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ABSTRACT 

In this paper QED in 2+1 dimensions is studied. We offer a simple physical 

description of the mechanism that gives rise to anomalous fermion currents and 

the “topological” mass (Chern-Simmons term) in the effective gauge theory. The 

dynamical properties of the fermions are analyzed and explained in some detail. 

The physical properties responsible for these anomalous effects are identified and 

the mechanisms clarified. A novel result that follows from our discussion is that 

the ground state carries spin (S) as well as charge (&) and that S = Q/2. 

The relation of these effects to the l+l-dimensional chiral anomaly and to 

some other topological features is discussed. The possible connection between 

QED in 2+1 dimensions and theories of the Quantum Hall effect is briefly studied. 

Even though both theories contain crossed-field currents, a detailed analysis of 

the structure of QED shows that they are different even at a physical level. Hence 

QED in 2+1 is not a suitable model for the Quantum Hall effect. 
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1. Introduction 

It was Schwinger who first realized that gauge invariance and massive gauge 

fields can coexist peacefully. He proposed the much celebrated “Schwinger model” 

or QED in l+l dimensions. This example allows the photons to become massive 

without spoiling gauge invariance and thereby sparked the search for mechanisms 

of a similiar type that operate in higher dimensional theories, so far with little 

success. The only well understood mechanism remains the Higgs phenomenon. 

Schonfeld”’ and Deser, Jackiw and Templeton”’ realized that in 2+1 di- 

mensions there exists a possible mass term for the gauge field Lagrangian that 

maintains gauge invariance,13’ however it breaks parity and time reversal. These 

authors showed that this mass term in non-Abelian theories has a deep topo- 

logical meaning. “I It is the Chern-Simmons (C-S) secondary characteristic class. 

The gauge field Lagrangian is L = L, + Lcs, where L, is the usual term and Lcs 

is the C-S term that gives the gauge field a mass. Thus the name “topological 

massn . 

Although the equations of motion are gauge invariant, L is not.[” In the 

non-Abelian theory, under a “large” gauge transformation, the exponential of the 

action changes by a phase leading to the quantization of the mass parameter. [51 

Recently it has been shown that in gauge theories with fermions, such a 

topological mass term is induced by the interactions of these fermions,[” and the 

long-distance effective gauge theory contains a C-S term. 

. 

That induced fermionic currents can lead to terms that violate parity and 

time reversal can be seen as follows. In 2+1 dimensions, besides the usual trans- 

verse structure, the current can have a contribution proportional to P’PdyAp 

(E is the totally antisymmetric tensor).“’ This leads directly to the C-S term. 

In non-Abelian theories, the C-S terms do not receive quantum corrections for 

topological reason. [4’5’71 What is perhaps surprising is that in the Abelian the- 

ory there are no corrections either,13”’ even though the Abelian theory does not 
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enjoy an interesting topological structure in 2+l dimensions. The mass term 

(the Abelian part of the C-S term) does not lead to parameter quantization; the 

mass is not quantized. Recently it was also suggested by some others that these 

parity violating effects are related to the l+l dimensional chiral anomaly and 

zero modes of the Dirac operator.“” 

In the presence of an external background electric field, the parity abnormal 

contribution to the fermionic current leads to a current perpendicular to the 

electric field.‘“1 

This fact has motivated some authors to try to explain another fascinating 

phenomenon in condensed matter, the Quantum Hall Effect (QHE), using QED 

in 2+1 dimensions as a fundamental theory.“a”S1 The hope is that somehow near 

the Fermi surface the effective theory may contain a C-S term. (However to the 

knowledge of the present authors this has not been shown.) 

One of our aims is to use our detailed physical study of QED in 2+1 dimen- 

sions and then to compare it to the physics of the QHE. Our understanding of 

theories with a C-S term suggests that they are probably completely unrelated 

to the QHE. 

In this paper we will offer a simple physical picture for the appearance of the 

parity abnormal effects. Certain topological aspects and the relation to the l+l 

dimensional chiral anomaly’lO’“l are also clarified. We study in detail the spin 

properties of the theory and ground state quantum numbers. A novel relation 

between the charge and spin of the ground state is derived. Although we analyze 

in detail only the Abelian theory, we believe our arguments may be generalized 

to the non-Abelian case. 



2. Generalities 

We begin our study of 2 + 1 dimensional theories by recalling certain essential 

features of the Poincati group in 2 + 1 dimensions.[“’ These features are some- 

what unfamiliar and their understanding will allow us to clarify the physics of 

interacting theories. 

The Lorentz group in 2 + 1 dimensions is 0(2, l), the full Poincare’ group 

has six generators, three generalized translations and three generalized rotations 

(2 boosts and 1 rotation). This group has two Casimirs: the invariant mass 

(squared) 

M2 = PpPc” (1) 

with Pp the three-momentum, and the Pauli-Lubanski invariant “spin” 

(2) 

where M,, is the generalized angular momentum tensor. In two space dimensions 

there is only one generator of angular momentum (rotations in the plane) cor- 

responding to Jz, the projection of angular momentum onto the missing z-axis. 

The parity operation is 

(t,x,y) --) (t, -X3Y> (3) 

since changing the sign of both x and y amounts to a rotation. Therefore we see 

that Jz is a pseudoscalar in 2 space dimensions, as is W in Eq. (2). For a particle 

of invariant mass M, 

W=MS,; (4 

where S, is the spin part of the angular momentum. These features have a 

profound impact on the dynamics in the plane; there is no helicity, for example. 
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For a massless particle, helicity is the only meaningful concept of spin, and hence 

massless particles are spinless. Thus we find the constraint 

P,PP = 0 a w = 0. (54 

One the other hand if a particle has spin, then it does possess a rest frame which 

can be seen as follows. Since the spin must be in the “z-direction”, and since 

there is no helicity, the particle is definitely massive and 

W) 

Thus we see that angular momentum and spin have very peculiar properties in 

2-space dimensions. Furthermore since there is only one generator of angular 

momentum, there is no non-Abelian Lie algebra that can restrict its possible 

eigenvalues, giving rise to the possibility of exotic statistics. [15’ In the next two 

sections we will review certain features of the free theories, and clarify the sub- 

tleties that will be responsible for the interesting phenomena in the interacting 

theory. . 

3. Free Fermions 

We will choose to work with two component Dirac spinors, and leave the 

discussion of four components spinors to the last section. The Dirac algebra is 

then satisfied by the Pauli matrices and we choose the representation in which 

7a = gaa7 
a 

- (64 
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We will also use the Euclidean version 

70 = ia 7’ = i(g 72 = ia 

7P7Y = -pu - EP~P7p . 

(74 

From the Dirac equation 

(ip - m)?) = 0 (8) 

it is found that the parity operation, Eq. (3), applied to the spinor 1c, acts as 

P$(x, y, tp-l = ul$(-x, y, t) . (9) 

Then from eq. (8) one finds that the mass term breaks parity, as well as time 

reversal. The angular momentum is, as usual, 

Mij = -;(x’aj _ xiai) + f$j 

with 

xii 3 f [7i,7j] . 

Using Eqs. (6), we find 

Mij = cijM M = -+ay - ya,> + $03 , 

Note that the spin density is given by 

s = i++(x) 03+(x) = $ G(x) ?/J(x) . 

(10) 

(11) 

(12) 

From Eq. (12) we see the reason why the mass term in Eq. (8) breaks parity; in 

two space dimensions the mass couples to the spin density which is a pseudoscalar 
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(this is only true for two component spinors). The Hamiltonian equations reads 

(cxi = 707i, i = 1,2) 

-;G3+a3m 1 += E11,. (13) 
We see that if m > 0 positive energy spinors have spin s = +1/2 and negative 

energy spinors s = -l/2 (the opposite for m < 0), therefore there is only one 

spin degree of freedom s = +k fi. “I Massless spinors are also spinless as has 

been discussed in the preceding section. 

Classical Gordon Decomposition: 

In order to understand and interpret the spin dependence of the fermion current, 

we use the Gordon decomposition. By using Eq. (8) in Jp = e@%j, the classical 

current becomes 

JP = -$ $(ia’: + 2A,)$ - -& & ij5[7",7p]lC, . P 
The first term is the convection or orbital part of the current and the second the 

spin or dipole part. 

If a static magnetic field (A,(x, t) = (0, i(x)) is coupled to the current, then 

the spin part of Eq. (14) will couple to the gauge fields as 

or 

where we used Eq. (6a,c). (Th e notation is not perverse; it is correct in two 

space dimensions.) 

Expressions (15a,b) are very surprising because the magnetic moment density 

& the charge density. This fact again is a consequence of the spin properties in 

2-space dimensions for &component spinors. 
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Indeed, in the non-relativistic limit only the upper (large) component survives 

with only one spin degree of freedom; therefore the charge density and spin 

density are the same in this limit and the sign of the mass in (15a,b) determines 

the sign of the spin. This will be shown in more generality in a later section. 

This fact has far reaching consequences. The situation in which a magnetic 

field polarizes spin is very familiar. In this case under discussion, however, the 

magnetic field will polarize charge. (See the later discussion of the interacting 

theory.) 

4. Free electromagnetic field 

We choose the Coulomb gauge 

A0 = 0 tGi=o. (16) 

Equation (16) clearly shows that the gauge field only has one degree of freedom 

in two dimensions. The magnetic field B = EijaiAj is a pseudoscalar, since 

under parity (Eq. (3)) AZ(x, y, t) + -A, (-x, y, t). The electromagnetic angular 

momentum 

M= d2x3x@xB) 
s 

can be written as 

M = - 
J 

d2x B(& I?) . (17) 

This expression can be cast in terms of the “spin” and “orbital” parts”” 

Pw 

MO = 
J 

d2x (EiiAjxkdiEk) 3 Pb) 

where I? = -dA/dt. Since by condition (16) there is only one polarization vector 

perpendicular to the wave vector, then 2 x A’ = 0. This is of course in agreement 

with the discussion in Section 1 and the condition (5a) for massless particles. 
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Now let us suppose that we couple fermions to a background static gauge 

field A, = (O,i) p ro d ucing a magnetic field B. We have argued in the preceding 

section that a magnetic field B will polarize charge density. This charge will in 

turn generate an electric field which is perpendicular to A. Therefore we expect 

that I? x A’ # 0 and by Eq. (5b) the gauge field will acquire a mass. Now we will 

justify these physical arguments in more detail. 

5. Interacting theory 

We will consider the gauge fields as prescribed background fields and examine 

the fermionic degree of freedom that interacting with the gauge field through 

($3 -4 - m)$(Z) = 0. (20) 

We will assume static gauge fields. Since the anomalous effects in the theory 

arise as parity violating contributions to the fermionic currents, we will study in 

detail the currents induced by the gauge fields. The normal ordered current is 

defined as 

(21) 

This definition removes the (infinite) contribution of the vacuum in the absence 

of the background fields. 

Expanding the fermion fields in terms of positive and negative energy modes, 

$(x) = c Un(x)bn + c K(x>d; 
E,>O E,,<O 

(22) 
(here we have assumed that there are no E = 0 states) we find 

c v’n(47pvn(4 - c &(X)7c,v,(x) (23) 
En<0 E,,>O 

As we have argued, the spin structure of the fermions is responsible for the 

anomalous effects. Thus let us now study the spin dependent couplings to the 
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gauge field in some detail. As usual we expect two types of spin terms, a spin- 

magnetic field term, and a “spin orbit” term.“” The latter couples the spin 

directly to electric fields. 

To begin with let us assume A, = (0, i(x)), so that only a static magnetic 

field B(x) = cij3iAj(x) is present. We have argued before that such a B will 

induce charge in the system. From Eq. (23), this induced charge is 

(244 
or 

Q = -fq- (24b) 

where q is the (spectral) asymmetry between the positive and negative parts of 

the spectrum.“*l Using Eq. (20) we can guarantee solutions to the Dirac equation 

that have a given value of spin in the rest frame by writing for m > 0 

+ 
jyE>o(x) = 

( 
1 - izxE(T;LJ VI 

>( ) 0 ’ 
and 

+ vE<&) = 1 _ ia’ “,‘” ‘,“” 

(254 

P-3 

Here Q(x) and x( x are the large component for the positive and negative energy ) 

cases respectively. To treat the case m < 0 merely change m + -[ml and U * V 

in Eq. (25a,b). 

Squaring the Dirac equation, (2), we find 

[(ig- 2)’ + aB(x)] T,!J(~ = (E2 - m2)$ , (26) 

where $ is U(E > 0) or V(E < 0). 
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Charge Generation: 

For a magnetic field that is localized in space, we can consider Eq. (26) as defining 

a scattering problem. We see that @  and x, and hence U and V , of (25a,b) 

interact with B with opposite sign (of 03). For m > 0, positive energy states 

(a) will be repelled from the region where B > 0 and negative energy states (x) 

will be attracted to this region. The opposite occurs for B < 0. Finally, these 

behaviors are reversed for m < 0 (see (25b)). Th is is of course in agreement with 

the fact that the sign of the spin is the same as the sign of the product mE . 

Thus the sign of the magnetic field interaction depends upon the sign of the 

energy. This behavior then creates a charge polarization near the spatial regions 

where the magnetic fields are localized. There is an asymmetry in the spectrum 

if the total flux F = $ d2xB(x) # 0 and by (24a) a net charge arises in the 

vacuum. In fact we will see in the next section that a localized magnetic field 

(vortex) will bind 1 t e ec rons; their energy will depend on the sign of the mass. 

The bound states in the spectrum will give rise to a charge density localized near 

B. 

This charge density in turn will generate an electric field perpendicular to A’. 

The argument given in the preceding section then leads us to conclude that the 

photon will thereby acquire a mass. 

Spin- Orbit Efects: 

There is yet another interesting interaction between spin and the electromagnetic 

field; this is the “spin-orbit” interaction with an external electric field. To study 

this interaction we assume a static electrostatic potential A, = (Ao(x),6) that 

only depends on r = ISI such that l?(r) = E( r r’ is the radial electric field. For ) 

our arguments we will assume that the fields are weak and localized in space. 

The assumptions of radial l?(r) and weak fields serve the purpose of illustrating 

the physics clearly. The effects are in fact quite general. Writing II, = ($I), the 

Dirac equation , defined by Eq. (2)) becomes 

(-a~ + iay)‘$d = -(E - m - Ao)& (274 
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and 

(-az - i$)k = (E + m - Ao)$J~ . (274 

For positive energy spinors Eqs. (27ab) give rise to the second order equation 

for the spinor U, (let us first assume m > 0). 

-a’~- (E+A-Ao)E(r)L,+... Uu=(E2-m2)Uu, (28) 

where L, = r’x p’ and the dots stand for the terms that do not depend on spin 

and angular momentum and A0 < E + m has been used. We recognize the 

second term on the left hand side of (28) as the usual spin-orbit coupling for 

a particle of spin S, = +i. This is of course in agreement with the fact that 

positive energy spinors have S, = f R. The effect of the interaction can be best 

visualized by writing in Eq. (28) E N m+c (this corresponds to a non-relativistic 

approximation), and expanding in E. 

Therefore we see that in the spatial regions where the electric field E(r) > 0, 

the energy decreases for L, > 0 and it increases for L, < 0. Therefore for L, > 0 

the particle is attracted by the electric field while for L, < 0 it is repelled by it. 

For negative energy electrons we find the analog of Eq. (28) 

-d2 + (E _ f _ Ao) E(r)L, + ..s Vd = (E2 - m2)Vd . (29) 

From (29) we recognize the spin orbit coupling for a particle of SZ = -k as 

expected for negative energy electrons. Writing E = -(m + E), we find that for 

L, > 0, the absolute value of the energy increases and for L, < 0 it decreases; it is 

the opposite behavior of the positive energy states. For L, < 0 negative energy 

electrons are attracted to the electric field and for L, < 0 they are deflected 

away. This situation is summarized in Fig. 1. Therefore we see, using the 

current given by Eq. (23), that if the positive and negative energy electrons 
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scatter off a localized radial electric field there is a net azimuthal current due to 

this “spin-orbit” coupling. As usual the origin of this interaction is the magnetic 

field B - ml? x p’in the rest frame of the particle interacting with its spin (recall 

m > 0). This effect is of higher order in p’/ 1 E 1 as it must by Lorentz covariance. 

In the limit of weak fields, Eqs. (28), (29) can be seen to contain the usual 

Thomas factor.‘“’ This discussion is quite general and the physics it describes 

does not depend on the restriction to radial electric fields (or weak fields), save 

for the explicit coupling to angular momentum. 

For the opposite sign of m the behavior is opposite to that described above. 

Thus these induced currents have a definite handedness determined by the sign 

of the fermion mass. Hence they generate a net magnetic moment in the system. 

At this point we observe that if two spin values for the fermions were allowed 

for a given sign of E , the “spin orbit” coupling would induce two currents of 

opposite sign that would cancel each other, yielding zero total magnetic moment. 

Also, the same can be seen to happen in the case of the magnetic fields; a charge 

polarization of opposite signs would be induced by each spin component, thereby 

leading to zero net charge. 

Since the spin orbit interaction responsible for these anomalous currents is 

related by Lorentz covariance to the spin-magnetic field coupling analyzed before, 

then the charge induced by B and the currents induced by l?(r) transform as a 

three vector. Notice that in 2+1 dimensions the dual electromagnetic tensor 

*Fp = i P’PFup is a (pseudo) three-vector. The analysis carried out allows us to 

extract the following physical picture of the process in which anomalous charges 

and currents are induced. Suppose that a localized magnetic field (for simplicity 

it only depends on IZj) is adiabatically switched on (dB/dt = k(r) # 0). A 

charge density will accumulate near the spatial region where the magnetic field 

is localized. Also, because the Bianchi identity, one has 

d,#‘PFup = 0 (304 
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or 

i(r) = -9 x .I?. (304 

An azimuthal electric field will, in turn, induce a radial current through the “spin 

orbit” coupling. Thus by gauge invariance and (30a,b), 

b(r) - @r) 

or 

Hence these imply the relation 

(314 

Now dimensional arguments suggest that the coefficient in front of the right hand 

side in (32) is proportional to the coupling constant e (dimension [length]‘i2). 

The e-symbol reflects the spin nature of the anomalous current. The physical 

situation described by Eqs. (30,31) is depicted in Fig. 2, and proceeds as follows. 

As the (localized) B field is switched on, currents flow in from the boundaries. 

A charge density is built up near the B-field region. This implies a depletion of 

charge near the boundaries of the system. This situation can also be thought 

of as charge (of opposite sign) flowing out of the spatial boundaries. The total 

system including the charge density near the origin plus the boundary charges, 

remains neutral as charges are redistributed. No charge is created. In a physical 

situation a two dimensional magnetic vortex can be visualized as a section of a 

long cylindrical solenoid, however for a long but finite solenoid there is always 

return flux that plays the role of the “antivortex”. As the length of this solenoid 

is taken to infinity the two dimensional physics is recovered, but the return flux 

has been pushed to the boundaries (at infinity) in the two dimensional plane. 

The boundary charges are distributed near this “anti-vortex”. 
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Perturbation Theory: 

A direct computation of the induced currents yields 

t-b) = kW2 - ~~~v]A,,(p)n(‘) (p2, m2) + imd‘“~p,A,~(2) (p2, m2) (33) 

where 
1 

d1)(p2,m2) = & 
/ 

da 
a(1 - Q) 

0 
[-p2(1 - a) + ?79]1/2 

and 
1 

d2) (p2, m2) = &- 
J 

da 
1 

0 
[-p20(l - o) + 7722]1/2 * 

(344 

There is an ambiguity in the regularization of the vacuum polarization tensor 

arising from the fermion-antifermion loop. To obtain expressions (33,34) we have 

used gauge invariant projection. I” The ambiguity arises from a linear ultraviolet 

divergence proportional to gPV i.e. a gauge dependent term. This ambiguity 

is also reflected in the second term as a finite local counterterm, whose value 

depends on the regularization scheme. 

The parity abnormal term in expression (33) can also be seen to have its origin 

in the spin (or dipole) contribution to the currents by looking at the discontinuity 

(spectral function) of the corresponding Feynman diagram. This discontinuity 

can be”.computed as usual’1a1 by setting the internal electron and positron lines 

on mass shell. : The resulting spectral function is given by (up to kinematical 

factors) 

P(P29 n2) - 
/ 

A?- d3q63(k + q - p) 
(243 (243 

(35) 

Since the internal lines are on mass shell we can use the Gordon decompo- 

sition of the currents given by Eq. (14) (for both vertices). Using (6abc) it is 
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straightforward to see that the term proportional to the c-symbol (parity violat- 

ing) arises from the spin-convection and spin-spin terms of the cross products in 

(35). The convection-convection term contributes to the symmetric (g,,p2 -p,p,) 

part only. 

This behavior can be emphasized by temporarily adding an effective point 

anomalous magnetic moment interaction to the Lagrangian of the form 

Since the spin part of the current is proportional to (1+ n), the term proportional 

to the c-symbol in (35) has the same overall factor. Thus the anomalous behavior 

is due to the spin, and vanishes if one chooses K = -1. 

The induced current (33) is obtained as 

(37) 

where rind[ApL] is the induced Euler-Heisenberg effective action resulting from, 

the integration of the fermionic degrees of freedom. Functionally integrating Eq. 

(37) and restoring the coupling constant, the long-distance effective Lagrangian 

is obtained as”’ 

e2 
Leff = -1 FpyFpv + - 4 -!?- P’pApFvp . 

167r Irnl (38) 

The second piece in (38) is the (parity violating) Abelian part of the Chern- 

Simmons term.12’ It corresponds to a gauge invariant mass M = & fi for the 

photon. In the Landau gauge (aPA, = 0) the equations of motion are 

-d2A” + Mc?=tIpAb = 0 . (39) 

Writing 

Ap = @(k)e”k’z k/#(k) = 0 , (40) 

it is found’71 for on shell photons (k 2 = M2) the solution to Eqs. (39), (40) in 
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the rest frame k, = (M,6) is 

This state has spin (in the rest frame) 

(41) 

(42) 

Notice the correlation between the spin of the photon in Eq. (42) and the spin of 

the fermions S, = 1 m 2 T;;ET. Indeed this is no accident. The intermediate state in the 

vacuum polarization tensor is an electron and a positron both of spin S, = 1 m 07 
since angular momentum is additive in two space dimensions (there being just 

one generator), in the photon rest frame the intermediate state has total spin 

s, = fi and this is the spin acquired by the photon through its coupling to 

the current. The existence of the photon spin and its mass are of course in 

agreement with the arguments presented in Section 1. The equation of motion of 

the effective theory described by Eq. (38) w h en coupled to an external sources is 

M L$,Fpu + 2 E v=@F 
4 - 

- J” . (43) 

The solutions to these equations fall off exponentially at distances 1~1 >> M-l. 

It is easy to see that if J” corresponds to an external static charge density, both 

electric and magnetic fields are screened but P” 

J Q Bd2x = -5 (44 

where Qext is the external charge. This effect can be understood at the level of 

the fermionic theory that gives rise to the Chern-Simmons term. 

The external charge density (assumed to be localized in space) produces an 

electric field. The fermions interact with this electric field (2) through the “spin 
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orbit” coupling as described before, giving rise to currents perpendicular to E’. 

These currents in turn generate a magnetic field. Since these currents have 

definite handedness they give rise to definite flux. 

If the external sources are currents, these currents generate a magnetic field; 

this in turn polarizes charges that generate an electric field. Therefore the ef- 

fective theory with the Chern-Simmons term describes a sort of superconductor; 

electric and magnetic fields are screened. However the screening mechanism is 

different from the usual Meissner effect since the source of (parity abnormal) 

currents are electric fields. Indeed it is more than a superconductor, since exter- 

nal (heavy) charges induce the formation of magnetic vortices of width of order 

[MI-’ with finite magnetic flux. 

6. The l+l dimensional chiral anomaly or the 
anomalous Gordon decomposition, and zero modes 

In this section we will clarify the relation between the chiral anomaly in l+l 

dimensions and the Chern-Simmons term in 2+1 dimensions.““’ This dimen- 

sional reduction comes about by considering static background fields. We now 

construct the Gordon decomposition for the charge density in the interacting 

theory, since the classical Gordon decomposition, Eq. (14), does not take proper 

account of quantum effects. To this end we define the spinors to be eigenstates 

of the Dirac Hamiltonian in the A0 = 0 gauge with only magnetic fields present: 

We will study the induced charge density Jo(Z), and also define the “chiral” 

current as a function of the energy E by 

(46) 

where the trace is over Dirac indices. 
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The variable E will allow us to fully explore the spectral representation of 

the currents. “” For example 

i Im J:(x, E + iv) = Tr (xlc~~7cG(H - E)Ix) 

(47) 
= c ~,+(x)ai70&(x)6(E, - E) . 

n 

Using Eq. (45) and its adjoint with the representation (46) for the current J:, 

we find 

The last term is ambiguous, being of the form (0 x 00). We subtract Eq. (49) in 

the limit E + 00 and write the anomalous Gordon decomposition as 

(i&J;), = - 2E (T,L$)~ - 2m ($7”$), - 2 Anomaly 

Anomaly = Jim E (&!J>, 

(504 

Fob) 

where for a general I? : 

(av), = c 
n 

. (504 

The last term of Eq. (50a) takes into account the short distance behavior of the 

theory. This result can also be obtained directly from the usual gauge invariant 

point-split definition of the current. Notice that the “anomaly” is in the spin- 

density. This should be expected since for m = 0 the Hamiltonian in Eq. (45) 
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is equivalent to the Dirac operator in Euclidean space (chosen to be hermitian) 

in which the a! matrices (CQ = 707i i = 1,2) play the role of the (hermitian) 7 

matrices in Euclidean l+l dimensions. The adjoint spinor in this representation 

is $+ (instead of q in Minkowski space) and 7’ plays the role of r5. Therefore 

the If1 Euclidean chiral density ($+r5+) is the spin density ($$) in Minkowski 

space in 2+1 dimensions. The mass term in (45) plays the role of a pseudoscalar 

coupling. 

Also the variable E in (46) plays the role of a mass term for the (hermi- 

tian) l+l dimensional Euclidean “Dirac operator” H. Therefore we identify the 

“anomaly” in Eqs. (50) with the axial anomaly in Euclidean l+l dimensions. 

Anomaly = -& cijdiAj = g . (51) 

But we want to stress the fact that in 2+1 dimensions the anomaly is present in 

the spin-density (this will be illustrated shortly in perturbation theory). 

From Eq. (45) we can write 

(i&b), = mTr H2:EZ +ETr H&2 

(37”+), = E Tr H2 y @ + mTr Hzr_” E2 ’ 

(524 

Wb) 
It is easy to see from gauge invariance that only the contribution from the lowest 

order term in an expansion in A , i. e., the free vacuum, is non-zero for the first 

terms on the right hand side of (52a,b). Th ese terms cancel each other in Eq. 

(50a) and therefore the second terms in (52a,b) are the interesting ones. The 

induced charge and spin, that is, the difference between the above quantities in 

the interacting and free case, satisfy 

From now on expectation values are understood as the difference between the 
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interacting and free field values. Therefore Eq. (50a) becomes 

k (i&J:), = (z - m) ($~O$J)~ - z . (53) 

By integrating over all space, the left hand side is a surface term that integrates 

to zero (there are no massless particles) and hence 

QE= m @ 
E2 - m2 

with 

QE = 
J 

d2x(&oti)E 9= d’xg. 
J 

The total charge is 

- 0-J $QE=E-E. 
b-4 2 

(54 

(55) 

In addition, from (54) and (47) we find 

+QE(E+irl)=%[b(m+E)-6(m-E)]. (56) 

Therefore we conclude that only the threshold states E2 = m2 contribute to the 

charge and charge density. By the relation (52) and (12) these states contribute 

to the spin density an amount S, = Q/2, therefore we find that there is a net 

spin induced in the ground state, (the induced spin is defined by subtracting its 

value in the vacuum without external fields). 

From Eqs. (54) and (56) we see that there are @  states at E2 = m2. This 

can be understood by means of the Atiyah-Singer index theorem as follows. The 

Hamiltonian in Eq. (45) can be cast as 

H= -@+a3m (57) 

where @  is the Euclidean Dirac operator in l+l dimensions. In an external 

background field with non-vanishing flux @  has zero modes, the number of these 
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modes is given by the total flux (Q).‘201 Since {os,g) = 0 these modes are 

eigenstates of as, i.e. they are chiral, and therefore they are eigenstates of H in 

(57) with eigenvalues E = fm. These are the threshold states that contribute to 

the charge, but since they are eigenstates of 03 they also contribute to the spin 

in the ground state. 

These “zero modes” are bound and/or threshold continuum states. Their 

wave function has been given in Refs. (11,20,21) f or certain vortex configurations. 

They are localized near the vortex. Since these are threshold states they have 

zero binding energy and the wave function falls off algebraically at long distances. 

These states are topological nonlocal configurations. 

We now proceed to compute in perturbation theory the charge and spin (as 

a function of the variable E) for static background fields. This will illuminate 

the spin-anomaly discussed in Eq. (50b) and some subtleties associated with 

symmetric integration of divergent quantities. Since the external fields are static 

there is no energy transferred to the fermion loop. The propagator in Euclidean 

space is 

S(E,;) = roE+F+m 
k2+Ez+mz ’ (58) 

A straightforward computation of the fermion loop in momentum space ,after 

subtracting the (infinite) contribution of the trivial vacuum, yields 

(&b(p))E = ; Bb) n(p2,M2) 

($7’+(P)), = z B(p) “b2,M2) 

Pi (J:(P))E = T [l - M2fl(P2,M2)l , 

where p2 = (6)” , and 

(5W 

(594 

1 

M2=E2+m2 ?r(p2,M2) = 
s 

dcr 
1 

[p%r(l - o) + M2] ’ (60) 
0 
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The reader may recognize that Eq. (60) is th e invariant amplitude of the vacuum 

polarization tensor in the massive Schwinger model in Euclidean space and with 

mass (M2)lj2 . The relations (59) verify the anomaly equations (50) and (53) in 

Euclidean space. It should be mentioned that the (infinite) contribution to (&!J) 

and ($7’$) f rom the vacuum in absence of background fields cancels in (50a) 

(as it must for a free theory). The integral over E of the total spin is 

(61) 

The integral is logarithmically divergent but vanishes by symmetric integration; 

this is the origin of (0 x 00) in Eq. (49). 

Performing this integral in the complex E plane closing the contour along a 

semicircle at infinity, we see that the contribution from this semicircle exactly 

cancels the contribution from the pole at E = him. The contribution from the 

circle at infinite is precisely the anomaly in (50b). Subtracting this contribution 

from eq. (61) in order to define ($$) unambiguously, we see that the total spin 

induced by these states at E = fm (zero modes) is given by the l+l dimensional 

chiral anomaly. This is the same subtraction as performed in the chiral anomaly 

case. 

Since these are threshold states, from Eq. (45) we see that they are eigen- 

states of 03 (7e), i.e. they have definite spin (for a radial magnetic vortex they are 

also eigenstates of orbital angular momentum). There are @  states at threshold 

(see Eq. (56)) each one with spin S, = $ fi, these are the states that induce 

the asymmetry in the spectrum and give rise to the charge. Then by Eqs. (24) 

we find that Q and SZ satisfy 

SAL@ m .z --. 
2 4 lml 

(62) 

The factor l/2 has its origin in fermion fractionalization. Therefore the asym- 

metry in the spectrum that gives rise to the vacuum charge (see Eqs. (24)) is 

also responsible for the spin in the vacuum.‘221 
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The fact that charge and spin of the vacuum state may be related is perhaps 

not surprising. Under a 27r rotation, we expect the ground state wave function to 

change as (0) + (-l)F IO) = e2rJ IO) where F is the fermion number and J the 

total angular momentum (J = .l! + S). S ince in the Abelian Theory the charge 

and fermion number are the same we find Q/2 = S as in Eq. (62). 

In two space dimensions, a net angular momentum in the ground state does 

not break rotational invariance. 

7. The massless limit 

So far we have only studied the case of massive fermions. The long distance 

properties of the effective theory are not perturbative in the sense that the per- 

turbative expansion is in terms of e”/m where p2 is a typical transferred 

momentum. Hence we will have to resort to the non-perturbative arguments 

elaborated in the previous sections. As was argued before free massless fermions 

are spinless in 2 space dimensions,this can be understood as follows. 

For m = 0 the (free) Dirac Hamiltonian in Eq. (13) anticommutes with 03. 

Therefore eigenstates of H are combinations of “spin up” and “down” with equal 

probability. Therefore the expectation value of us in energy eigenstates is zero. 

The electromagnetic interactions, however, treats the spin components dif- 

ferently. 

For the case of the electric field analyzed before, Eqs. (27) still hold (with 

m = 0) and the steps leading to Eqs. (28) and (29) for U, and vd hold without 

modification. 

For a space dependent A0 the eigenspinors are no longer equal mixture of 

spin up and down. The “spin-orbit” interaction is still at work and currents are 

induced. In the case of the magnetic fields, the massless limit is also smooth. The 

threshold states at E = fm responsible for the spectral asymmetry and induced 

charge will become “zero modes” in the m = 0 case (i.e. zero energy states). The 
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total charge is only sensitive to m/I m , i.e. whether these states have positive or ( 

negative energy. 

Hence the charge and spin quantum numbers are insensitive to the mass, 

however since these states are at zero energy, there is the usual ambiguity in 

defining the charge in the ground state. Perturbation theory cannot know about 

these zero modes and averages over the spin configurations thereby yielding zero 

as a result for the charge. [“’ A small mass lifts the degeneracy. 

It has been found that if the massless theory is regulated using a heavy Pauli- 

Villars regulator, a parity breaking Chern-Simmons term is obtained in the limit 

of the regulator masses taken to infinity.16’ In fact these heavy regulators detect 

the presence of the zero modes by lifting the degeneracy; the answer will depend 

on the sign of the regulator mass since it is this mass that is responsible for 

removing the degeneracy. 

Hence we claim that the physics of the massless theory can be understood as 

a limiting case of a massive theory once proper account of possible zero energy 

states has been made. 

In the presence of non-trivial gauge configurations (vortices, etc.) the vacuum 

carries spin and charge and since these states are eigenstates of spin Eq. (62) 

is satisfied. By the same arguments of Lorentz covariance, charges induced by 

B and currents induced by E’ form a three-vector. However we must mention a 

subtlety involved with the massless case. In the case of a vortex configuration 

or any localized background gauge field, there is no gap in the spectrum. Not 

only are the charge and spin ill-defined quantities but there is no natural “zero” 

in the spectrum. For long range gauge fields the massless Dirac Hamiltonian 

has a conformal symmetry. This behavior may be responsible for large infrared 

fluctuations and may indicate that Q and S are only expectation values and not 

sharp quantum numbers. 

It is evident that the massless case needs a more careful and thorough treat- 

ment than that given above. 
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8. The four component theory 

An alternative formulation of the theory consists of working with four com- 

ponent spinors as in 3+l dimensions. The Dirac algebra is represented by the 

four dimensional 7 matrices 70,7r, 72. However now the spin is Sz = 03 @ 1 (1 = 

unit 4 x 4 matrix). As a consequence a brief analysis indicates that positive and 

negative energy spinors have both values of spin, therefore positive and negative 

energy states are no longer asymmetric with respect to the spin-electromagnetic 

field interaction. A fermionic theory with two species of Dirac fermions with 

masses of opposite signs (not necessarily the same value) will give rise to oppo- 

site induced charges and currents cancelling the anomalous contribution to the 

effective theory. Again this is because the two species have opposite values of 

spin. 

Hence there are no parity anomalies in these theories since the parity anoma- 

lies are associated with the spin asymmetry in 2+1 dimensions. This is in agree- 

ment with Refs. 2 but we want to stress again the fact that the spin is playing 

the fundamental role. Although we have studied the Abelian theory, we believe 

that the general physical arguments will still hold in the non-Abelian theories, 

insofar as the anomalous effects are related to the spin properties rather than 

internal (color, flavor) symmetries. 

9. Relation to the Quantum Hall effect 
(or lack thereof) and some other systems 

As was mentioned in the introduction, one of our motivations for studying 

theories with a Chern-Simmons term or topological mass is to understand their 

possible relation to the Quantum Hall effect (QHE). Let us briefly recall some 

of the basic concepts involved in the analysis of QHE. The reader is urged to 

consult some literature on the subject especially Refs. 24, 25, 26 which provide 

a very physical picture of the situation. 
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The QHE is observed in very thin films of semiconductor material in inversion 

layers (Mosfet junctions). The experimental situation corresponds to very strong 

(constant) magnetic fields perpendicular to the two dimensional film, very low 

temperatures and high mobilities. For the usual QHE (not the fractional QHE), 

only an effective non-interacting two-dimensional electron gas is studied. The 

SchrGdinger equation obeyed by the electrons is 

H$=E$, H=& ($-iA)‘+e&y (63) 

where m* is an effective mass and Ey gives a constant electric field in the y 

direction. The solutions of (63) in a constant magnetic field are the usual Landau 

levels. 

For very low temperatures and strong magnetic fields only the lowest Landau 

levels are considered. This condition is satisfied for 

kT < tLwe (64 

where we is the cyclotron frequency. Notice that in H in (63) there is no Pauli 

interaction (03B). Indeed by condition (64) the spin excitations are suppressed, 

therefore spin does not play a fundamental role in QHE, unlike the fermionic 

theories studied in the preceding sections. 

The induced currents are given by 

(65) 

Hence it corresponds to the convection part of the Gordon decomposition in Eq. 

(14). Therefore the Hall current arises only from the convection contribution. 

This is a crucial difference between the physics of QHE and that of theories with 

a Chern-Simmons term. 
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In the QHE it is a Lorentz force that is responsible for the interesting effects, 

and notice that in the absence of a perpendicular magnetic field (in the laboratory 

frame) the currents induced by the electric field are parallel to it. We stress once 

more that spin does not play any important role in QHE, unlike theories with 

parity violating currents which are produced by spin effects. 

A further discrepancy can be seen at the level of the definition of the currents 

in both theories, given by Eqs. (21,23) and (65) respectively. 

As an example of the different physics described by the two theories, consider 

the case of a static electric field and no magnetic field. In the theory with parity 

violating currents (C-S) the ‘spin-orbit” coupling generates a current perpendic- 

ular to the electric field, it is a spin current. In the non relativistic (Schrijdinger 

theory) there is only a convection current parallel to 2. 

The Hall current is purely convection, whereas the Chern-Simmons is due to 

the spin contribution. The real problem in the QHE is to explain the plateaus in 

the Hall conductivity. The present understanding emphasizes the role of impu- 

rities and localized states.‘24’25’as1 Clearly C-S theories cannot account for these 

effects. 

For the fractional QHE there is the accepted belief that electron-electron 

interactions are responsible for cusps in the free energy at rational filling factors. 

Clearly these features cannot be reproduced by theories with a C-S term. 

Furthermore while the materials used in QHE are semiconductors and screen- 

ing effects are small and material dependent, the C-S theory has superconducting 

properties, i.e. electric and magnetic fields are completely screened. Notice for 

example that Laughlin’s argument [“I of gauge invariance will not hold in the 

C-S theory because the screening properties will preclude any adiabatic charge 

transport. We then agree with the result of Abouelsaood in that theories with a 

(C-S) term have very little (if anything) to do with QHE.[271 

Some possible condensed matter applications of the phenomena described 

by parity violating (C-S) theories are beginning to emerge. Recently a very 
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interesting model has been proposed by Semenoff.[281 It is a “two-dimensional” 

honeycomb lattice of graphite (interaction between layers is neglected as they 

are very weak) with one atomic electron per site and two degeneracy points per 

Brillouin zone. Unfortunately, the fermionic spectrum on the lattice suffers the 

problem of species doubling and the anomalous effects cancel between the two 

species. 

Perhaps fermion bound states on magnetic vortices can be observed in super- 

fluid Helium III. Some interesting properties on these systems have been reported 

in Ref. 29 and 30. Perhaps they may offer an experimental setting for observation 

of strange quantum numbers. A clear signature of a theory with (C-S) is that 

(heavy) charged impurities will form magnetic vortices of finite width and flux 

given by Eq. (44). 

Recently two dimensional fermionic theories have been proposed as effective 

models to describe the physics of disordered electronic systems with degenerate 

bands.[3’1 Fradkin has suggested that there are real materials that can be studied 

with these models.‘321 

IO. Conclusions and some open questions 

We have clarified the physical mechanisms that give rise to a “topological 

mass” or Chern-Simmons terms induced by fermions in 2+1 dimensions. 

It is argued that the spin properties of the fields are responsible for the parity 

anomaly in the induced fermion currents and the ensuing Chern-Simmons term in 

the effective action for the gauge fields. These spin properties are dynamical and 

are unique for two components fermions in 2+1 dimensions. The parity anomaly 

is completely determined by these dynamical features and not by topology., 

Topology comes about in the quantum numbers of the vacuum and is de- 

termined by nontrivial configurations like magnetic vortices. In the presence of 

this configuration the vacuum carries charge Q and spin S and we find the novel 
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result 

+Q=S 

It is this spin in the ground state that is responsible for the anomalous breaking 

of parity. We also investigated some topological properties of these excitations. 

We have argued that theories with a Chern-Simmons term do not seem to 

be qualitatively equivalent to the situation in the Quantum Hall effect. The 

physics of the former being completely determined by the spin structure, while 

in the latter spin is frozen out and is not important. We gave further sources of 

disagreements between the two phenomena. 

While we only studied in detail the Abelian theory we argued that the physics 

of the non-Abelian theory may be similar. However this remains to be stud- 

ied further as well as the possibility of extending the arguments to higher odd- 

dimensional spaces. We did not attempt to study the global anomaly in the 

non-Abelian case in detail. Perhaps there is also a simple physical picture to 

understand it. Another problem that we did not address is the sharpness of the 

ground state charge and spin. Magnetic vortices possess long range gauge fields 

and it is not clear whether charge and spin fluctuations are small. Study of some 

of these problems is in progress. 
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FIGURE CAPTIONS 

1. “Spin-orbit” couplings. Positive and negative energy particles scattering off 

a radial electric field. (The black dot is the source of I?(((r)). There is an 

azimuthal electric current induced. 

2. Adiabatic change in a magnetic field (2 # 0) localized near the origin. 

Charges are accumulated near the origin. The azimuthal electric field (Fara- 

day’s law) induces a radial current through the “spin-orbit” interaction. 
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