we take advantage of the analysis of Candelas, 

Horowitz, Strominger and Witten.” They have analyzed in detail the conditions 

for N = 1 supersymmetry and found that space-time M4 must be flat Minkowski 

space. Form the supergravity transformation of the fermionic fields it follows that 

the compact manifold K must admit a covariantly constant spinor E with respect 

to the connection h2, = wm - 4pHm 

vrn(f-+ = (V,(w) - ,L3H,+ = 0 3fi e29 P=, , (1) 

where V,(w) is the covariant derivative with spin connection w. In Eq. (1) Hm is 

defined through Hm = Hmnprn7p, where Hmnp is the field strength associated with 

the antisymmetric field B,,. The indices m, n, p refer to the compact manifold K 

and the 7’s are the O(6) D irac matrices. From eq. (1) one can read off the torsion 

of the new connection 

T mnp = W Hmnp - (2) 

Candelas, Horowitz, Strominger and Witten showed that 

He=0 (3) 

where H = Hmrrn. However, they only studied in detail the case Hmnp = 0. 

Equation (3) can be satisfied without Hmnp being equal to zero. This corresponds 
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to manifolds with torsion. Following the analysis of Ref. [8] it follows that the 

compact manifold admits a complex structure fmn which is covariantly constant 

V,(n) fmn = 0 . (4 

The complex structure can be built from the covariantly constant spinor E. There- 

fore in order to preserve supersymmetry the compact manifold must be a hermitean 

manifold. 

In Ref. [8] the following relation between the scalar curvature R(w) and torsion 

T mnp was derived 

R(w) = ;pzH,np HmnP = 5 TmnpTmnP . (5) 

On manifolds with torsion it is straightforward to calculate the generalized Rie- 

mann tensor build from the connection n 

w-v mnpq = R(w) mnpq + Vp(w)Tmnq - Vq(w)Tmnp + TrmpTrqn - TrmqTrpn . (6) 

For a totally antisymmetric torsion the generalized Ricci tensor is given by” 

R(W mn E R(n)Pmpn = Rmn(W) - TPqmTpqn + VP(W)Tpmn . (7) 

The reparametrization invariance of the compactified string theory demands 

that the two-dimensional non-linear sigma model must be conformally invariant. 

This means that the p-function must vanish. In this talk we will only consider 

the case of identically vanishing p-function. However, one can imagine not having 

/3 E 0 but ju t s a theory at a non-trivial fixed point of the p-function. All the 

results presented here are based on p E 0. In particular the one loop p-function 

should vanish. The p-function has been studied by several authors.91”01 They 

have shown at one loop that the p-functions vanishes, with metric and torsion as 
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background fields, when the generalized Ricci tensor vanishes 

R(f-2) -0. mn - (8) 

Using Eqs. (7) and (8) one finds that the background manifold must satisfy 

R(W) = TmnpTmnp . (9) 

This is in contradiction with Eq. (5) unless 

T mnp - - Hmnp = 0 . (10) 

Hence if the Ricci tensor R(ITt) mn is required to vanish the background manifold 

cannot have any torsion. If the background fields include the dilaton and/or gauge 

fields Eq. (10) may no longer hold, accordingly our conclusions based on Eq. (10) 

may be modified. 

Next we would like to give another proof of the above result. Equations (1) 

and (3) are the important constraints that guarantee that space-time M4 is a 

Minkowski space and that the four-dimensional theory has N = 1 supersymmetry 

at the compactification scale. These constraints together with other constraints 

obtained in Ref. [8] h ave been analyzed and solvedll’lll in the presence of tor- 

sion with a holonomy group SU(3). The hermitean metric g of the compact 

six-dimensional manifold K must then satisfy 

& gG = aTgii = 0 i, j = 1,2,3 
(11) 

detg = 1 . 

In Eq. (11) we have introduced complex coordinates. The condition (11) can be 

rewritten in terms of the curl of the metric 

(12) 

On a Kghler manifold the metric satisfies the condition of Eq. (11). However, Eq. 

(11) admits more general solutions that include torsion. In the complex basis the 
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only non-zero components of the torsion are 

TijE = $ dligjlk Tck = (TijE)* . (13) 

From Eq. (13) t i is clear that on a Kghler manifold the torsion vanishes. The 

Ricci tensor has the following form 

The antisymmetrization makes the generalized Ricci tensor to depend on the curl 

of g. Hence the Ricci tensor vanishes only on KZhler manifolds. Therefore, on 

manifolds with torsion the generalized Ricci tensor does not vanish. This is the 

same result as obtained above. 

Let us emphasize that the conclusion of a vanishing torsion is based on the 

requirement that the Ricci tensor vanishes. This condition followed form the 

sigma model analysis for models that include just the metric and torsion. For 

more general sigma models with more background fields this condition may be 

relaxed and torsion need not vanish. 

So far we have given two proofs that torsion on the compact manifold must 

vanish when the Ricci tensor vanishes. Since not very much is known about string 

theories it is instructive to derive the same equations from different points of view. 

Next we show how some of the equations of the effective field theory approach 

can be derived directly from the string theory. In the previous analysis of the 

effective field theory with torsion Eqs. (5) and (9) played a crucial role. Equation 

(9) followed from the demand that the generalized Ricci tensor vanishes. On the 

other hand Eq. (5) had to be satisfied for the theory to be supersymmetric at the 

compactification scale. In the string theory this equation arises from the demand 

that the central charge in the Virasoro algebra must have the same value as in a 

ten-dimensional supersymmetric string theory in flat space. If the central charge 

is changed, then the critical dimension of the theory is changed. Friedan and 

Shenker la1 have shown that if the critical dimension is changed there are no zero 

mass fermions in the theory and therefore supersymmetry is broken. 
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In recent papers’S1’“l the critical dimension was computed for group manifolds 

with torsion. The torsion corresponds to the Wess-Zumino term which must be 

included in order to preserve conformal invariance of the theory. “I For a purely 

bosonic string the critical dimension on SU(N) is given by”’ 

D = 26 - d, = 
(N2 - 1)k 

N+k 
= dG _ N(N2 - ‘> 

k (15) 

where dG = N2 - 1 is the dimension of SU(N) and k is the integer coefficient of 

the Wess-Zumino term. To make contact with the previous analysis one needs the 

relation between the string tension and the integer klsl 

2 a’=-. 
k 

One can rewrite Eq. (15) in terms of curvature and torsion on the manifold 

26 - (d, + dG) = a’(-3R + T2) + O(~X’~) . (17) 

From Eq. (17) it follows that the critical dimension remains unchanged if R = 

$ T2. A similar analysis can be performed for the supersymmetric case using the 

computation of the critical dimensionality for this case. 13’ Again one finds that 

R = k T2 is needed to ensure that the critical dimension does not shift. To all 

orders in the string tension the critical dimension for group manifolds is given by 

26 - (dc + dG) = - 
(3R - T2)cc’dG 

dG + a’(3R - T2) * (18) 

Therefore, if the dilaton is set to zero, the only way to preserve supersymmetry 

at the compactification scale is to have zero torsion. Recently Callan, Martinet, 

Perry and Friedan la1 have studied the non-linear sigma model with metric, torsion 

and dilaton background fields. 

Next we would like to construct string theories on background manifolds 

with torsion. As we discussed earlier the requirement that the resulting four- 

dimensional effective field theory has N = 1 supersymmetry determines a lot of 
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properties of the compact manifold. In particular the manifold must admit a 

covariantly constant spinor with respect to the connection with torsion 0 and 

consequently a covariantly constant complex structure. Furthermore, the metric 

must be hermitean. When the torsion vanishes the relevant manifolds are Ricci 

flat KZhler manifolds.” When torsion is included one should consider manifolds 

satisfying Eq. (11). 

Recently two-dimensional supersymmetric non-linear sigma models with tor- 

sion have been analyzed.“’ It has been shown that the sigma model has an 

N = 2 supersymmetry if the manifold is hermitean and if the complex structure 

is covariantly constant relative to the connection that includes torsion. 

The general structure of the 
. 17' 
1s 

action after elimination of the auxiliary fields 

r 

1(X, A) = i 
J L 

d2a gm,a,Xmd’Xn + 4 Bmne~“3L,Xm&Xn 

+ igmnq/D+X; + igmnZ’/D-Xr (19) 

+ + R;t;npq (xyppxq) (xtp’“x’) 1 
where the pP’s are the two-dimensional Dirac matrices and Ah are Majorana-Weyl 

spinors. In Eq. (19) f refer to right-handed and left-handed fermions respectively. 

The antisymmetric tensor Bmn is the potential associated with the torsion Tmnp = 

-BI~~,~I. Note that this definition of torsion does not include the Chern-Simons 

terms. It differs form the torsion that appears in the effective field theory T = dB- 

& wy + WL. These extra terms involve a compensating dimensionful parameter. 

Such a parameter is the slope parameter a’ - (!!Planck)-2. In fact the Chern- 

Simons terms appear in the next order of the loop expansion in the sigma model 

with the coefficient Q’.‘~’ This is a necessary consequence of Lorentz and gauge 

invariance as discussed by Green and Schwarz.31 



The action (19) is invariant under the supersymmetry transformation 

6Xn = 6+X” + tLxn = +A”_ + -r-xy 
(20) 

sx; = -i/axnc F - lY2mpXzS*Xp . 

The sigma model has another supersymmetry 

6Xn = 6+X” + 6-Xn = f!trnF+X!!T + f;lmz-XT 

(21) 

provided the complex structure fnm is covariantly constant. 

The conformally invariant non-linear sigma model has another type of super- 

symmetry. This supersymmetry is the partner of the local Kac-Moody transfor- 

mation and has the form 

6Xi=0 sxi, = f!& . (22) 

Next we would like to elevate the two-dimensional supersymmetry to a space- 

time supersymmetry. We will work in ten dimensions. When the compact manifold 

is flat this amounts to going from the Neveu-Ramond-Schwarzversion of the string 

theory to the Green-Schwarz superstring. For non-trivial curved background with 

torsion, we will use the light cone gauge to relate the Neveu-Ramond-Schwarz type 

of string theory to the Green-Schwarz superstring. The Green-Schwarz version of 

the action (19) is given by 

+a 3+7+paD,+S+ + 97+fD,S- 

+ i R~keS+7+7i7ipaS+~-7+yk7~paS- 1 
(23) 

where S+ (S-) is a right (left) -moving fermion. In flat space the action (23) has 
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two eight component supersymmetries 

&y’ = (p+)-w~z7’s (244 

(24b) 

and 

sx’=o 69 = P (25) 

where E and 6 are eight component real spinors of O(8). In curved space the trans- 

formation (24b) gets modified by terms of the form &7-S 6Xi. The action (23) 

is invariant under the 6 supersymmetry of Eq. (25) provided that 6 is covariantly 

constant. In this case the quadratic term is automatically invariant and the quar- 

tic term is invariant since R$,,,7 P 7 q6 = 0. The &supersymmetry is analogous to 

the transformation of Eq. (22). I n curved space one cannot implement the full 

eight component c supersymmetry. To see this let us study the relation between 

the action in Eq. (19) and that in Eq. (23) assuming SU(3) holonomy. In the 

SU(3) basis the fermions have the form 

A= 1,...,8 
s* = 

a = 1,2,3 . 
(26) 

This corresponds to the following decomposition of the spinor representation under 

SU(8) > SO(6) 1 SU(3) 

8(spinor) +4+4--+3+1+3+1. (27) 

Under this decomposite the action in Eq. (23) takes the form of that in Eq. (19). 

For details see Ref. [l]. S ince the action of Eq. (19) is a sigma model in two 
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dimensions, it is clear that it cannot have the full c-supersymmetry. To see what 

part survives let us focus on the compact part of the background manifold. The 

spinor c has a similar decomposition under SU(3) as S given in Eq. (26). The 

action for the superstring is invariant when the triplet cQ and antitriplet Ed vanish. 

The supersymmetries of the curved space are associated with the singlet pa- 

rameters ~1 = c;1. This means that the spinor E must be covariantly constant. This 

is of no surprise if one studies the relationship of the supersymmetry transforma- 

tions of the covariant action to the supersymmetry transformations of the light 

cone action of the Green-Schwarz string in flat space.” For the argument to be 

applicable to the present case one needs the covariant form of the Green-Schwarz 

action in curved space. la1 
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