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ABSTRACT 

We show that in quantum gravity the mass counterterm for any matter field 

is gauge dependent. Nevertheless, full use of the invariances of the theory still 

guarantees the possibility to construct, order by order in perturbation, a gauge 

invariant S-matrix. 
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1. INTRODUCTION 

Although a satisfactory theory of gravity is still unknown, people have often 

tried to use the experience gained by the study of Yang-Mills theories in order to 

quantize Einstein’s theory of General Relativity. The standard procedure is to 

add a gauge-fixing term, compute the corresponding Faddeev-Popov ghost La- 

grangian and expand the action around the flat-space Minkowski metric. In close 

analogy to the Yang-Mills case, one finds that the resulting effective Lagrangian 

is invariant under B.R.S. transformations. “I Leaving aside the problem of renor- 

malizability and introducing an appropriate regularization scheme, it is generally 

believed that this method will yield a gauge invariant S-matrix.” The purpose 

of this paper is to point out an important peculiarity of gravity as compared to 

Yang-Mills theories. Namely, we shall show that the mass counterterm which one 

should introduce for any particle in a gravitational field, depends on the gauge 

one uses for the coordinate invariance. This result will be established by an ex- 

plicit one loop calculation in section 2 below. In section 3 we shall prove that 

this is consistent with the Ward identities of the theory. Finally, in section 4, we 

shall show that, in spite of this result, full use of the invariances of the theory, 

still guarantees the existence of a gauge-invariant S-matrix. Our results are valid 

both in ordinary theory of gravity as well as the higher derivative, conformally 

invariant Weyl’s theory. The problems of renormalizability and/or unitarity will 

not be discussed. 

11 Strictly speaking, in gravity, like in any other theory containing massless particles, there is 
no S-matrix. However, one expects to be able to construct gauge invariant quantities, like 
transition probabilities, which are free from infrared divergencies. 
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2. A SAMPLE COMPUTATION 

We shall compute in this section the two point function of a scalar field 

coupled to a gauge field. We shall start with the well-known case of an elec- 

tromagnetic or a Yang-Mills field and then proceed to that of a gravitational 

field. 

At the one-loop level the diagrams contributing to the self-energy of a scalar 

field are shown in fig. 1. At this level there is no difference between Abelian or 

non-Abelian theories. The sum of the two diagrams gives a function 

g2 C(p2, m2, E, E) where m is the mass of the scalar particle, g is the coupling 

constant, e is the gauge-fixing parameter and e is the cut-off. The statement 

that the mass counterterm is gauge independent means that 

a 
G CC m2, m2, c, c) = 0 . (24 

We shall verify (2.1) by explicit computation. The effective Lagrangian density 

is given by: 

~~~ = -i Fiv + (D,d) (Dp4)* - m2&P* - $< G(d2 (2.2) 

where G(A) is the gauge-fixing term which will be taken to depend on the gauge 

field A, through d,Ap. The photon propagator is then of the form: 

where .6(k2) depends on the detailed form of G(A). Since we are interested in 

checking (2.1), it is sufficient to use only the &dependent part of D,, in the 

diagrams and verify that the resulting E(p2, m2, [, C) vanishes for p2 = m2. A 
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convenient choice for a family of gauges G(A) is given by: 

G(A) = + d, AP (24 

with p2 an arbitrary parameter with dimensions of mass:!. This yields a E(k2) 

in (2.3): 

4 
OCk2) = (k2 fl: p2)2 - (2.5) 

The advantage of this choice is that the E-dependent part of any diagram is both 

ultraviolet and infrared finite. The two diagrams of fig. 1 give: 

5 (m2,m2,g,[) - 
/ 

d4k 
(2p - k)p (2p - k)” k, k, 

k4(k2 - p2)2 [(P - k)2 - m2] P2=m2 

/ 

k2 - 
d4k k4(k2 _ p2)2 = 

0. 

This is the expected result. It is known (see also next section) that it is valid 

to all orders in perturbation for both Abelian and non-Abelian theories and, 

furthermore, it is essential in the proof of the gauge invariance of the S-matrix. 

We turn now to quantum gravity. The diagrams are still the same with the 

graviton replacing the gauge boson. The relevant part of the effective Lagrangian 

is given by: 

L = ,&i 
m2 

--$ R + ; s”“(~,d>(&4> - 2 02> - & (Gp)2 w 

where g is the determinant of gPV, R the scalar curvature, ,2 the gravitational cou- 

pling constant and G, the gauge-fixing function. We expand around Minkowski 
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flat space and we write: 

which yields: 

(2.8) 

(2-g) 

The indices are contracted with the flat space metric qpV. We choose again a 

family of gauges of the form: 

G”(h) = =$ d, hp” 

and the &dependent part of the graviton propagator becomes: 

1 P2 
P'&' = it 2 (k2 ep2)2 

(2.10) 

(2.11) 

x 
[ 

2P(‘) + 3p(o-4 - fi pP-4 + p(o-ws) + p(o-cu) 
( > 1 ILV,XP 

where the P-tensors are defined by: 

(2.124 

(2.12b) 

(2.12c) 

(2.12d) 

(2.12e) 



and 

k,ku 
e,, = qccu - - 

k2 

k,ku 
wp" = k2 

(2.13~) 

(2.13b) 

The calculation of the two diagrams now is straightforward. We find: 

d4k 

x [p'(p - k)" - +y'] [pA(p - k)P - $vAp] &+xp(k) 

(k2 - 2pk) 
p2=m2 

m2 
$‘8 

T+‘~~~J'- 2~+%f'~ Zi,,,,,(k) 1 
= - ‘m2p2 /- ,,,,f!i$)2 # ’ ’ 

(2.14) 

This result means that if we compute the scalar field two-point function 

using, for example, dimensional regularization followed by minimal subtraction, 

the position of the pole of the resulting propagator will be gauge dependent. 

This contradicts all our experience from Q.E.D. or Yang-Mills field theoriesn2 

and, at first sight, it seems to jeopardize the construction of a gauge invariant 

S-matrix. It is therefore remarkable that, as we shall show in the following 

sections, a physically meaningful and gauge invariant S-matrix can, nevertheless, 

be obtained. 

fl2 The gauge dependence of the mass counterterm occurs also in Q.E.D. or Yang-Mills theories, 
but only for gauge-fixing functions nonlinear in the fields. la’ The novel feature of gravity is 
its appearance even for linear gauge-fixing. 
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3. THE WARD IDENTITIES 

The result of the previous section, strange as it may seem, is in fact consistent 

with the invariances of the theory, as can be shown by a study of the Ward 

identities. 

Let linv be a coordinate invariant Lagrangian density of a scalar field coupled 

to the gravitational field. We do not have to specify its detailed form for the 

argument of this section, except to say that, in the purely gravitational sector, 

it includes the Einstein term RJ-g, a bare cosmological constant AJ-s and 

possibly other terms containing higher derivatives of the metric tensor. The 

Ward identities will be obtained by using the B.R.S. invariance of the effective 

action, so we introduce the gauge-fixing Lagrangian: 

where s denotes the generator of the B.R.S. transformation “I and cp the Faddeev- 

Popov antighost. The simplest choice for the gauge-fixing term Gp is: 

For the general argument of this section there is no need to introduce special 

convergence factors like the one of eq. (2.10). Under a B.R.S. transformation the 

various fields of (3.1) transform like: 

shp’ = [W C” + au C’L - qp” 8, Ca + ha” 3, Cj‘ + ha’.‘ d, C” - a, (Cm hp”)] 

(3.34 

s(b = -ca a, qb (3.36) 



SC’1 = - ((y, CP) ca (3.3c) 

A peculiarity of gravity is that, although gauge invariance forces hp” to be 

massless, it does not prevent it from taking a nonzero vacuum expectation value. 

In our case, diagrams of the form of fig. 2 are divergent and require a subtraction. 

The l-PI part of them can be put equal to zero with a suitable renormalization 

condition, but the corresponding contributions in connected Green functions are 

ambiguous, 13’ containing expressions of the form O/O due, to the graviton propaga- 

tor at zero momentum. In other words, gravity coupled to massive matter fields, 

when quantized around flat space, requires an infrared regulator, even for Green 

functions. We choose to introduce a “soft” breaking of coordinate invariance of 

the form the where t is a parameter with dimensions mass4. The final form of 

the effective Lagrangian is therefore: 

supplemented with the renormalization condition: 

(hp")=O 

which ensures that flat space is a solution of the equations of motion. At the tree 

level (3.5) gives a relation 

iA+t=0 . P-6) 

At higher orders it requires the introduction of a counterterm of the form 6Afi. 

After the condition (3.5) is enforced we can take the limit t -+ 0 thus recovering 

a massless graviton. 
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We now introduce sources and write an effective action: 

where the sum over F extends to all fields, J$ are the sources for the B.R.S. 

transformed fields and the last term with an anticommuting constant Q has been 

introduced for convenience. “’ The generating functional of the Green functions 

is now given by: 

$ D[F] ed-S[J, Js, Q]) 

‘lJ’ Js’ ‘I = s D[J’] exp{-S[ J = Js = Q = O]} (3.8) 

and that of connected Green function by: 

W=-i In . (3.9) -* 

The classical fields k are defined by: 

(3.10) 

A functional Legendre transformation gives the generating functional of I-PI 

diagrams. In our case it is convenient to define 

In order to give a precise meaning to all these formal expressions we shall pro- 

ceed in two steps: First we define an intermediate renormalized theory in which 

all Green functions are computed, order by order in perturbation theory, as sums 

of Feynman diagrams using dimensional regularization and minimal subtraction. 

At a second stage renormalization conditions will be imposed. In this section 

only (3.5) will be considered. Our results will be valid also for the case of the 

nonrenormalizable Einstein theory. 
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We are now in a position to write the Ward identities. B.R.S. invariance is 

broken in (3.7) by the sources as well as the linear term. In the standard way 

we obtain for the intermediately renormalized Green functions without external 

ghost lines, at the limit t + 0:” 

ar 
2E x = 

J 
m d m 

ails dQ 6J;,(x) dx+ J 
6l? d 6r 

m dQ &I;(x) dx ’ (3.12) 

This is our basic equation.[51 Our first result will be to show that 6A, the 

cosmological constant counterterm which is determined by the condition (3.5) at 

the limit t --+ 0, is &independent. We take the derivative of (3.12) with respect 

to LP“ and set all classical fields and sources equal to zero. We obtain: 

2E z 
6r 

/ 

62r d 6r 
at ah(y) = ah(x) siLqy) dQ &J;,(x) dx 

/ 
6r d 62r 

+ 6bqx) dQ SJ;,,(X) abqy) 
dx . 

(3.13) 

We now impose the renormalization condition (3.5). The first term on the r.h.s. 

vanishes because it is proportional to the inverse graviton-graviton two-point 

function at zero momentum. So does the second term because, precisely (3.5) 

puts the graviton tadpole to zero. It follows thati5’ 

(3.14) 

We conclude that (3.5) d oes not introduce any new gauge dependence in the 

effective action. 

Armed with this result we proceed to the study of the gauge dependence of 

the mass counterterm. We take the second derivative of (3.12) with respect to C$ 

fl3 l-PI Green functions do not need the t-infrared regulator. 
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and let all sources go to zero. The last term becomes proportional to the inverse 

4 propagator which vanishes for some value p2 = Ed, =2 being the value of the 

&mass at the order we are working. (Remember, no renormalization condition 

has been imposed.) Therefore (3.12) gives: 

d 6r 2&7&-7 -- 
at I J dQ 6 J;~ 1 J,...=O 

where r is the residue of the pole m -2. The first factor is given by a sum of vacuum 

diagrams and can be parametrized as: 

d 6r 

d&6JfI,J=, 

= T$JV 

,... 

(3.16) 

with r being a constant which has an expansion in powers of ii and whose first 

nonzero term is of order tL. The second factor is the graviton-scalar three point 

function with a zero momentum graviton and on-shell scalars. Its expansion in 

number of loops starts at zero order and equals -im2 + O(tL). We conclude that 

the 1.h.s. of (3.15) is different from zero already at the one-loop level, a result 

which is confirmed by the explicit calculation of the previous section. 

It is instructive to trace the origin of the null result in ordinary gauge theories. 

For example, in scalar electrodynamics we obtain a Ward identity which looks 

almost the same as (3.12) with photon lines replacing the graviton ones and the 

corresponding changes in the ghosts. However, now the term in (3.16) vanishes 

because there is no way to have a vacuum diagram with just one free index. 

Physically our result can be understood with the following argument: The mass of 

a particle interacting with a gauge field is an external parameter which should not 

depend on the particular gauge choice for the latter, while the mass-term of the 

same particle in a gravitational field becomes part of the interaction Lagrangian. 
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4. THE GAUGE INVARIANCE OF THE S-MATRIX 

The purpose of this section is to show that the gauge dependence of the mass 

counterterm, which we established in the previous sections, does not prevent 

the construction of a gauge invariance S-matrix. Naturally, physical masses are 

gauge invariant and this must be imposed by appropriate renormalization con- 

ditions. The gauge dependence of the counterterms introduces some additional 

complication and the standard proofs must be modified accordingly. 

The most direct way to prove the gauge invariance of the S-matrix in a 

gauge theory is to impose on-shell renormalization conditions for all arbitrary 

parameters of the theory n4 and use the B.R.S. Ward identity in order to establish 

a parametric differential equation[1’61 of the form: 

(44 

where WR is the on-shell renormalized generating functional and the Ai’s are a 

set of unphysical insertions. Therefore, the S-matrix elements, identified by the 

appropriate amputation at the physical masses, are &independent. It is clear 

that the gauge dependence of the mass-counterterms, which we found in gravity, 

spoils the counting on which eq. (4.1) was based. 

Alternatively, we can use the same B.R.S. Ward identity to prove that a 

change in E is equivalent to a change in the source terms[7’81 and, in an ordinary 

gauge theory, this does not affect the physical S-matrix. However, this is no more 

true in quantum gravity because such a change induces, in particular, a change in 

the vacuum energy which is precisely given by the term represented in eq. (3.16). 

We see that in either case we need one more equation in the form of a new Ward 

identity in order to be able to control the total gauge dependence of the S-matrix. 

fl4 We consider, for simplicity, the case of a spontaneously broken gauge theory where on-shell 
renormalization conditions do not introduce any infrared divergences. 
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The remarkable result is that quantum gravity has enough invariance to provide 

us with precisely one extra Ward identity as we shall show next. 

The most rigorous way to obtain these equations is to follow the method 

of ref. [6] and write the complete set of parametric differential equations of the 

theory. In our case they include the renormalization group equation and two 

equations which control the gauge dependence of the Green functions. It5 We 

shall not present this computation explicitly because it is rather lengthy and not 

very illuminating. Furthermore it can only be performed to all orders in a higher 

derivative theory because Einstein’s theory being nonrenormalizable contains an 

infinite number of arbitrary parameters. The final result (for the generating 

functional of connected Green functions without external ghost lines) reads: 

W = 0 (4.2~) 

=a (0 J; 
J 

r 

(4.26) 

=Oi cK) JL 
J 

(4.2~) 

where p is the renormalization point, IC the gravitational coupling constant de- 

fined in (2.7), gi are the various coupling constants and masses and F denotes 

all fields; @la), r$‘, 6ca), rta) and a(‘) are calculable functions of the coupling 

d5 The technical reason why we obtain two equations instead of one can be traced to the fact 
that in gravity the quantum field gp” is expanded around the classical value qfi” rather than 
zero. Were it not the case, gravity would had contained one parameter less since Newton’s 
coupling constant could have been absorbed into a resealing of the fields. 
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constants and Jpy stands for an amputated source. The insertions corresponding 

to rg) and &7(‘) are unphysical (they do not contribute to the S-matrix) while the 

insertion corresponding to rca) is physical. Equation (4.2a) is the renormalization 

group equation and the linear combination of (4.2b) and (4.2~) which does not 

contain the physical insertion gives the gauge independence of the S-matrix. 

A more transparent method consists of exhibiting all the invariances of the 

theory. The B.R.S. invariant action we considered in the last section is: 

with G, given by (3.2). In the Landau gauge E + 0 we can rewrite (4.3) intro- 

ducing an auxiliary field bp:“’ 

(4.4) : 

The B.R.S. transformation properties (3.3) remain the same except that for the 

anti-ghost eq. (3.3d) which is replaced by: 

scp = bp (4.5a) 

sb=O . (4.5b) 

Notice that (4.5) is not the most general action consistent with B.R.S. invariance. 

One can add the infrared regulator h; with an arbitrary coefficient t. Indeed, 

the action 

Sl = t 
J 

dnx h; (4.6) 

is also B.R.S. invariant because the transform of s dnx hc vanishes for d, hp” = 0. 

On the other hand Sr is not invariant under coordinate transformations. The 

corresponding phenomenon in Q.E.D. is the possibility of adding a photon mass- 

term - A; which, in the Landau gauge d, Ap = 0, also yields a B.R.S. invariant 

although gauge noninvariant action. . 
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In gravity, however, this freedom will give a new Ward identity. In a some- 

what heuristic way, it can be viewed as corresponding to the residual invariance 

of Sh once the Landau condition d, h CL” = 0 has been imposed. Indeed it is easy 

to see that one can still make coordinate transformations with parameter 

WC”(X) = wxp P-7) 

with constant w. This is a dilatation which is an exact symmetry of St, in n 

dimensions provided we assign to the various fields the transformation properties: 

6hp” = -(n - 2) rf” - [(n - 2) + xa a,] Vu (4.8~) 

(4.86) 

where F stands for all other fields, i.e. the ghosts C’j‘ and c”“, the auxiliary 

field bp as well as matter fields r~5 ( scalar), $J (spinor) and A, (gauge) with the 

following dimensions: d, = d,- = 0; dt, = 1; d4 = d$ = 0; dA = 1. At an arbitrary 

gauge the invariance under (4.7) is broken by the gauge-fixing term 6 Gi as 

well as the infrared regulator (4.6). The difference with Q.E.D. lies in the fact 

that, for the latter, in the Landau gauge there is essentially no invariance left. 

Indeed, if apAp = 0, one can still perform transformations A, --+ A, + d,x with 

x(x) satisfying q X = 0. If we do not want to change the asymptotic behavior of 

A,, which is assumed to vanish at infinity, x must be a constant. On the other 

hand (4.8a) is an acceptable transformation. The constant term -(n - 2)qpLv 

is just the reflection of the fact that we are perturbing around a nonzero value 

of the field g CL”. For J-sg pV the corresponding transformation is SJ-sg”” = 

-(n - 2) J-sgp”” - Xada fig p” Therefore, we can use the invariance under . 

(4.8) in order to obtain a new Ward identity. We thus obtain a system of two 

Ward identities, B.R.S. and dilatation, which is equivalent to the one we obtain 

from the parametric differential equations. For the dimensionally regularized 
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generating functional of connected Green functions without external ghost lines 

we get: 

dW 

-2EdE = J 
(Jpu + tqpu) $ gd”x + / J4 $ g dnx (4.9) 

PU 4 

-2(n + 2) [ T = 
/ 

(Jpu + tqpu) (n - 2 + xa aa) g dnx (4.10) 
I1u 

+ 
/ 

J4 (d+ + xa 3,) ; dnx + (n - 2) 
4 / 

J; dnx . 

It is instructive to study the limit t + 0 in W. Only diagrams with a zero 

momentum graviton propagator will survive in the terms proportional to t, so 

we obtain: 

dW 

-2EdE = J 
d 6w dnx + 

Jpu dQ “J;,, J 
J d 6w dnx 

’ dQ SJ; 

-2(n+2)(% =/ J,,(n-2+xada) E dnx 
PU 

J 6W 
+ J# (d# + xa aa) 6~ dnx - (n - 2) 

4 / 

(4.11) 

(4.12) 

6W i- 1 a$ 
+ J; dnx 

where the functional derivatives with respect to .&, represent terms in which 

the corresponding graviton propagator is amputated. Using (3.16) we see that 

the last term on the r.h.s. of (4.11) is proportional to $6W/b.f:. We can now 

combine (4.11) and (4.12) in order to eliminate this term. The resulting equation 

expresses the gauge dependence of W in terms of “unphysical insertions.” It 

follows that we can introduce renormalized parameters, masses and coupling 

constants, which are functions of the bare ones, the gauge parameter [ and 
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the cut-off c = 4 - n, such that the physical S-matrix, expressed in terms of 

these renormalized quantities, is gauge independent. We want to emphasize that 

this result is valid order by order in the usual perturbation theory. The gauge 

dependence of the mass counterterms may have a different significance in another 

expansion scheme.[” 
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FIGURE CAPTIONS 

Fig. 1. One loop self energy diagrams of a scalar field. 

Fig. 2. Graviton tadpole diagrams. 
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