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I. Introduction 

Einstein’s theory of general relativity is a highly successful 

theory of gravity. Its only problem, at the classical level, is 

that it offers no hint to understand the vanishingly small value of 

the cosmological constant. Indeed, the study of clusters of 

galaxies with average mass. density ~~10~ 29 
gr/cm3 puts 

an upper bound on the physical value of 
I I 

A <10m2’ gr/cm3 or 10m5’ 

cm -2 in units G~=c=l[l]. 

At the classical level, one usually tries to explain the 

absence of a certain term by finding an exact symmetry which 

forbids its appearance in the lagrangian. No such symmetry is 

known to exist for the cosmological constant in general 

relativity. A second approach is to study wh.ether the theory for 

some values of A, becomes classically unstable leading to tachyonic -‘- 

modes in fluctuations around the corresponding classical 

solutions. For the case of pure gravity with 4, =-J-g (R+A) we are 

interested in solutions corresponding to maximally symmetric spaces 

since they seem to be the only sensible ones, having a 

ten-dimensional isometry group. The result [2] is negative: All 

such spaces (de Sitter, Minkowski or anti-de Sitter) are stable in 

the above sense and there is nothing special with the value A=O. 

At the quantum level the situation is much more problematic. 

Einstein’s ,theory, because of its bad ultraviolet behaviour, is 

non-renormalizable and has resisted all attempts to quantization. 

The problem of the cosmological constant cannot be meaningfully 

formulated because the vacuum energy is usually divergent in 

quantum field theory. Global supersymmetry gives na’turally 

vanishing vacuum energies but it is not clear how to exploit this 

property in the presence of gravity and after supersymmetry 

breaking. 
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Because of all these problems people occasionally study 

alternative theories of gravity and a prominent one among them is 

Weyl’s conformally invariant theory. In this paper we want to 

report on some results pertaining to the above questions. We show 

that in theories in which local conformal invariance is 

spontaneously broken, a certain region of values of the 

cosmological constant which includes the value A-O, may be 

privileged because every value in it does not get renormalized by 

higher order corrections and all other values give, formally, 

classically unstable solutions. 

The organization of the paper is as follows: In section II we 

describe the theory, its symmetries as well as its well-known 

defects. In section III we generalize the discussion of Ref. [33 

and derive the Ward identities for arbitrary background . 

space-times. We show that maximally symmetric backgrounds are the 

only ones which are stable against higher order corrrections and we 

prove for them a non-renormalization theorem which gives <h,,>=O 

for the graviton tadpole. In other words the value of the 

cosmological constant does not get renormalized. Section IV 

contains the analysis of the classical stability of the solutions. 

The result is that stability against exponentially fast growing 

fluctuations implies bounds for the value of the cosmological 

constant of the form A,< A < 0 i.e. the stable backgrounds are - - 

the Minkowski. flat space as well as anti-de Sitter spaces with not 

too large value of the cosmological constant. A0 is given in 

terms of the other parameters of the theory. 
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Section II. The Theory. 

The theory we will be discussing in this paper is, 

essentially, Weyl gravityi coupled to matter, with spontan- 

eously broken local conformal invariance. The field content of the 

gravity sector is the metric g,, (x) (or the vierbein es,(x)) 

and a scalar, O(x), called “the dilaton”. The introduction of the 

latter enables us to write a lagrangian with manifest local 

conformal symmetry. Since any theory of, scalar, spinor and vector 

fields can be coupled to g,,, and 6 in a way consistent with 

general coordinate transformation and local conformal invariances 

we do not have to specify its exact content in matter fields. 

Thus for our purposes they will be denoted collectively by W(x) and 

we will occasionally refer to them only for completeness, since 
. . 

they are not going to affect our reasoning and conclusions in any 

way. 

The dynamics is described by the lagrangian: 

(2-l) 

where the Weyl tensor CpagY is defined in n-dimensions by 

and a+ denotes the covariant box acting on Q(x). if1 1 In order 

for (2.1) to reproduce Einstein’s theory at large distances, we must 

choose Y>O. 
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The two invariants C2 and R2 exhaust the list of independent, 

quadratic in curvature terms. One might imagine that C2Uvap, R2, 

RlJV 
2 

and Rpvap 2 should all be included inL . But, using the 

2 identity CaSv& = R,,vay 2 2 - 2R ,,v + l/3 R2 (or its generali- 

zation in n dimensions) as well as the Gauss-Bonnet theorem to 

express If-g Ruv~02 d4x = jd-g (4RliV2-R2) d4xLf21 we conclude 

that only two of them are independent and z in (2.1) is the most 

general lagrangian with up to four derivatives and with the two 

invariances which will mostly concern us here, namely, general 

coordinate transformation (GCT) and local conf ormal (LC). 

The action of the GCT with parameters oU(x) and the LC with 

parameter Q(x) is given by 

and 

cf ?pv = xLqx7 4,, 
(2!.4) 

w = -4(-x, cp 

Let us assume, for simplicity, that 2~ does not contain 

scalar fields or if it does they have zero VEV. (In the opposite 

case the role of the dilaton would be played by a linear combina- 

tion of $(x) and the scalar field(s) with VEV f 0 from the matter 

sector). Setting Y(x) = 0 we trivially satisfy the SS/OY(x) = 0 

equations of motion, while it is straightforward, although a little 

(2.3) 

tedious, to derive the remaining field equations: 
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(2.5) 

(2. 6) 

1 3 =c 

and to check that they satisfy the identity 

as they should, due to the local conformal symmetry of A. . 
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Among the solutions of eqs. (2.5) and (2.6) there exists the 

one-parameter family of maximally symmetric spaces which can be 

parametrized by the constant v and are given by: 

(2.8) 

Thus, depending on the value of X, the “vacuum” state (2.8) is a de 

Sitter (X<O), anti-de Sitter (X>O) or Minkowski (A=O) space-time 

and, for every vf 0, it spontaneously breaks the local conformal 

symmetry of (2.1). Any other solution, not equivalent by a 

coordinate reparametrization and/or a local conformal 

transformation to one in the family (2.8), defines a non-maximally 

symmetric space with fewer isometries. 

We define the fluctuating fields h,, and a(x) by 

(2.9) 

and expand the action in powers of them. For any ~$0 we thus avoid 

the singularity r$=O and obtain a well-defined theory for the small 

fluctuations. 

Quantization of the present theory requires gauge fixing for 

the local symmetries (2.3) and (2.4) whose action on h”,, and u is 



8 

where we have defined w and 6 w 
P lJ v 

for the covariant derivative on w,, corresponding to the 

background g,,, out of which we construct the Christoffel symbols 

%-> Auv. The gauge-fixing conditions, symbolically @,,(h,S) 

and Q(h.B), can always be chosen in such a way that the effective 

lagrangian 

se e#. = 
(2.10) 

2 
GF =I ciO,H,g*‘+~ B’- z-- s~,gPV-z s& 

a aI 
leads to an’ action invariant under the usual BRS transformations:j: 

for the combined GCTs and LCTs 

SC = - CyJJ- - c (urtv-) 
(2.11) 

STp= +$. , SC,=-GcPapc,,. 

as well as under the so-called “background gauge transformations” 

with parameters tin(x) and n(x) 

(2.12) 
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In the above formulas c,,(Y,) and c(F) are the ghosts 

(anti-ghosts) associated with the general coordinate and conformal 

gauge transformations. As always, the BRS transformation (2.11) 

on the original fields h,, and o is of the same form as (2.3’) 

and (2.4’) with parameters equal to the corresponding ghost 

fields. It is straightforward to extend (2.10) to (2.12) so as to 

include matter fields as well as more gauge symmetries. But since, 

as it will become apparent, these considerations do not affect any 

of the conclusions of this paper, they will be omitted in order to 

simplify our pesentation. Notice that the “background gauge 

transformations” act as if every index U, v,... carried by any 

field zDv, h,,, c,,,... is a vector index, so that quantities 

like for instance, ?‘Pcv,B”v are invariant under the UP part of 

(2.12). Finally, an example of gauge conditions @,, @  which 

achieve what we claimed above is 

(2.13) 

Before we proceed to the investigation of the stability of the 

ground state (2.8), we would like to make a few comments about the 

theory. First of all, it is known [6,3] that for ~,,,,=n,,,, it is 

power-counting renormalizable. Since renormalizability has to do 

with the short distance behaviour of the theory, we expect it to 

persist even in the presence of any smooth background g,v(x), in 

particular, in the “vacuum”(2.8). The large distance behaviour of 

(2.1) dominated by the 4-g R<$>’ 

term, leads to agreement with the Einstein theory if and only if we 

take <$>~Mpl. In a realistic theory of nature, more scalar 
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fields with VEVs much smaller than the Planck mass are present and 

the requirement for this to happen naturally, leads to the 

celebrated gauge hierarchy or fine tuning problem. Extension of 

the theory to conformal supergravity might lead to some kind of a 

solution, but we won’t discuss it any further here. 

The most important drawback of Weyl’s theory, which has 

prevented it from having any physical application, is the fact that 

renormalizability has been achieved at the price of introducing 

unphysical degrees of freedom with negative metric. Both the 

dilaton field and the graviton propagators contain ghost poles. 

Perturbation expansion does not lead to a unitary theory. In spite 

of this, some non-perturbative arguments WI tend to indicate 

that the spectrum may consist of only positive metric states, 

implying unitarity for the resulting S-matrix. Finally, if one 

introduces IQ matter fields and considers the theory in the l/K 

expansion 1w1, one finds that the negative metric massive pole of 

the graviton propagator is plit into a pair of complex conjugate 

poles in the first sheet. Application of the Lee-Wick method ;1ij: 

may again yield a unitary theory. Although we do not consider this 

procedure as a satisfactory solution to the uitarity problem, we 

may appeal to it occasionally as an example of a prescription of 

how to deal with the unphysical poles in the theory. It is obvious 

that, unless a physically acceptable solution to the unitarity 

problem is found, all investigations of the properties of 

conformally invariant gravity theories are little more than 

academic exercises. 
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, Section III. Yard identities and a non-renormalization theorem 

In this section we will prove that, as a consequence of the 

GCT and the spontaneously broken LC symmetries of the theory, the 

quantum corrections to the h,, tadpole vanish automatically if 

and only if the background space-time (g,,(x), T(x)) we expand 

around is maximally symmetric. This result has been established in 

[3] for the Minkowski case (X=0) and here we generalize it to 

arbitrary de Sitter or anti-de Sitter ground states. Our discussion 

is going to be formal in two ways: (i) It will apply only to 

background solutions around which a consistent perturbation 

expansion can be established. (ii) We shall rely upon the validity 

of the Ward identities. There exists a regularization scheme which 

preserves both coordinate and local conformal invariance [ll], but 

its consistency has not been proven to all orders of perturbation. 

We begin by deriving the Ward identities associated with the 

transformations (2.11) and (2.12). The regularization scheme of 

ref [ll] amounts to going to n<4 dimensions and, with the help of 

the dilaton field, writing R eff in a way invariant under local 

conformal transformations. In n-dimensions the latter take the 

form: 

(3.1) 

The BRS transformations (2.11) change, accordingly, to 

(3;2) 
56 = -cop- - E++(r) 
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Furthermore, the use of renormalization conditions which 

respect the symmetries implies that the Ward identities we shall 

derive below for the bare Green functions are valid for the 

renormalized ones as well. For the form of deff in n-dimensions 

(L(“)eff) we refer the reader to refs [6 and 3541. 

As usual, to derive Ward identities one starts with the generating 

functional W[JF, JE] f or the connected Green functions 

(3.3) 

where generically, JF and J ; are the sources for the field F 

and its BRS transform SF respectively. A Legendre transformation 

leads to the generating functional ?[$,J:] of the one-particle - 

irreducible (l-PI) Green functions. Instead of ? and in order to 

simplify the form of the War’d identities we define the related 

E w[j,,J;]-Sdn~~=J,~+~~~~~~~+~~~2~3’4’ 
F 2-J 

with the classical field E(x) defined by 

(3.5) 

The equations of motion are 

, 9 E,+3 6) . 

. 

I 

, 
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(CarTa stand for all the ghosts and antighosts cu,F,,,c,?-1. 

We now change the variables of integration in (3.3) ‘; la BRS 

from F to F+sFn(n is the anticommuting parameter of the BRS 

transformation). The integral (3.3) remains the same. The Jacobian 

of this particular transformation is one, while using the fact that 

s’F=O for any FfTa, we conclude that only the source terms 

1 JF F in the integrand are affected by the above change of 

variables. We are thus led to the Ward identities 

The combination of (3.7) with the antighost equations of motion 

yields the more familiar form: 

(3.8) 

(3.9a) 

(3.9b) 

Finally, we note that the ghost number NC with hlJ&J= I> 

is conserved. 
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We differentiate (3.9a) with respect to CY 1, we set all g’s 

and Jc’s equal to zero and use the ghost number conservation, to 

obtain 

By definition, a”=0 is the value of a^ for which the dilaton tadpole 

vanishes. Furthermore, the 2-point function 62r / 3&y, 63cc”vcx) ;=y z~ I 
F 

due to the specific form of sh,,,, is equal to R3P,(~I 641~-y] 

plus another term which we will call f,v(x,y) and which vanishes 

at the tree level. We are thus led to 

The last important ingredient that we shall need in our 

discussion is the intuitively obvious fact that for any maximally 

symmetric ground state (2.8) and only for them 

which we prove next. (3.11) expresses the fact that our theory has 

the “background gauge transformation” invariance (2.12). 

We start with the generating functional W’ of the connected 

Green’s function with only graviton and dilaton external lines. 

e ivd 
5( r;ldF) e i s s,ff +iJ& (T?&.,, +ST) 

(3.12) 
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A change of the variables of integration according to (2.12) leads 

to the Ward identity for the renormalized Green’s functions. 

for any set of functions w”(x). 

In terms of the classical fields c(x) and the generating 

functional of the l-PI vertices 

of the theory, the above identity becomes 

=0(3.13) 

We functionally differentiate (3.13) with respect to zap and 

/r 
evaluate the result for F,,,, = o = 0. This leads to the following 

identity for the tensor field taB(x) defined by 

For a maximally symmetric background space-time like (2.8), 

there exist 10 Killing vector fields S(i)o i=1,2,...,10, which by 

definition satisfy S(i),;, + S(i),,, = 0 ( 3,’ zUv Su 

and the semicolon denotes covariant differentiation for the 

- metric g,v >. Consequently, ~(i)“;,=(i/J-~)a,(~-~ Cci)u)=O 

and for U’=c(-i) * (3.14) reduces to 
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Eqn.(3.15) is precisely the statement that taB(x) i.s a 

maximally form invariant, 2-index symmetric tensor field on the 

space-time (2.8), which is equivalent to [12] 

t Q%d = A xaB(x>, A=constant 

The meaning of (3.11) is that in a maximally symmetric space 

the tensors R,,,,, ‘E *vxp*** 9 are all expressible in terms of the 

z,,V alone [12] and since, furthermore, x=constant, a symmetric 

tensor tuV has to be proportional to z,,,,. This is not the case 

for a non-maximally symmetric space-time and this concludes the 

proof of statement (3.11). 

For a maximally symmetric background we now use (3.11) into 

(3.10) to obtain: 

(3.16) 

The quantity in curly brackets is non-zero. The reason is that the 

second term starts at the l-loop level and cannot cancel the first. 

(3.16) then implies that A must be zero, i.e. that 

(3.17) 

a- 

l 

=o 

to all orders of any consistent perturbation expansion. 

At any order of perturbation theory the h,,,-tadpole vanishes 

in the ground. state (2.8) of our theory. We do not have to “shift” 

the background g,,, corresponding to some value of the cosmologi- 

ical constant (curvature), order-by-order to achieve <h,,>=O. 
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As the title of this section indicates, this is a non-renormali- 

zation theorem. At this stage, every value of the cosmological 

constant is possible. Perturbation theory does not favor any-one 

in particular. What we have shown is that there exists a way to 

organize the expansion, given by the regularization scheme of 

ref. [ll 1, such that quantum effects do not alter the value we 

choose at the classical level. This result does not solve the 

problem of the vanishing cosmological constant we stated in the 

introduction. However, if this theory is proven to be physically 

acceptable, it may ofier the framework to stabilize such a solution 

if one is found. We shall address this question again in the next 

section. 

Rotice finally that the above conclusion is not true 4.n a 

non-maximally-symmetric background. Kow <h uv> f 0 and any such 

ground state cannot be technically natural . But as we explained 

in the introduction, non-maximally symmetric solutions are not 

physically interesting. The only sensible ground states of our 

world must be Einstein spaces with at least seven isometries 

corresponding to the locally observed energy, momentum and angular 

momentum conservation laws. All such spaces are necessarily 

maximally symmetric [12]. 
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IV. Classical stability 

The non-renormalization theorem of the previous section states 

that any particular choice of the curvature ??=24Xv 2 in (2.8) is a 

technically natural one. In this section we shall study the 

classical stability of any maximally symmetric solution against 

small fluctuations of the dilaton and graviton fields. The hope is 

that by doing so we shall be able to discriminate among the 

possible values of x. 

Our starting point is the classical lagrangian (2.1). It 

depends on the fields g,,,(x) and Q(x) as well as their first and 

second derivatives. We prefer to work with lagrangians containing 

only first derivatives and this can be easily achieved with the 

introduction of two auxiliary fields. We start with the dilaton‘ 

field Q(x). Using one auxiliary field F(x) the part of (2.1) which 

contains f+(x) can be written as: 

+ >h+F) 
4 

3 

(=f+F-12 + 
(4.1) 

where we have put 9p =0-F and the F equation of motion yields: 

(4.2) 

The two theories (2.1) and (4.1) are classically equivalent. 

At the quantum level the equivalence is not maintained because the 

Jacobian of the transformation in the functional integral is not 

equal to one. We can restore the equivalence by adding a term 
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equal to r(Cq+F)z with z and r being ghost fields. However, for 

the discussion of the classical stability, this term is irrelevant 

and it will be dropped. 

In terms of the new fields a maximally symmetric solution is 

given by: 

(4.3) 

with, as before, z=24 XV*. The fluctuating fields h,,, x and f are 

defined by : 

(4.4) 

We now want to expand the complete lagrangian around the classical 

solution and keep terms up to second order in the fluctuating 

fields. A simplifying observation is that in the gauge: 

(4.5) 

both J-g and J-g R have no linear terms in h,,. Therefore, A, 

as well as St W  = -(l/G*)&g Cuvap2 contain no non-diagonal 

terms of the form h-x or h-f at the quadratic level. The small x 

and f fluctuations are, thus, decoupled from the h,, ones and 

their behaviour will be studied separately. The quadratic part of 

the k-f lagrangian is: 

where the matrix elements of M are: 

(4. 6) 
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All differentiations are covariant with respect to the 

background metric z,,v which is also used for raising (or 

lowering) space-time indices. 

Before going on with the analysis we wish to outline the 

method and discuss some of the problems we encounter. The 

stability against small fluctuations of the q-0 solution of a 

scalar field theory given by cd&= i/2(a,cfg2 - l/2 m2cp2 in flat 

space-time is based on the well-known energy considerations. The 

result is that for m2>0 the solution is stable while for m2<0 we 

obtain the Goldstone or Higgs model instability. This analysis can 

be extended to an anti-de Sitter background (X>O) [13]. m*)O is 
n 

again stable but m‘<O is unstable only if a certain condition is 

satisfied [13] which reads 12m*/E L 914. For de Sitter backgrounds 

(X<O), one cannot rely on energy cvonsiderations but one can study 

the nature of the extrema of the corresponding Eucledian action. 

This is the method used in the stability analysis of inflation 

models. The result again is that m*>O corresponds to a stable 

solution while m2<0 to an unstable one. Our problem is that the 

field x has a negative sign in front of its kinetic energy. 

Although one might argue that this may not be a problem since the 

dilaton is not a physical field, the same situation appears with 

the massive pole of the graviton, so sooner or later the problem 

should be faced. Already in flat space-time, if we-quantize the 

theory with positive metric we shall have negative energy states 

and hence instability. Alternatively we can quantize with negative 

metric in which case the same analysis shows 1143 that stability 
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requires the Hamiltonian to be bounded from above. Needless to say 

that this does not solve the unitarity problem and we can only 

repeat here the remarks we made in the introduction . We hope that 

a physically sensible theory along those lines can be constructed 

and the negative metric fields will turn out to .be harmless. The 

Lee-Wick prescription could be used as an example. With this in 

mind we shall try to make our analysis in such a way that it is 

independent of the ultimate fate of the negative metric states. 

For this we shall first diagonalize the quadratic forms, thus 

identifying positive and negative metric fields, and then apply the 

criteria of small oscillations. 

After this clarification, we proceed with the analysis. In 

order to diagonalize the mass-matrix in (4.6) we distinguish two 

cases: 

According to our discussion above, the configuration x’=f ‘=O, 

which implies x=f=O, is a stable one 

(ii) 8 X < y -1 

The diagonalization now yields: 

(4.9) 

Anti-de Sitter space (A>O) is again stable and the de Sitter one 

(X<O) is unstable. Finally, flat space (y=O) has a neutral 

stability. 
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We now turn to the graviton part and study small oscillations 

of the metric around the background solution F,,,,. We are only 

interested in X 2 0 since the de Sitter space has been shown to be 

unstable by the oscillations of the dilaton field. The method is 

the same. We introduce an auxiliary field H,,v and diagonalize 

the resulting mass matrix. We get: 

where HU,J is the auxiliary field, h’,,,=h,,,-H,,, and the mass 

matrix r is given by: 

t4 = 6,, = GA, = ( i P G=- 3X -h?- $ 6=-x T) ( 
(4. lla) 

(4.llb 

K is the covariant derivative with respect to the background. 

We diagonalize Yl by a transformation which leaves invariant the 

form of the kinetic part of (4.10). The resulting values of the 

masses are: 

(4.12) 

and the signs correspond to Trz < 0. 
> 
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We see immediately that flat space (X=0) has a neutral 

stability. For A>0 we must repeat the analysis of ref [13] for 

spin two fields. The lagrangian (4.10), after diagonalization, 

becomes the sum of two terms of the form: 

* L 
2 d -3 

where G,,v stands for the two linear combinations of h’,,,, and 

HV, which diagonalize q, x = 24Xv2 and 

(4.13) 

(4.14) 

The condition for instability, for scalar fields, was found in ref 

1133 to be a > 9/4. In our case, for spin two fields, we find that 

the anti-de Sitter background is unstable if 

which gives 

‘x> G2 
SG2d-IX 

(4.15) 

(4.16) 

We summarize the results of this section: in conformally 

invariant gravity the only non- trivial background which is stable 

against small fluctuations is an anti-de Sitter space (X>O) with 

the coupling constants of the theory satisfying the conditions:. 

G2’6 > f ( 4 . 1 7.a ) 

(4.17b) 
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These conditions can be further sharpened by studying, through the 

renormalization group equations, the evolution of the various 

coupling constants. One can check whether they represent a real 

restriction on the admissible values of the couplings or whether 

there exists an energy scale for which they are always satisfied. 
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[fl]: In our notation the curvature tensor Ru 
vu 

is given 

by: 

and the Christoffel symbol by 

[f2j We are ignoring the surface (topological) term one has on 

the right-hand-side of this equation. This is equivalent to the 

statement that we are only concerned with “asymptotically-flat” 

fluctuations which do not change the Euler characteristic of the 

background metric we start with, or to the choice zero for the 

analogue of ~QCD, the coupling in front of such a term in the 

action. 

PI With 9, and Q linear functions of the fields, r too 

generates the 1PI vertices of the theory, with a difference only in 

the 2-point functions of the fields that appear in @,, and 9. 
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