
SLAC - PUB - 3769
Sepkmber 1985
(1)

A FASTBUS INTERFACE FOR THE 8081/E’

L. BARKER, P. F. KUNZ, A. J. LANKFORD, G. OXOBY
L. PAFFRATH, P. RANKIN, AND Q. TRANC

Stanford Lineur Accelerator Center
Stanford Univertity, Stanford, Cdifornia @ @ O S

Abstract
The design of a FASTBUS interface to the 3081/E b pn-

mmted. The interface co~ists of two boarb, one 6pecific to
FASTBUS, the other u6able by other interface6 to the 3081/F.
The FASTBUS board b a du&ported rlave, permitting seem
from either of two cable segments. The general purpose board
6upporb trlmsfem to and from 3081/F memory and provides
control of program execution. It al6o hu several feature6 which
facilitate software debugging.

CABLE
SEGMENT FBADDR SW
bear rbdel FASTBUS

CONTROL
- PROTOCOL

*STATUS ' FASTBUS LOGIC

DRVRS~RCVRS
Ins1

AD<XO> (Ml
COMMON

INTERFACE

C STATUS

1. Introduction n.r.AD<3I:O> 1 CONTENTION
) LOGIC C CONTROL

The 3081/E’ is a proomsor which emulate6 the in6truction
set of an IBM mainframe computer. Its implementation a6
part of an on-line data acquisition rystem increases the pro
cessing power available for ruch tasks M data preprocarsing,
software triggering/event flagging, and event reconstruction.
This paper describes the design of an interface of the 3081/F
to FASTBUS, which will be used to incorporate 3081/&6 into
the data uquiition rystem of the Mark II detector6 at the
SLAC Linear Collider.

CABLE
KGMENT .
Ifor s!del

l.r.AD<31:0> D<0'3!>

--% h
HALT STATUS

CONTROL

*STATUS ' FASTBUS "
DRVRSlRCVRS FASTBUS

AD<JI:O>
) (Is) -

PRWTOCOL
LOGIC

2. Description of the Interface
2.1. OVERVIEW Fig. 1. Block diagram of the FASTBUS interface board.

The FASTBUS to 3081/E interface comistS oftwoboards.
The fkst board (FASTBUS Interface) is a dual-ported FASTBUS
slave which allow6 accese from either of two FASTBUS cable seg-
ments to an internal bm between this board and the second
board (Common Interface). The protocol on this bus is a two-
cycle (address and data) handshake. The signals on this bus
can load a 6et of control registers on the Common Interface
board which drive the 3081/E busses. The Common Inter-
face is sufficiently general that it can be u6ed 66 part of other
interface6 to the 3081/E.

2.2. FASTBUS INTERFACE - BOARD I
The FASTBUS Interface acb M a FASTBUS slave and ha6

two port6 to FASTBUS cable 6egment6, contention logic, and
logic for communication with the Common Interface board.
Figure 1 shows a block diagram of the FASTBUS Interface.

An SS=O (address recognized) response is generated for all
primary address cycles. SS responses to other cycle6 are con-
trolled by an FPLA. For secondary address cycles, an SS=3
(user defined) response is generated if connection cannot be
made to the common interface; otherwise an SS=O (valid ac-
tion) or SS=7 (data error-accept) response is generated for
valid or invalid 6econdary addresse6 respectively. For data cy-
clee, an SS=O reeponse is generated for valid data, an SS=2
(end of block) response b generated when the next transfer
address increment6 out of range, md an SS=6 (data error-
reject) response i6 generated for invalid addresees. FASTBUS
parity is neither generated nor checked.

The two FASTBUS cable 6egment port6 are logically iden-
tical. Thus, the interface i6 6ymmetric with rarpect to both
cable segment port6 except 66 defined by the application. The
slaves are referred to 66 near-side and far-aide. The near-side
slave as viewed by one cable segment port become6 the far-ride
slave when viewed from the other port. The slaves respond to
geographical addressing and to certain type6 of broadcast ad-
dressing (general, pattern select, TP, and TP if SR). Four data
transfer mode6 me rupported - random data, block transfer,
secondary address, snd pipelined transfer. Data transfer rpeed
is limited by the Common Interface to about 25 Mbyte/6ec.

The contention logic examine6 all 6econdar-y address oper-
ations and, for addreeses other than CSRO (Table l), allows
connection to the Common Interface if the proces.sor is not ex-
ecuting a program and if another ma6ter is not connected to
the other port. Via operation6 to CSRO it is also possible to
disable connection of either cable segment port (bit6 24 k 26)
or to allow connection to the Common Interface during exe-
cution (bit 13). Connection remains intact until the FASTBUS
cable regment negate6 its AS line. While one port is connected
attempt6 to connect by the other port are Mswered with an
SS=3 code. A port can *interrupt” a requence of FASTBUS
operation6 by the other port by retting bit 11 in CSRO, which
causes an SS=3 code on the connected segment.

Each FASTBUS cable segment ha6 a CSRO which is acces-
rible at all times, regardless of the state of connection to the
Common Interface and of the processor. Table 1 shows the
contents of CSRO. The first three bits (i.e., 1,2,3) are provided
by the Common Interface and reflect the state of the processor.

’ Work supported by the Department of Energy, contract
DEAC03-76SFOO515.

Poster paper presented at the Nuclear Science Symposium, San Francisco, California, October 23-25, 1985

All other bits control logic on the FASTBUS interface. Several
pairs of bits (i.e., 4 & 6, 5 E 7, 8 k 10, 9 k 11) cm be set
and reset from either cable segment port. This facility allowe
the two ports to rignal each other. Bit 12, fs Slave Selected,
allows a port to monitor the connection condition. The service
request (SR) of a cable segment port can be reset via CSRO
(bits 21 k 23) and can be set via CSRO (bits 5 k 7) if enabled
on the appropriate segment (bits 4 k 6). When the processor
halts SR is set on any enabled cable segment. This service
request facility is the usual means for the proceeeor to signal
the completion of execution (or an error) to the appropriate
port. The manufacturer’s ID, 0017 (hex), can be read in the
high order bits.

Bit
0
1
2
3

4
5
6
7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 -

Table 1. CSR#O Contents

Meaning on READ 1 Action on WRITE
I

CPU enabled
Clock running I
Single Step
118 SR enabled Enable ns SR
M SR state
fs SR enabled I

Set ns SR
Enable fs SR

fs SR state 1 Set fs SR
ns slave enabled I Enable ns slave
ns slave interrupt
fs slave enabled
fs slave interrupt
fs slave selected
override lockout

Enable fs slave

Enable override

Mfg. ID# 0 I
Mfg. ID# 1 i Disable 118 SR
M fi. ID& 0
Mfg. ID# 0
Mfg. ID& 0
Mfg. ID# 0

I
Reset ns SR
Disable fs SR
Reset fs SR

1 Disable 118 slave
Mfg. ID# 0
Mfg. ID# 0
Mfg. ID# 0
Mfg. ID# 0
Mfg. ID# 0
Mfg. ID# 0
Mfg. ID# 0

Reset ns interrupt
Disable fs slave
Reset f6 interrupt

Disable override

Notes:
1. 118 => near-side, fs => far-side.
2. Bits 31-16 on read; Mfg. ID# = ‘0017’X.
3. Bit 0 is least significant bit (i.e. FASTBUS convention).

2.3. PROTOCOL BETWEEN INTERFACE BOARDS

The protocol used between the two boards of the interface
maximizes block transfer rates without requiring that. the de-
sign of the Common Interface be specific to this application.
It consists of an address cycle, either read or write, followed
by any number of read or write data cycles. The signals used
are analogous to FASTBUS operations with logical addressing.

CAS and CAK,CDS and CDK, and CRD signals are analo-
gous to AS and AK,DS and DK, and RD. CERR is anal+
gous to SS<2:0>, and DataS and INCR serve the function of
MS<2:0>, that is they serve to indicate FASTBUS data space
operations and to increment the NTA. Primary address cycles
on the FASTBUS cable segment do not affect the interboard bus.
FASTBUS secondary address cycles produce interboard address
cycles, and FASTBUS data cycles produce interboard data cy-
cles. Figure 2 6hows a timing diagram for these cycles.

TIMING DIAGRAM
FASTBUS SIGNALS / INTERFACE SIGNALS

AS!

AK

DS

DK

CAS

CAK

CDS

CDK

10 85 52.283

Fig. 2. Timing diagram of FASTBUS and interface signals.

2.4. COMMON INTERFACE - BOARD 2

The Common Interface board (Fig. 3) is designed to prc+
vide a means of communication with all the 3081/~ busses
and control of the processor’s clock. This allows the trans-
fer of data to and from processor memory, as well as permit-
ting the interface to force execution of any 30811~ instruction
or program. It has a total of 25 registers (listed in Table 2).

BUS ENABLES
I, I

C STATUS
<
C CONTROL. -

PROFILE REG. I3
1 REG. Mm, "A \

Sl ^ EL.
1 LUGIC l-l

COMPARF
LOGIC

DISCRETE CONTROL SIGNALS

CLOCK

GENERATOR

CP

524X3:

Fig. 3. Block diagram of the common interface board.

2

Among the moat important of these ue the profile register,the
control register, the status register, and the trap register.

The profile register (PROREG) GUI wt each of the in-
ternal 3081/~ bm with the contenb of the corresponding
register. Read/write accew ir allowed to the following internal
3081/E buenea; the Program Memory Address (PMA) bus, the
Program Memory Data (PMD) hue, the Data Memory Address
(DMA) bus, and the two operand b- (ABUS and BBUS).
Read acceea only h allowed to the Condition Code (CC) bun.

The control register (CTREG) controla the rtate of the
processor. It can issue reeeta, enable the proceuaor, or halt it.
It also controla the clock which may be stopped, rtepped, or
allowed to free run. The 3081/~ clock is generated by a free
running clock generator with a 25 MHs standard frequency.
The processor clock operatea at a third of this frequency (giving
a cycle time of 120 nae-c) and with a duty cycle of 213 high and
l/3 low.

Address
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10
11
12
13
14
15
16
17
18

Table 2. Interface Register List

Reada Writes
Profile Reg Profile Reg
Control Reg Control Reg
Status Reg I
PMABUS 1 PMABUS Reg
DMABUS DMABUS Reg
Condition Code Re

Mask R.eg
Parity Reg

ABUS<O:31>
ABUS<32:63>
ABUS Parity
BBUS<O:31>
BBUSc32:63>
BBUS Parity
PMDBUS

1 Parity Reg
1 DMAHI Trap Reg (execution)

DMALO Trap Reg (execution’
PMAHI Trap Reg (execution)
PMALO Trap Reg (execution:
DMAHI Trap Reg (transfer)
DMALO Trap Reg (transfer)
PMAHI Trao Ren (transfer)
PMALO Trap Reg ‘(transfe;)
ABUScO:31>Ren
ABUS<32:63>R;g

BBUS<O:3l>Reg
BBUS<32:63>Reg

PMDBUS Reg
PMDBUS Parity
Trap Enable Reg Trap Enable Reg

The Common Interface incorporates features which aid in
debugging programs running on the processor. It has registers
which can halt program execution if certain conditions occur,
in a way similar to the Program Event Recording (PER) reg-
isters of IBM mainframes. For example, the interface can be
enabled to halt execution upon a atore within a defined address
range, or halt if certain of the processor’s general purpose reg-
isters are modified. These error traps can be enabled via the
trap register @ee Table 4).

The status register (STREG), contains information on the
state of the processor (see Table 3), such as whether it is run-
ning or halted,if errors have occurred in the transfer of data,
or if errors occurred during program execution. In addition,
the processor may be halted in response to a parity error on

certain of its internal buses. In a write to memory operation,
the parity L either generated internally prior to the memory
write, or supplied by a register (a useful feature for teeting the
logic of the Common Interface). When the procesllor is in nor-
mal use, the parity logic will be able to monitor the parity on
the PMD and operand buseea if thin feature is enabled via the
trap register enable.

The generality of the Common Interface design allows it
to be part of an interface of the processor to an IBM PC used
aa a host/controller. An interface board in the PC is con-
nected via an adapter board to the Common Interface. The
approximate transfer rate between the PC and the 3081/E is
0.5 Mbytesfeec.

Table 3. Status Register

Name
PROREG
CTREG
STREG
PMAREG
DMAREG
CCREG
MASKRE(
PTYREG
DMARHI
DMARLO
PMARHI
PMARLO
DMAXHI
DMAXLO
PMAXHI
PMAXLO
AREGH
AREGL
ABPTY
BREGH
BREGL
BBPTY
PREG
PBPTY
TRAP

I 26
25
24

PMA transfer error

Invalid resister I

Notes: Bit I1 ia least significant bit
(i.e IBM convention)

PERWR error
DMA error
DMA transfer erro

i

IBM exception
CPU exception
PBUS parity error
ABUS parity error
BBUS oaritv error

Table 4. Trap Enable Register

Bit
27
26
25
24

23
22
21
20
19
18
17
16

15
14
13 -

Function
PMA trap in/out
PMA memory transfer trap infou
PMA trap enable
PER branch trap enable
PER write memory trap enable
PER modify register trap enable
DMA trap in/out
DMA memory traxxsfer trap in/au
DMA trap enable
IBM exception trap enable
CPU exception trap enable
PBUS parity trap enable
ABUS parity trap enable
BBUS parity trap enable
Parity source

Notes: Bit 31 is least significant bit
(i.e. IBM convention)

3. Implementation on Mark II

We envisage the use on-line of several 3081/~ processors
by the Mark II detector at the SLAC Linear Collider. Data
will f low from FASTBUS front-end electronics through a short

3

FASTBUS cable segment to a bank of 3081/&8 a~ shown in
Fig. 4. The dual ported nature of the interface allows the input
of raw data to one proceMor at the name time as processed
information b read out from another.

EVENTS FROM DATA

\
ACQUISITION

EVENTS TO
HOST COMPUTER lo-85

5242A4

Fig. 4. Block diagram of a aet of 3081/E processors sharing
two FASTBUS cable segments.

The assertion of a service request on its associated cable
segment eignais to a FASTBUS master that a 3081/~ is avail-
able to accept data from it. The interface b then attached to
the master by a primary address cycle. As a precaution the
interfaces CSRO may be read, without affecting the processors
state or interfering with operations controlled by the far-side
master, to check the processors availability. If the master is to
go ahead with data transfer to the processor the first stage will
be to load the registers of the interface to set them up for the
transfer. This stage writes a store instruction into the program
memory data register, sets up the profile register so that the
BBUS, DMABUS and PMDBUS contents are supplied by the
registers on the common interface, and issues a clock to trans-
fer the store instruction onto the memory board. The second
stage can then be started using another secondary address cy-
cle, the most significant nibble of the address being set to 4 or
8 to differentiate between whether the following data is to be
stored in the processor’s program or data memory.

After all data transfer operations are finished the next step
is to prepare for program execution. The trap register can
be set-up so that certain errors will halt program execution;
for example sections of data memory can be protected against
overwriting. The uBer can also decide if parity errors should

be flagged but program execution allowed to continue. The
master can chm to set the service request enable bita either
for subsequent attachment by ma&em on the name cable seg-
ment (near-side) or for attachment by far-eide masters if tht
is appropriate. Finally, the processor clock can then be started
to allow program execution.

When the processor halts a wrvice request will again be is-
sued. The status register can be examined to see if the program
finiehed execution succeaafully, or lf execution was halted in re
lrponae to a trap condition being met (such as an arithmetic
exception). To read out the data from a processor a similar
sequence of operations to those used to load it ia needed, the
main difference being the substitution of a load instruction for
the store instruction. Each 3081/E may be sent parts of an
event for data preprocessing and formatting or entire events for
on-line event analysis. Not all 3081/E% need to be executing
the same program.

4. Summary and Status

The FASTBUS to 3081/E interface is a dual-ported FASTBUS
slave which can accept data from FASTBUS masters, control
program execution on the 3081/~, and allow the results to be
read out by another FASTBUS master. It is currently being
debugged and should be available for use by the end of this
year.

Acknowledgements
The 3081/E project is being carried out aa a collaboration

between SLAC and CERN DD division and the work has been
divided equally between them. Discussions on the interface
with Brian Martin are gratefully acknowledged , as is Joel De
Witts work in helping to bring the interface into operation.

References

P. F. Kunz et al., “The 3081/~ Processor”, SLAC PUB
3332, April 1984, CERN DD/84/4, April 1984. P. Rankin
et al., “On-line use of 3081/~ Microprocessors”, IEEE
Trans. Nucl. Sci. NS-.!?2,1321 (1985).

Mark II Collaboration “A Proposal for the Mark II at the
SLC”, SLAC PUB 3561; CALT 68-1015. A.J. Lankford
and T. Glanzman, YData acquisition and FASTBUS for
the Mark II detector”, IEEE Trans. Nucl. Sci. NS-31,
m (1985).

