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ABSTRACT 

A study of interference of the Z” boson and toponium states 
is presented. The simple case of the Z” mixing with one tf 
state is discussed in detail. Effects of mixing with the full 
tf spectrum, of the smearing due to beam spread, and of 
different potentials, are then shown. 

1. INTRODUCTION 

Why do we expect toponium-Z0 mixing to be of interest? From the absence 
of flavor-changing neutral currents in B decay, we are confident that the bottom 
quark must have an as-yet-unobserved partner. Experimentally, rnt < 23 GeV is 
excluded, while UAl data suggests a top quark of mass between 30 and 50 GeV. 
It appears quite possible that tf bound states will have masses near that of the Z” 
(93 GeV), and thus vector (J pc = l--) tf states (henceforth V) could be nearly 
degenerate with the 2 O. We expect the effects of V - 2 mixing to be seen soon, 
at both SLC and LEP. 

I first present a few ways of understanding the nearly complete destruc- 
tive interference of the 2 boson with one V state. Then, after a brief review of 
toponium spectroscopy, I discuss the mixing of the 2 with the full spectrum of 
toponium states (when the 2 and V are nearly degenerate); I show the effects of 
finite beam width on the cross-sections and asymmetries. I then display the strik- 
ing effects that remain if the 2 is relatively far away from the V (10 - 20 GeV), 
and conclude by contrasting the effects of the Richardson potential, the Cornell 
potential, and a non-standard Higgs sector. 

This talk is based on work done with Fred Gilman and Gregory Athanasiu.‘1-31 
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2. MIXING OF THE Z” WITH A SINGLE tf STATE 

I begin with a qualitative argument to show that the interference is indeed 
destructive. To be specific we consider the process e+e- + p+p-(other final 
states are discussed analogously; see Ref. 1). This process occurs predominantly 
as e+e- + 20 -+ p+p-, while another contribution is e+e- -+ 20 + Vo --) 20 + 
p+k- (for now, we neglect the small contributions due to 7 couplings). The first 
has an amplitude proportional to the propagator l/(s - Mi,, + iI’zOMz,), and 
therefore to l/iI’z, on the peak of the 20 resonance. If, for simplicity, I choose the 
20 and VO resonances to be degenerate, the amplitude from the second contribution 
is similarly proportional to l/( ‘I? z z,iI’v,iI’Z,,). Thus we have a relative minus sign 
between these two amplitudes, i.e., destructive interference. 

I can extend this argument by replacing the 20 propagator by the iterated 
series 
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Here, and often in what follows, M& is used as a shorthand for the full expression 
M& - iI’z,Mz,, and a is the 2 - V coupling. 

What does this expression tell us? For energies a few GeV away from a VO 
resonance, (s - Mio)(s - M;o) is large compared to a2; as expected, we recover 
the 20 propagator. When we are sitting on the VO resonance we get zero for the 
amplitude-complete destructive interference. 

Strictly speaking, the amplitude only vanishes if we make some simplifying 
assumptions: 

(1) I have ignored the fact that e+e- + p+p- can also proceed via a virtual 
photon. This is a good approximation, since the photon, by definition, contributes 
an R-value of about’ one, while the R-value on the 20 peak is 200. (I note here 
that on the 20 peak, the 2 amplitude is imaginary while that of the photon is 
real, so that there is no 7 - 2 interference. However, in general we must compute 
Z7V mixing. The effect of the photon is small enough to be negligible, except in 
the determination of the asymmetry parameters.) 

(2) I have implicitly assumed that the width of the VO is zero. The expression 
s-M;~ really stands for s - M$o + iM;oI’vo which can only be zero (for a physically 
allowed value of s) if Iv0 = 0. This is also a good approximation, since the expected 
width of a tf 1s state (here, and throughout this section, I use the Richardson 
potential to estimate tf properties) is B 100 keV, compared to I?z=2.7 GeV. 

t since R-value is defined in terms of the QED cross-section at the electron mass scale. 
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(3) Finally, I h ave ignored the “direct” couplings of the Vi, that is, the 
Vi coupling to fermions through the photon instead of through the 20. This 
approximation is analogous to, and comparable in magnitude with, the second 
one. 

2.1 Mass-Mixing Approach 
Now I would like to present another way of analyzing this problem. The 

pure states VO and 20 are nearly degenerate, with mass-squared matrix 

6m2 is the 2’0 - Vi coupling, given by 

(3) 

where a(Mz) is the fine structure constant evaluated at the relevant mass scale 
and Q(O) is the wave function of the tf system at the origin. The quantity in 
brackets is the 7 - V coupling, which is multiplied by the ratio of the weak charge 
of toponium to its electromagnetic charge to get the 2 - V coupling. 

There are two ways one can deal with this mass matrix. It can be diagonal- 
ized, yielding a matrix with physical masses on the diagonal. The amplitude for 
the process e+e- + /J+P- is then just the sum of the amplitudes for this process 
occurring via each of the physical particles, separately. This can be written as: 

M; - iMzrz 0 
-1 

A=(gz W)I 0 M; - iMvI’v I - (4 

Here gv and gz are the rotated, or physical, couplings. Equivalently, we have 

Mg, - iMZ&% 6m2 

6m2 M;,, - =vJ’v, 
(5) 

where we have rewritten (&O)(Zf-l(s - M)-lU)(U-l&), canceling out the unitary 
transformations U that rotate couplings and masses from one basis to the other. 

In this non-diagonalized basis, if we set gv,, = 0, I’v,, = 0, and s = M;o, we 
have 

0 Am2 
A =bzo 01, 0. 

Am2 M;. -M& F = 
(6) 

So in this formalism also, it is easy to see the complete destructive interference. 
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If we diagonalize the mass matrices, we find that the physical masses and 
widths are shifted away from their original values. This is not an important effect 
for the Mz and Mv, which get shifted equally and oppositely by at most 4 MeV. 
Similarly, rz is rzo - Ar and I’v is I’vO + Al?; AI’ can be as big as 20 MeV- 
irrelevant for the 2, but very important for the V, which has an unmixed width 
of 100 keV. This maximal AI’ is achieved when the 2 and V are degenerate; when 
they are, e.g., 2 GeV apart, AI’ drops to 5 MeV (these AI’ are for the 1S state). 

We have then, for the R-value, the following expression: 

R = .1365 z;;zI’ s2 
S-M& 

2 

(s - M;o)(s - Mij) - 6m2 (7) 

where .1365 comes from combinations of Bw .* In Fig. 1 I show the results of our 
calculation: the solid line is exact (we include the Vi’s direct couplings and width, 
and the photon term; we deal with the cross-sections for various helicity combina- 
tions separately); the dashed line is the result of ignoring the above parenthetical 
effects; the effect of the 20 alone is shown for comparison (dotted line). The two 
graphs differ only in scale, 

I I I I I I I I I I 
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Figure 1. R(e+e- + p+p-) for one toponium state mixing with the 20. 

3. WHAT WE WILL SEE: MANY STATES, SMEARING, AND ALL THAT 

I begin with a brief review of heavy quarkonia, with particular reference to 
toponium. These systems are well-described by non-relativistic potential models; 
for the c and b quark systems, a wide range of successful forms have been proposed. 

rt The ratio of a2’s in EIq. (7) is about 1.15. See previous footnote. 
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That they all work is not too surprising, as they approximately coincide in the 
range .l < R < 1 fm, where the RMS radii of the observed CE and b6 states lie. 
However, tE, due to its large mass, will have a smaller radius, and test a region 
where the potentials differ. As examples, I choose: 

1. Cornell: “I 

V(r) = q+ 
5.4756beV)-2 (8) 

-a combination of Coulomb at short range and linear confinement-and 

2. Richardson: [‘I the single dressed gluon exchange amplitude (in momentum 
space) 

interpolated with a linear potential (in coordinate space) at large distances. 

These two potentials give rather different level spectra (shown in Fig. 2) 
and wavefunctions; for example, $(O)is is three times larger for Cornell than 
for Richardson (the Cornell potential, unlike Richardson’s, does not incorporate 
asymptotic freedom, and is more singular at short distances). Since both the bare 
V widths and those acquired from mixing go as l$~(O)l~, these numbers increase 
by a factor of ten for Cornell-resulting in, for example, a maximal width from 
mixing of .2 GeV. 

Figure 2. Binding energies 
of toponium, versus top 
mass, for Richardson (solid 
lines, S states; dashed, P 
states) and Cornell (dots-S 
states only) potentials. The 
threshold for open top pro- 
duction, calculated using the 
Richardson potential, is also 
shown (dotted line). 
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It is then a simple extension of the formalism developed in Sec. 2 to deal 
with the mixing of the 20 with the (about) thirteen toponium states we expect 
below the open top threshold. We obtain cross-sections such as the one shown in 
Fig. 3. The height of the “spikes” are given by 

c * s2 1 
s - M& + iMzJzo - 5 

v, 

2 

. (10) 

The peak of a given Vi, resonance occurs when the real part of the denomi- 
nator vanishes, at a value of s very close to M;o. The height of the peak is thus 
C * s2/(mzoI’zo)2. The height of the 20 peak can also be gotten from Eq. (lo), by 
dropping the Vo mixing term; maximizing, we obtain the exact expression found 
for the spike (s equals the relevant mass squared). This explains why all the peaks, 
including that of the 20, are on the same gently rising curve. (In Fig. 3 the P- 
states are ignored; they cause similar spikes, but are unobservably narrow, as their 
coupling, and hence acquired width, is suppressed relative to the S-states.) 

Of course, real machines, such as SLC and LEP, will not resolve these very 
narrow spikes; we must convolute the curves with a Gaussian (with width related 
to the beam spread) in order to approximate what will be measured. In Fig. 
4, I show R for the 2 alone, and Fig. 3 convoluted with Gaussians appropriate 
to 0beam= 40 MeV and 100 MeV. LEP is expected to run (without wigglers) at 
the former beam width; SLC is expected to achieve the latter, and perhaps with 
special effort, the former. 
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Figure 3. R(e+e- --) p+p-) for sev- Figure 4. R(e+e- 
era1 toponium states mixing with the 2 

+ p+p-), smeared, 
for various expected beam widths. 

(Richardson potential, mt = 47 GeV). 
The dotted line is the 20 alone. 
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I next remark that even for a V relatively far away from the 2, the enhance- 
ment due to mixing should be quite noticeable. The height of the peak does not 
decrease, though its width does. The smeared height is therefore greatly reduced, 
but should be compared to the also much reduced background due to the 2. 
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Figure 5. R(e+e- -+ JL+P-) smeared and not, for Mvo = 76,84 and 92 GeV. 

I now present smeared polarization and forward-backward asymmetries for 
various values of Mv,. These are found by calculating the cross-sections (for each 
individual helicity configuration), smearing them, and then taking the appropriate 
differences and ratios. Since the asymmetries also crucially depend on the ZV7 
interference, the results do not seem to have a simple qualitative explanation. 
In Fig. 6 I show the asymmetries; the effects are in fact more striking for V 
moderately far away from 2. 

All the results I have shown so far used the Richardson potential. I shall 
briefly show the effects of using the Cornell potential, and the Richardson poten- 
tial combined with a non-standard Higgs sector. Consider the 2-Higgs model of 
Glashow, Weinberg and Paschos,“’ where one Higgs couples to up-type quarks, and 
one to down-type. There is a neutral-Higgs (Ho) exchange contribution to the to- 
ponium potential, where the Ho coupling is enhanced by the vacuum-expectation- 
value ratio t/q (t being the VEV of the Higgs coupling to down type quarks and q 
to up-type). The extra contribution is an attractive Yukawa, in momentum space 

1 -- 
rn& + q2 Or (11) 

in coordinate space. This addition has the effects of increasing the wavefunctions 
at the origin, since it pulls in the wavefunctions, and of lowering states (increasing 
binding energies); it changes the level spacings, since it affects the lowest lying 
states the most. Finally, if the Higgs term is strong enough* it has a very curious 

* that is, .$/q equals about 5, if we are using the Cornell potential, or 10, for Richardson. 
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Figure 6. APO1 and Afb for three different values of Mv,. 

effect-it causes the 2s state to lie below the 1P. This effect does not happen for 
any standard quarkonium potential, and is related”’ to the fact that AV(t) < 0 
for the Higgs potential and not so for any standard quarkonium potential. In 
Fig. 7, I show R(e+e- -+ JJ+~-), smeared (abeam = 40 MeV), for Richardson 
alone, Cornell alone, and Richardson with Higgs’ . Note the qualitative similarity 
between the second and third figure. 
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Figure 7. Effects of varying quarkonium potential. 

In summary, we have seen that toponium and the.20 almost completely 
destructively interfere. Toponium states pick up a large width from mixing-the 
1s state, with a bare width of 100 keV, can acquire a width of as much as 20 MeV 

t the parameters have been chosen to be dramatic; they are all but excluded by BB mixing IS’ 
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(using the Richardson potential). While the beam widths of machines such as 
SLC and LEP will greatly blur the sharp spikes that we find, effects will be visible 
as wiggles in cross-sections and asymmetry parameters. The exact potential for 
toponium (and thus exactly what we will see) is not very well known. The Higgs 
(in a 2-Higgs model) can have noticeable effects, but it may be hard to distinguish 
these effects from those of different potentials; the 2S-1P level inversion is a possible 
qualitative difference, if the Higgs couplings are rather large. 

REFERENCES 

1. P. J. Franzini and F. J. Gilman, Phys. Rev. D32, 237 (1985). See this 
paper for a complete set of references. 

2. Similar work to Ref.1 has been done by S. Giisken, J. H. Kiihn, and P. 
M. Zerwas, SLAC PUB 3580; J. H. Kiihn, and P. M. Zerwas, Phys. Lett. 
154B, 448 (1985); L. J. Hall, S. F. King, and S. R. Sharpe, Harvard preprint 
HUTP-85/A012 (1985) (unpublished). 

3. G. G. Athanasiu, P. J. Franzini, and F. J. Gilman, SLAC PUB 3648 (1985). 

4. E. Eichten et. al., Phys. Rev. D17, 3090 (1978); D21, 203 (1980). 

5. J. L. Richardson, Phys. Lett. 82B, 272 (1979). 

6. S. Glashow and S. Weinberg, Phys. Rev. D15, 1958 (1977), E. A. Paschos, 
Phys. Rev. D15, 1966 (1977). 

7. A. Martin, CERN preprint TH4060/84 (1984) (unpublished). 


