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ABSTRACT 

Using a simple field-theoretic model we show that, in the zero binding limit, 

the relativistic deuteron wave function has a cluster decomposition; i.e., factors 

into two separate nucleon wave functions convoluted with a body wave function. 

The framework of the calculation is a Fock state expansion at equal time on 

the light-cone. Assuming a quark interchange mechanism, we then derive the 

deuteron reduced form factor at large momentum transfer, while recovering the 

standard impulse approximation form at small momentum transfer. 
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1. Introduction 

From the standpoint of quantum chromodynamics the deuteron is a complex 

dynamical system. At large distances the deuteron is evidently well described as 

aJ=l, 1=0, Q=l composite of two nucleon clusters with binding energy 

- 2.2 MeV, together with small admixtures of AA and virtual meson compo- 

nents. However, at short distances, in the region where all six quarks overlap 

within a distance R = l/Q + 0, one can show rigorously that the deuteron state 

in QCD necessarily has “fractional parentage” (l/9) np, (4/45) AA, and 4/5 

“hidden color” (nonnuclear) components. Is2 In fact, at any momentum scale the 

deuteron cannot be described solely in terms of standard nuclear physics degrees 

of freedom, and in principle, any physical or dynamical property of the deuteron 

is modified by the presence of such non-Abelian components. For example, 

the standard “impulse approximation” form for the deuteron form factor 

(ignoring spin). 

h(Q’) = FdbodY(Q2) F,(Q2) , (1-l) 

where F, is the on-shell nucleon form factor, cannot be precisely valid at any 

momentum transfer scale Q2 = -q2 # 0 because of hidden color components. 

More important, even if only the nucleon-nucleon component were important, 

Eq. (1.1) cannot be reliable for composite nucleons since the struck nucleon is 

necessarily off-shell in the nuclear wave function: Ilc” - Ic21 - iQ2 (see Fig. 1). 

Thus in general one requires knowledge of the nucleon form factors FN( q2, k2, k”) 

for the case in which one or both nucleon legs are off-shell.3 In QCD such ampli- 

tudes have completely different dynamical dependence compared to the on-shell 

form factors. 



Although Eq. (1.1) h as b een used extensively in nuclear physics as a starting 

point for the analysis of nuclear form factors, its range of validity has never 

been seriously questioned. Certainly in the non-relativistic domain where target 

recoil and off-shell effects can be neglected, the charge form factor of a composite 

system can be computed from the convolution of charge distributions. However, 

in the general situation, the struck nucleon must transfer a large fraction of its 

momentum to the spectator system, rendering the nucleon state off-shell. As we 

shall show here, the region of validity of Eq. (1.1) for the deuteron is very small: 

i.e., Q 5 100 MeV. H owever, in this region the nucleon form factor does not 

deviate significantly from unity,4 so eq. (1.1) is of doubtful utility. 

The deuteron form factor Fd (Q2), by definition, is the probability amplitude 

for the deuteron to stay intact after absorbing momentum transfer Q. If the 

deuteron is taken as a lightly-bound cluster of two nucleons, then the form fac- 

tor contains the probability amplitudes for each nucleon to remain intact after 

absorbing momentum transfer - qp/2. Thus, it is natural to factorize Fd in 

the form5 

1;;1(Q”) = fdQ2) J3Q2/4) , (1.2) 

which defines the “reduced” form factor fd(Q2). As shown in Ref. 1, QCD 

predicts Q2 f,j(q2) E const [modulo logarithmic modifications due to the running 

coupling constant anomalous dimensions of the nuclear wave function], which is 

in excellent agreement with experiment for 1 5 Q2 5 4 GeV2 (see Fig. 2). Thus 

it is interesting to understand the origin of the reduced form factor factorization, 
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Eq. (1.2), from a fundamental point of view and to verify for which regime, 

if any, the standard impulse approximation form, Eq. (l.l), is valid or useful. 

In order to study these questions, we construct a simple covariant and gauge- 

invariant dynamical model of the deuteron which allows an analysis of the effects 

of nucleon compositeness in the nuclear wave function. Within the framework of 

this simple model, which neglects hidden color components, we derive a cluster 

decomposition6 property of the deuteron wave function and identify a transi- 

tion region between forms (1.1) and (1.2). The important conclusion is that 

the impulse approximation (1.1) can only be valid in the nonrelativistic regime 

Q2 =; 2Md Ed. 

In order to focus on the essential points we will analyze a simple covariant 

model7 which incorporates elements of the quark structure of the nucleon: 

LI = 9 dd 4N dN + h Eijk dN Qi !lj Qk - (l-3) 

Here g and h are the coupling constants of a deuteron to two nucleons and 

a nucleon to three quarks, respectively, and Eijk represents the SU(3) color 

singlet coupling. The quarks carry the electromagnetic current. This model 

gives an effective deuteron wavefunction with a factorized two-nucleon structure 

(see Sec. 2.1), 

i& = $iody x +N x +N . P-4 

Since the relativistic deuteron form factor can be expressed as a convolution 

of initial and final light-cone Fock state wavefunctions, the factorization 



of the wavefunction is the origin of form factor factorization in terms of nucleon 

form factors. Although the explicit model used here is simple, it will be clear 

from the structure of the proofs that the results can be generalized to the full 

QCD case. 

As we shall show in Sec. 2.2, if Q2 is small the standard impulse approxi- 

mation result (1.1) is recovered. However, at large Q2 the factorization property 

(1.4) does not hold simultaneously for the initial and final wavefunctions and (1.1) 

fails. However, we can utilize the standard factorization of QCD for exclusive 

processes, 

Fd(Q2) = J ldzl[d~l 4d(%, Q) T$(zi, Yi, Q) 4d(Yiy Q) 3 P-5) 

where 7”; is the 6q + 7* + 6q hard scattering amplitude and8 

is the deuteron distribution amplitude, the probability amplitude to find six 

quarks within a distance l/Q in the deuteron wavefunction. If the hard scattering 

amplitude factorizes: 

T; = Tg x T; x tff , P-7) 

then the reduced form factor factorization Eq. (1.2) immediately follows. The re- 

duced amplitude tH controls the fall-off of fd(Q2). The hard scattering amplitude 

TH is the perturbative amplitude for the six quarks to scatter from collinear to the 
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initial two-nucleon configuration to collinear with the final two-nucleon configura- 

tion, where each nucleon has roughly equal momentum. We argue the dominant 

configuration for this recombination is the quark interchange plus one gluon ex- 

change diagram. Note that in the case of color SU(3), where the gluon is a 

color octet, single-gluon exchange between the color-singlet nucleons is forbid- 

den. Thus at lowest order in cr,(Q2) th ere must also be an interchange of quarks 

between the nucleons in order to satisfy the color selection rules. This quark 

interchange model automatically satisfies factorization for the hard scattering 

amplitude (1.7), with 

(1.8) 

Using this quark interchange model we derive the reduced form factor defined 

in Eq. (1.2). Th is verifies the transition of the deuteron form factor from the 

standard impulse approximation to the reduced form. 

One implication of this derivation of the reduced form factor using the quark 

interchange model is that the normalization of the reduced form factor can be 

approximately calculated in perturbative QCD theory without direct evaluation 

of the hard scattering amplitude TH. Note that over 300,000 diagrams containing 

six fermion lines connected by five gluons are required to calculate TH directly.Q 

In the present calculation, the normalization of the reduced form factor is related 

to the deuteron wave function at small N-N separation5 $J$,(@. The relation 

between the normalization of the distribution amplitudes of the deuteron (Ad) 

and the nucleon (AN) in principle could be used to determine the value of Ad 

and predict the normalization of >d(6j2). 



2. Factorization of Relativistic Nuclear 

Wavefunctions and Form Factors 

2.1 THE DEUTERON WAVE FUNCTION 

In QCD the deuteron is a color-singlet composite of six-quark fields. Using 

light-cone quantization,‘O one can define a consistent Fock state basis at equal 

r = t + Z/C which defines the deuteron in terms of 16q), 16q + g), 16q + qij), . . . 

components. Only one of the five color singlet configurations of six-quark corre- 

sponds to the usual INN) nucleon-nucleon clustering. However, since the bind- 

ing energy of the deuteron is very small, we shall assume that this 16q) = INN) 

configuration is by far dominant in the natural kinematic domain of the wave- 

function. This structure is represented in its simplest form by the Lagrangian of 

Eq. (1.3). The resulting deuteron wavefunction is illustrated in Fig. 3. In terms 

of the light-cone variables 

x = (kO +wi 2 
i Xi = 1, 2 il, _ o .- 

PO + PZ ’ i=l 
, 

i=l 

the wave function has the form of a convolution: 

’ iti + rnf 
M”-C 

i=l xi > 
*d(xi, CA) = 

9 1 1 
,,-e;+M& i 1-Y 

YO - Y) 

i 

1 1 

,,-!$$-t~‘~i;m~ 
+ x h2 



where M, MN and mi are the masses of the deuteron, the nucleon, and the 

quarks, respectively, and the momentum-conserving delta function fixes 

y = c&, xi and j” = C&, $li. If we define the function E(Y,~L), 

c(y,e’,) = M2 - 
i+++M& 
Y(l -Y) ’ (2.2) 

then E( y, e’,) measures the deuteron off-shell light-cone energy E = p+ s Cy=, kt. 

The zero binding energy limit implies c(y,zl) + 0. In the e(y,zl) -+ 0 limit, 

y + l/2 and zl --) 0 since M2 --) 4M$. Thus we obtain approximate delta 

function behavior of e-l (y, cl) near the zero binding energy limit: 

qy,& - 6 y -; b2 (CL> 
( ) - P-3) 

In this limit, the factor inside the parenthesis of the right hand side of Eq. (2.1) 

is given by 

The numerator of the right hand side of Eq. (2.4) is cancelled by the 

factor on the left hand side of Eq. (2.1), so that in e(y,<l) + 0 limit Qd(Xi,Lli) 

is given by 



Furthermore, if we change the variables: 

- c ’ i&+mf 1 M2 
+- 

i=l Xi Y N ( 

(i = 1,2,3) 

(J- = 4,W) , 

(2.5) 

P-6) 

Thus for E --+ 0, Eq. (2.5) is reduced to 



This is the expected factorized form of the deuteron wave function [Eq. (1.4)], 

since the last two terms of the right hand side of Eq. (2.8) are the nucleon 

Wave fUnCtiOnS $N(Zi,zi) and ‘f+!‘N(Zj, LL). The new light-cone variables zi and 

cii are the light-cone momentum fractions and the transverse momenta in the 

nucleon frames. The first term of the right hand side of Eq. (2.8) is the “body” 

wave function +iody (y,tl). This proves the factorization of the deuteron wave 

function in the zero binding energy limit: 

2.2 THE IMPULSE APPROXIMATION 

The form factor of the deuteron is given exactly in terms of the light-cone 

Fock state expansion by8 (a sum over Fock components is understood) 

where C& is absorbed by uth quark, pL = Q2, and 

[dx]=6 1-k xi fi $ , 
( ) i=l i=l ’ 

(2.11) 
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In the last section we demonstrated the factorization of XPd(xi,zli) for small 

c(y,il). If /&I is th e order of l&l or ILlil, then $* (xi, cLi + (Si, - xi) <+) is fac- 

torized in the same way as $(xi, iii) since ~(y, ll+ (1 - y)&) is almost the same 

as e(y,el). Thus for small q2 the factorization of 5 XPz (x;, zli + (& - Xi) CL 
a=1 > 

is given by 

a=4 

[This result becomes invalid if I$‘\ is much larger than ]$Ll since e(y,fl+ 

(1 - y)qi) is then non-negligible.] The integrating weight is also simply 

decomposed: 

0 
(2.13) 

where 
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, 

[dz]j = 

(2.14) 

Thus Eq. (2.10) becomes 

El(Z) = j y(;Ty) /CL& ?jyy (,,e;+ (l-Y)&) &ody(YA) 

0 

X ea / I [dz]j [d2Li]j $;V (zj, zij + (hja - Zj) CL) $'N(zj, clj)] 

= c FN(ff) @OdY(& > 
N 

(2.15) 
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where the body form factor $‘ody(<~) is defined by 

body = d 
0 

(2.16) 

Equation (2.16) is the same form as Eq. (1.1). This proves the impulse approxi- 

mation at small I& I for q: of order of 1.Z: I or IrCti I. 

2.3 REDUCED FORM FACTOR 

When l&l b ecomes large, I{‘[ > le’,l or Iilil, then the impulse approxima- 

tion (2.15) breaks down since I E (y,tl + (1 - y)&) I becomes large and 

*‘I;: (“i3 lcli + (&a - xi> CL) cannot be factorized in the same way as $~(xi,Lli). 

However, even in the case I&/ >> IZll or Iclil, the deuteron after absorbing & 

must be a bound state of two nucleons since the target remains intact by the 

definition of the form factor. Thus the quarks of the deuteron must exchange 

momentum so that a large fraction of & can be transferred from the quark which 

absorbs & to the quarks of the other nucleon. In QCD theory, the momentum 

transfer is due to gluon exchange. The dominant lowest order contribution to 

the evolution kernel is represented by the one gluon exchange diagrams shown 

in Fig. 4. Since the gluon is a color octet in SU(3) color group, quarks must be 

interchanged between the nucleons in order to satisfy the color selection rules. 
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The equation of motion for $ (xi, $li + (Si, - xi) & ) is given by 

[ 
M2-e 

{Zli + (& - Xi) 9;)’ + mf 
i=l Xi 

1 

= 
J 

[dw] [d2iL] V (Xi,g~i + (ha - Xi>&; Wj,.Lj) Qd(Wj,jlLj) - 

(2.17) 

The factorization of Qd(Wj,yLj) for low relative momenta is already proved in 

Sec. 2.1 [see Eq. (2.9)]; 

(2.18) 

6 

x tiN 
f W’ 

- 3 .?lj - 6 I 
c 

c wi jc4 
j=4 

The body wave function T,LJ~‘~~ (y,zl) behaves like a delta function near the zero 

binding energy limit [see Eq. (2.3)] 

~$dy(y,tl) = 167r= 6 62 (ei) l/l&,(0’ 3 (2.19) 

where 

(2.20) 
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Thus the integration in Eq. (2.17) ’ t 1s rivial and the variables wi,ili are fixed for 

the quark interchange model: 

Wi = Xi , 

(2.21) 

yLi= ZLi + {Y&a + (l- Y>4b - xi) Cl 9 

where a and b are indices of two interchanged quarks. Using Eq. (2.21), we can 

prove that Eq. (2.18) reduces to 

X ‘L’N Zi, iii + (6ai - Zi) y fl > (2.22) 

x lC’N zj,zLj + (bbj - Zj) (1 - Y) CL ) - 

By substituting Eq. (2.22) into Eq. (2.17), we obtain the factorization of: 

a=1 

X $V(Xi, (&a -Xi)C.I;Xj,{Y~ja + (1 -~)Jjb -xj}QlL) 

x +N zi,& + (ha - zi)YifL) 

(2.23) 
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where the kernel V can be obtained by calculating the diagrams shown in Fig. 4. 

The weak binding of the deuteron forces y - ). On the average we expect the 

struck and interchanged quark to have roughly the same x. Using this approxi- 

mation we obtain the factorization of the form factor from Eq. (2.10): 

J 
Idz]j [d2zi]j +;V 

b=4 
+ (b - zj)$) $N(zj,zL) i- (U * b) 1 

= fd(& G(!f22/4) , 
(2.24) 

where the reduced form factor fd($f) is defined by 

, (2.25) 

and C is determined by value of the kernel V. More generally, we may iterate the 

wavefunction wherever large momentum transfer is required and in this way build 

up the entire T’ contribution to the form factor, as in Eq. (1.6). Equation (2.2) 

is thus the same form as Eq. (1.2). This proves the transition of the form factor 

at large Iail (kZ.1 B l&l or ILI) f rom the impulse approximation form to the 

reduced form. 

In the full QCD analysis, the iteration of the gluon exchange kernel leads 

to a logarithmically evoluting distribution amplitude which replaces $$,(@. 
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At large Q2 the gluon exchange kernel generates other color singlet configuration 

of six quarks, so that the approximation that the deuteron only consists of a 

nucleon pair breaks down. The complete calculation of the deuteron form factor 

thus requires the inclusion of these other components. The reduced form factor 

prediction is useful for incorporating non-leading power law corrections, but it 

does not include the hidden color contributions of the deuteron wavefunction 

(see Fig. 5). 

The definition of fd(Q2) = &(Q2)/J”(Q2/4) provides a convenient tool for 

comparing QCD with experiment since it correctly removes the effects of nucleon 

compositeness for the part of the deuteron wavefunction which consists of two 

nucleons. More generally QCD predicts at large Q2 

fd(Q2) = “8$2’ f& (hQ2/A2)‘” x [I+ O(~s(Q2),m2/Q2)] , 
n=O 

where the I’n are determined from the difference of deuteron and nucleon 

anomalous dimensions. Here I’0 = -9 9. Since (&Q2/A2) is slowly varying, 

the essential test of QCD in the deuteron is the prediction fd(Q2) - l/Q2 for 

the leading helicity zero to helicity zero form factor, and that the other non- 

zero helicity deuteron form factors are relatively power law suppressed at large 

momentum transfer. 
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3. Discussion and Conclusion 

In the zero binding limit, the light-cone Fock state wavefunction naturally 

decomposes into a product form of cluster wavefunctions. This result (Eq. (2.9)) 

is closely related to the cluster decomposition theorem for scattering amplitudes 

proved in Ref. 5. Thus the nuclear wavefunction to a good approximation con- 

tains as factors a product of on-shell nucleon wavefunctions, but only in the near 

on-shell regime where the relative momentum of the nucleons is small. The fac- 

torization of light-cone wavefunctions leads, as we have shown, to various forms of 

factorization for the nuclear form factor. At low Q2 < 2Mdcd, the usual impulse 

approximation result is valid. The region of validity of this form though is limited 

to momentum transfers smaller than the inverse size of the nucleons where the 

struck nucleon can remain nearly on-shell by virtue of the nuclear Fermi motion. 

In this domain, the nucleon form factor is still nearly point-like J’N(Q~) - 1. At 

larger Q2, the kinematics of the boosted recoil nucleus forces the struck nucleon 

off-shell and the traditional form of factorization becomes useless. Fortunately, in 

this domain the reduced form factor result becomes approximately valid, replac- 

ing the impulse approximation as a valid starting point for QCD phenomenology. 

We have also discussed a simple quark interchange model. Using this model one 

can not only avoid the enormous labor8 (300,000 diagrams) required to calculate 

the hard scattering amplitude directly, but it also allows one to connect the re- 

duced form factor with the phenomenological value T,&$,(@, the deuteron body 

wave function at origin. 
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Fig. 3. 

Fig. 4. 

Fig. 5. 

Figure Captions 

Representation of the deuteron form factor according to the stan- 

dard nuclear physics impulse approximation. Here ] k” - k2 I = 

I2k. q + q2 I - Q2/2 since k - p/2 or k’ - i(p + q). 

(a) Comparison of the asymptotic QCD prediction fd(Q2) o( l/Q” 

[.th(Q2/A2)]-1+ro with data for the reduced deuteron form factor, 

where FN(Q~) = (1 + Q2/0.71 GeV2)-2. The normalization is 

fixed at the Q2 = 4 GeV2 data point. [ (b) Comparison of the 

prediction [1+(Q2/m$]fd(Q2) o( [bz(Q2/A2)]-1+ro with the above 

data. The value rn: = 0.28 GeV2 is used. 

The diagrammatic kernel equation of the relativistic deuteron wave 

function in the light-cone frame. The effective 4=-type interaction 

[see Eq. (1.3)] p rovides the clustering of two separate nucleons. 

The lowest order diagrams of the quark interchange model. 

QCD contribution included in analysis of the reduced form factor. 

The gluon contributions to the deuteron wave function indicated by 

dotted lines lead to hidden color components and are not included. 

20 



Y 

4647A4 

Fig. 1 



6.0 

F 
0 - 4.0 

X 

0 

cu 
_cl: 02 . 

0 

2-83 

7 

I 

( 1 a i 

0 I 2 3 4 5 6 
Q* (GeV*) 4475C2 

Fig. 2 



Xj = (I-Y)Zj,klj- lj -Zj 11 
--x - 

9-83 
4647A1 

6 3 
+c c 

a=4 b=l 

+ @-p% 

I I 

Fig. 3 

x0-xb =A, 
(I-x0 

Xbql 

I . / 

61 
+ 

. \ / . 

\ . / / 

. . / / 

P-83 
4647A2 

\ / / 

Fig. 4 



P Pf9 

(I-wNp+q) 
4647A5 

Fig. 5 


