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ABSTRACT 

String theories on a background manifold with torsion are constructed and 

investigated in the light cone gauge with holonomy group H C SU(3). The ap- 

propriate non-linear sigma model is constructed on a hermitian manifold. The re- 

lationship between the Neveu-Schwarz-Ramond and the Green-Schwarz versions 

of the theory is discussed. Under the assumption that the P-function vanishes 

identically we show that the only viable compactification is on a manifold with 

zero torsion. This result is obtained from effective field considerations as well as 

directly from string considerations. 



1. Introduction 

In this paper we investigate various aspects of string theories on a background 

manifold with torsion. The paper contains two major parts. In the first part 

we study candidate vacuum configuration for ten-dimensional superstrings. We 

compactify these theories on M4 x K where M4 is four-dimensional space-time 

and K some compact six dimensional manifold. In particular we are interested in 

investigating the existence of solutions with non-zero torsion on K. We approach 

the compactification problem both from the effective field theory point of view 

and directly using string considerations. 

The second part of the paper is devoted to the construction of string theories 

in curved space with torsion. We discuss both the Neveu-Schwarz-Ramond [l] 

type of string where the fermions carry vector indices and the Green-Schwarz [2] 

type of string where the fermions carry spinorial indices. Particular emphasis 

is put on the resulting constraints on space-time supersymmetry in the Green- 

Schwarz approach. Our analysis is mainly in the light cone gauge although some 

aspects of the covariant approach are discussed in the Appendix. 

We use two-dimensional non-linear sigma models to describe the propagation 

of strings in background geometries with torsion. The background field can be 

understood as arising from condensation of infinite number of strings. Torsion 

can be viewed as the field strength associated with the vacuum expectation value 

of the anti-symmetric gauge field B nm which appears in the supergravity multi- 

plet. If the background fields only include the metric and torsion, a consistent 

string theory requires torsion to vanish. The possibility remains that torsion 

is nontrivial when other background fields are included, e.g. gauge fields and 

dilaton. 

The effective ten-dimensional field theory which appears in the zero-slope 

limit cr’ = 0 of the superstring is N = 1 supergravity coupled to super Yang- 

Mills matter. The low-energy theory has the supergravity transformations of the 

Chapline-Manton action [3] modified by the appropriate Chern-Simons terms in- 
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traduced by Green and Schwarz [4]. The effective Lagrangian contains, even at 

the classical level, operators of arbitrarily high dimensions. These arise from inte- 

grating out the massive string modes. The truncation to the modified Chapline- 

Manton action is therefore strictly justified only if the radius of compactification 

measured in string units is much larger than one. 

The paper is organized as follows. Section 2 is devoted to the proofs that, 

within our set of assumptions (identically zero P-function and only metric and tor- 

sion background fields), the only viable compactifications of the ten-dimensional 

theory are on manifolds without torsion. To prove this result from the effective 

field theory we take advantage of the analysis of Candelas, Horowitz, Strominger 

and Witten [S], who have analyzed in detail the conditions for N = 1 supersym- 

metry. They found that space-time M4 must be flat Minkowski space and that the 

compact manifold K must admit a covariantly constant spinor e. Furthermore, 

they showed that e is an eigenspinor of H with zero eigenvalue, where 

H = HmnprmrnrP m,n,p = I,..., 6 . 

The indices m,n,p refer to the compact manifold K and the 7’s are the O(6) 

Dirac matrices. Hmnp is the field strength associated with the antisymmetric 

field B mm and can be identified with torsion. We reanalyze the conditions of 

Candelas, Horowitz, Strominger and Witten [S] with non-zero torsion. We show 

that if the generalized Ricci tensor vanishes, then the compact manifold cannot 

have any torsion. 

From string considerations using the sigma model description the vanishing 

of the torsion arises as a clash between the demand of having zero P-function and 

having the flat space value for the central charge in the Virasoro algebra. At one 

loop the &function vanishes provided the generalized Ricci tensor is zero. The 

central charge in the Virasoro algebra must remain unchanged in order not to 

shift the critical dimensionality away from ten [6]. 
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In Section 3 we-start the second part of our paper. We give a general discus- 

sion of string theories on a background manifold with torsion. In view of the first 

part one may ask why consider such theories at all. First we should remember 

that the string considerations of the previous section were carried within this 

framework. Moreover, the conclusions of Section 2 rely on a perturbative ap- 

proach to the non-linear sigma model. In particular one can imagine not having 

p z 0 but just a theory at a non-trivial fixed point of the &function. Further- 

more, in the presence of more background fields, such as dilaton and/or gauge 

fields the condition p = 0 need not be satisfied by a Ricci flat manifold. In that 

case torsion may be nontrivial. Hence, the vanishing Ricci tensor may not be 

a feature of all conceivable string models. Alternatively we can imagine relax- 

ing the condition HE = 0. This amounts to considering string theories with a 

cosmological constant [ 51. 

We start our analysis in Section 3 with two-dimensional non-linear sigma 

models on hermitian manifolds. These theories have an N = 2 supersymmetry 

in two dimensions provided certain conditions are satisfied [7]. We review the 

important features of these models, in particular the condition for supersym- 

metry. In the case in which the theory has a vanishing p-function, the sigma 

model can be viewed as a string theory of the Neveu-Schwarz-Ramond type. 

Next we use these theories to construct in ten dimensions a string theory of 

the Green-Schwarz type in the light cone gauge. In the flat space both of these 

‘theories have two eight-component supersymmetries, e and 6 [S]. It is essential 

to have both type of supersymmetries to ensure N = 1 supersymmetry [S] in 

four dimensions. The 6 supersymmetry generalizes immediately to the curved 

space provided b is covariantly constant. However, also the full eight compo- 

nent c supersymmetry does not survive in general. The leftover supersymmetry 

is determined by the holonomy group of the compact manifold. For manifolds 

with SU(3) h o onomy with or without torsion two of the eight supersymmetries 1 

survive. The full eight-component supersymmetry can be recovered in curved 

space only if the torsion parallelizes the Riemannian connection. In this case the 
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holonomy group is trivial. The SU(3) h o onomy group turns out to be also very 1 

important for demonstrating the equivalence of the Green-Schwarz action and 

the Neveu-Schwarz-Ramond action in a curved background. 

Section 4 is devoted to an explicit example of a theory of the type discussed in 

Section 3. We study compactification on a four-dimensional hermitian manifold 

S3 x S’ with torsion. The torsion corresponds to a Wess-Zumino term [8] which 

parallelizes K. The model will allow us to follow and observe explicitly some 

of the general considerations of Sections 2 and 3. In particular the model gives 

rise to a cosmological constant. We present arguments that compactifications 

on M x K with M maximally symmetric cannot be obtained from a consistent 

string theory unless M is flat. Compactifications which lead to a cosmological 

constant may turn out to be of interest as cosmological vacuum configurations. 

Section 5 contains our conclusions and some remarks. 

In the Appendix we discuss some aspects of the covariant formulation and its 

connection to the light cone formulation. The covariant string action in flat space 

has both rigid and local supersymmetries. We show that the rigid supersymmetry 

becomes the 6 supersymmetry in the light cone, while the c supersymmetry is a 

combination of the rigid and the local supersymmetries. 

2. String Compactification on Manifolds with Torsion 

2.1 EFFECTIVE FIELD THEORIES 

As we mentioned in the Introduction, the effective field theory approach is 

valid whenever the compactification scale measured in string units is much larger 

than one. In this case one can neglect the higher derivative terms which appear 

in the effective ten-dimensional theory.* The supersymmetry transformation 

* Recently some problems associated with this approximation were raised by Dine and Seiberg 
[9] and Kaplunovaky [lo] on the baaia of phenomenological considerations. If for the purpose 
of discussing the vacuum this truncation ia questionable, then our analysis would need 
modification. 

6 



laws are identified -with the Chapline-Manton supergravity transformation (3) 

modified by Green and Schwarz [3]. In the vacuum sector the fermions transform 

as follows 

d S$, = Vcrc + 32 e24(7,7s Qb H)c 

d 
s$m = VrnE i- 32 e2’(rmH - 12Hm)e 

(24 
6X = d(rrnVm4) E + f e24Hc 

6-f ’ d a = -i e Fmn7mnc . 

The Greek indices refer to four-dimensional space M4 and the Latin indices refer 

to the compact space K. The tensor Hmnp is the field strength associated with the 

antisymmetric tensor field B mn which appears [S] in the supergravity multiplet. 

Hm is defined through Hm = Hmnp7n7p. The invariance of the vacuum under 

supersymmetry transformation demands that the variation of all the fermi fields 

in Eq. (2.1) vanishes. Candelas, Horowitz, Strominger and Witten [S] haveshown 

that 

He=0 (2.2) 

when M4 is maximally symmetric. Furthermore they showed using Eq. (2.1) that 

the four-dimensional space-time AI4 must be flat Minkowski space. However, they 

only studied the case Hmnp = 0. Equation (2.1) can be satisfied without Hmnp 

being equal to zero. From the transformation laws of Eq. (2.1) we learn that the 

c=e Hmnp # 0 corresponds to a background compact manifold with torsion. In 

particular from the vanishing of S$m it follows that c is a covariantly constant 

spinor with respect to the connection nm = am - 4/?Hm 

V,(n) E (V,(W) -pHm)E = 0 j? = $ e2’P , (2.3) 

where V,(w) is the covariant derivative with spin connection w. From Eq. (2.3) 
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we can read off the- torsion of the new connection 

T mnp = 4P Hmnp - (24 

Following the analysis of Ref. [5] we learn that the manifold admits a complex 

structure jmn which is covariantly constant 

VP(n) fmn = 0 . P-5) 

As in the case of zero torsion the complex structure can be built from the covari- 

antly constant spinor. Also in Ref. [S] the following relation between the scalar 

curvature R(w) and torsion Hmnp was derived 

R(w) = ; P2HmnpHmnP = ; TmnpTmnP . (2.6) 

Note that the existence of complex structure and hermitian metric indicate that 

in the general case the manifold is hermitian. 

On manifolds with torsion it is straightforward to calculate the generalized 

Riemann tensor built from the connection f’I 

R(n)mnpq = R(W)mnpq+Vp(W)Tmnq-Vq(W)Tmnp+TrmpTrqn~-TrmqTrpn . (2.7) 

For totally antisymmetric Tmnp, the Riemann tensor R(R)mnpq has the following 

‘symmetry properties 

R mw = Rb4 [ml (2.8) 

where the bracket indicates antisymmetrization of the indices. This allows the 

definition of only one type of generalized Ricci tensor 

R(n)mn 3 R(n)Pmpn = Rmn(W) - TPqmTpqn + VP(W)Tpmn . (2.9) 

If Eq. (2.8) is not satisfied there are three different Ricci tensors that one can 

define corresponding to the different ways of contracting the indices. 
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The reparametrization invariance of the compactified string theory demands 

that the two dimensional non-linear sigma model must be conformally invariant 

(111. This means that the p-function must vanish. It has been shown [8],[12] at 

one-loop level that, in a theory where the only background fields are the metric 

and torsion this is satisfied when the generalized Ricci tensor vanishes 

R(Q),, = 0. (2.10) 

In general both the metric and the potential of the torsion get one-loop counter 

terms proportional to the symmetric and antisymmetric parts of the generalized 

Ricci tensor. For detailed discussion on this point see section 3. 

Using Eqs. (2.9) and (2.10) we find that the background manifold must 

satisfy 

R(W) = TmnpTmnp . (2.11) 

This is in contradiction with Eq. (2.6) unless 

T mw = Hmnp = 0 . (2.12) 

Hence if the Ricci tensor R(n),, is required to vanish the background manifold 

cannot have any torsion. If the background fields include the dilaton and/or 

gauge fields (2.10) may no longer hold, accordingly our conclusions based on 

(2.10) may be modified. 

Next we would like to give another proof of the above result. Equations (2.3) 

and (2.4) are the important constraints that guarantee that our space-time M4 is 

Minkowski space and that the four-dimensional theory has N = 1 supersymmetry 

at the compactification scale. These constraints together with other constraints 

obtained in Ref. [S] have been analyzed and solved [13] in the presence of torsion. 

The hermitian metric g on the compact six-dimensional manifold K must then 
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satisfy 

ai(giidetg) = cY;(giTdetg) = 0 i,j = 1,2,3 (2.13) 

and 

detg = If( . (2.14) 

The analytic function j(z) can be mapped locally to f(z) = 1 by a general 

coordinate transformation. In Eq. (2.13) and (2.14) we have introduced complex 

coordinates 

. a = 1,2,3 . (2.15) 

The condition in Eq. (2.13) can be rewritten in terms of the curl of the metric 

di(det gg”) = 2&kL~‘M gAkai gxl . (2.16) 

On Kahler manifold the metric satisfies the relation 

&gEl- aLgFiFi = 0 (2.17) 

and therefore the conditions (2.13) are satisfied for Kahler metrics. However, Eq. 

(2.13) admits more general solutions that include torsion. Below we show that 

the Ricci tensor vanishes only when torsion vanishes. To calculate the generalized 

Ricci tensor R(n) mn we need the spin connection n with SU(3) holonomy. The 

spin connection is most conveniently expressed in the SU(3) basis. 

% 
1 = Ja.e- + 5 

a iP tG(aigyl - atgTi) e’p . (2.18) 

All other nonzero components of the spin connection can be obtained by complex 

conjugation. In Eq. (2.18) we have introduced the complex 3-bein eai and 
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its complex conjugate (C*i)* = e;a. In the complex basis the only non-zero 

components of the torsion are 

T 
iix = i a[igj]8 

(2.19) 

From Eq. (2.19) and (2.17) it is clear that on a Kahler manifold the torsion 

vanishes. Now it is straightforward to calculate the generalized Ricci tensor. 

Using (2.18) and (2.13) 

R(fq; = -9mz(af?ld[Z9Ji - &+9Jm) (2.20) 

where the bracket indicates antisymmetrization of the indices. This antisym- 

metrization makes the generalized Ricci tensor depend only on the curl of g. 

Hence the Ricci tensor vanishes only on Kahler manifolds. Therefore on mani- 

fold with torsion the generalized Ricci tensor does not vanish. This is the same 

result as obtained above in Eqs. (2.10-2.12). 

We emphasize that the conclusion of a vanishing torsion is based on the 

requirement that the Ricci tensor vanishes. This is not a necessary conclusion 

-in the effective field theory analysis alone. The condition that the Ricci tensor 

vanishes is based on the sigma model analysis for models that include just the 

metric and torsion. For more general sigma model with more background fields 

this condition may be relaxed and torsion need not vanish. 

In the previous analysis we set the external gauge field to zero. We conclude 

our analysis of the effective field theory approach by studying constraints on the 

torsion and the compact manifold involving the gauge fields of &3 x Es or SO(32). 

In this case the totally antisymmetric tensor Hmnp is the field strength associated 

with the antisymmetric field B mn modified by the Chern-Simons terms. In form 
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notation we have [l4] 

dH=R2-&F2. (2.21) 

Here we must consider the size L of the compact manifold relative to the Planck 

length A?!. Derivatives in the compact manifold are expected to be of order l/L. As 

we mentioned earlier to be able to consider reliably an effective ten-dimensional 

field theory we must take L B J?. The left and right sides of Eq. (2.21) scale 

differently. The compensating scale factor is the Planck length e 

l-2dH = R2 - ; F2 . 

Naively, it would appear that the left hand side is of order C2LV2 while the right 

hand side is of order L-’ so that L = e is expected. If L sz A!, Eqs. (2.1) may need 

modification from higher derivative terms in the effective ten-dimensional field 

theory, so that the entire analysis becomes suspect for such a vacuum solution. Of 

course, if H = 0 this difficulty does not arise and we may concentrate on compact 

manifolds with L > e. Another way of avoiding the problem is to look for 

solutions in which dH is smaller than expected on naive grounds. That is, there 

may be vacuum metrics for which the particular combination of curls symbolized 

by dH are of order 12/L4 instead of 1/L2, while a typical derivative is still of 

order l/L. It is this type of manifold that can be reliably used for the physics 

of compactified effective string theory if torsion is not zero. We have checked, 

for simpler solvable nonlinear partial differential equations, that solutions of this 

type do exist. The more difficult question of whether such a solution, or for 

that matter H = 0 solution, is preferred by the theory as an absolute minimum 

solution cannot be answered with the considerations presented so far. 
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2.2 STRING CONSIDERATIONS 

So far we have given two proofs that the torsion on the compact manifold 

must vanish when the Ricci tensor vanishes. Since not very much is known about 

string theories it is instructive to derive the same equations from different points 

of view. Below we show how some of the equations of the effective field theory 

approach can be derived directly from the string theory. In our previous analysis 

of the effective field theory with torsion Eqs. (2.6) and (2.10-2.11) played a cru- 

cial role. Eq (2.11) followed from the demand that the generalized Ricci tensor 

vanishes. For sigma models with torsion it seems to be a necessary condition to 

ensure perturbatively conformal invariance. The Ricci tensor appears already as 

a counter term at one-loop level. On the other hand Eq. (2.6) had to be satisfied 

for the theory to be supersymmetric at the compactification scale. In the string 

theory this equation arises from the demand that the central charge in the Vira- 

soro algebra must have the same value as in a ten-dimensional supersymmetric 

string theory in flat space. If the central charge is changed, then the critical 

dimension of the theory is changed. Friedan and Shenker [6] have shown that if 

the critical dimension is changed, there are no zero mass fermions in the theory 

and therefore supersymmetry is broken. 

In recent papers, [15],[16] th e computation of the shift in the critical dimen- 

sionality was carried out for strings compactified on group manifolds with torsion. 

The torsion corresponds to a Wess-Zumino term which must be included in order 

to preserve conformal invariance of the theory [17]. For purely bosonic strings 

the critical dimension on SU(N) is given by [l5] 

D=26-d.=(~~~k=dG-N(N~-1)+o(~) (2.22) 

where dG = N2 - 1 is the dimension of SU(N) and k is the integer coefficient of 

the Wess-Zumino term. It is useful to rewrite Eq. (2.22) in the form 

26 - (d, + dG) = - 
N(N2-1) +. 

k (2.23) 
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To make contact with our previous analysis we need the relation between the 

string tension and the integer k [15] 

&f. (2.24) 

From Eq. (2.24) it follows that the first term on the right hand side of Eq. (2.23) 

is of order ar’ relative to the left hand side 

26 - (d, + dG) = - 
N(N2 - 1) 

2 a’ + O(d2) . (2.25) 

From the analysis of the effective field theory we expect that the order cy’ term 

is3R-T2. IfR= g T2 the critical dimension is unchanged. Since the shift of 

the critical dimension in Eq. (2.22) h as b een calculated at the fixed point of the 

sigma model, we can only verify that order Q’ terms in Eq. (2.25) are consistent 

with 3R - T2. 

On group manifolds the torsion is given by the Wess-Zumino term 

T abc = f fabc * 

To calculate the term 3R - T2 we also need the scalar curvature. 

R= i .f+fabc = a N(N2 - 1) . 

(2.26) 

(2.27) 

Hence 

3R-T2+(N2-1) (2.28) 

and therefore Eq. (2.25) can be rewritten as 

26 - (d, + dG) = a’(-3R + T2) + o(a’2) . (2.29) 

From Eq. (2.29) it follows that the critical dimension remains unchanged if 
R=‘T2 

3 l 

. 
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A similar analysis can be performed for the supersymmetric case using the 

computation of the critical dimensionality for this case [12]. Again we find that 

R= i T2 is needed to ensure that the critical dimension does not shift. 

Recently Callan, Martinet, Perry and Friedan [18] have actually proven Eq. 

(2.29) by coupling the non-linear sigma model to an external dilaton as well as 

an antisymmetric tensor field. They have computed the appropriate P-function 

to one loop. Equation (2.29) results from equating this P-function to zero and 

neglecting the external dilaton field. In view of this result the full P-function can 

be written in terms of the scalar curvature and torsion. Using Eqs. (2.22) and 

(2.28) we find that on SU(N) 

26 - (dc + dG) = - 
(3R - T2)a’dG 

dG + a’(3R - T2) ’ 
(2.30) 

From this it follows that the condition 3R - T2 must be satisfied to all orders 

in perturbation theory. A similar suppression holds for the supersymmetric case 

[15]. Therefore, if the dilaton is set to zero, the only way to preserve supersym- 

metry at the compactification scale is to have zero torsion. 

. 

3. Strings in the Light Cone 

In this section we construct a string theory on a background manifold with 

metric and torsion. As discussed in the previous section the transformation laws 

of Eq. (2.1) and the requirement that the resulting four dimensional effective field 

theory has an N = 1 supersymmetry determine a lot of properties of the compact 

manifold. In particular the manifold must admit a covariantly constant spinor 

with respect to the connection with torsion S-I and consequently a covariantly 

constant complex structure. Furthermore, the metric must be hermitian. When 

the torsion vanishes the relevant manifolds are Ricci flat Kahler manifolds [5]. 

When torsion is included one should consider hermitian manifolds satisfying Eqs. 

(2.13)-(2.14). 
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Recently two dimensional supersymmetric non-linear sigma models with tor- 

sion have been analyzed [7]. It h as been shown that the sigma model has an 

N = 2 supersymmetry if the manifold is hermitian and if the complex structure 

is covariantly constant relative to the connection that includes torsion. 

The general structure of the action after elimination of the auxiliary fields 

is 

gmnapXrnWXn + % BmnYdpXmd,Xn 

+ igmnQ+Xq + i9mnr$-xZ (3-l) 

+ a RZanpq(~PpX~) (ZP' At) 
I 

where the p,,‘s are the two-dimensional Dirac matrices and 

A” = An+ + A? A$ = 2 l (lfy5)P . (34 

The A$ are Majorana-Weyl spinors. The connection associated with the right 

(left) handed fermions is: . 

rfnpm = f Tnmp (3.3) 

where n { > mp is the Christoffel connection. In Eq. (3.1) D* is the corresponding 

covariant derivative. The tensor R&,, is the generalized Riemann tensor con- 

structed from the connection I’gmp, and Bmn is the potential associated with the 

torsion Tmnp 

T mnp = -B[mn,pl * W) 

Note that this definition of torsion does not include the Chern-Simons terms. It 

differs from the torsion that appears in the effective field theory T = dB- 6 wy + 
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WL. As discussed in Section 2, the extra terms involve a compensating dimen- 

sionful parameter. Such a parameter is the slope parameter or N (ePlanck)-2. In 

fact the Chern-Simons terms appear in the next order of the loop expansion in 

the sigma model with the coefficient cy’ [18],[19]. Th’ is is a necessary consequence 

of Lorentz and gauge invariance as discussed by Green and Schwarz [4]. 

The action (3.1) is invariant under the supersymmetry transformation 

6Xn = 6+X” + iLxn = z+x”_ + z-xq 

SX$ = -igXn+ - r$mpXzS*X’ 
(3.5) 

The sigma model has another supersymmetry [5] 

6Xn = 6+X" + 6-Xn = j!,F+Xrt + j$mz-XT 

provided the complex structure j$, satisfies the following conditions 

9nmfZpffml = Qpl 

Vf j$m E al& + r2pL.fZm - f2prGmt 

E V.&m f Tnptf$m 7 .f2pTkl= 0 

Rf,,fJ’J~rf~Jf, = R&t  l 
(3.7c) 

(3.74 

(3.7b) 

Equation (3.7a) implies that the complex structure is covariantly constant with 

respect to the connection with torsion. 

For the analysis below it is important to note that conformally invariant non- 

linear sigma models possess another type of supersymmetry. This supersymmetry 
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is the partner of the local Kac-Moody transformation and has the form 

ax’ = 0 6X’, = 6: . (3.8) 

An example of a theory where this symmetry can be easily verified [20] is the 

supersymmetric non-linear sigma model with Wess-Zumino term. When the p- 

function vanishes this~ sigma model is invariant under transformation (3.8). 

The Lagrangian of Eq. (3.1) can be easily generalized to an arbitrary number 

p of left moving fermions and q right moving fermions. This leads to a super- 

symmetric model of type (p, q) [21]. Although we shall concentrate on the (1,l) 

model of Eq. (3.1) our results will generalize to any (p,q) type of model. Note 

that the (2,2) model corresponds to a Green-Schwarz string of type I [2] while the 

(1,0) model corresponds to the heterotic string [22]. The (1,0) model is obtained 

from Eq. (3.1) by deleting the X+ field. 

The renormalization of non-linear o-models on manifolds with torsion is dis- 

cussed at length in Ref. [8]. Using the background field method, it is straightfor- 

ward to show that both the metric and the potential of the torsion acquire one 

loop counter terms 

ggi = l 
47r (d - 2) (Rmn + Km) 

(3-g) 
Bg!, = ’ 

4ir (d - 2) 
(Rmn - R,m) 

where Rmn is the generalized Ricci tensor with torsion. From Eq. (3.9) it is clear 

that in order to have a zero &function Rmn must vanish. Therefore the string 

theory is conformally invariant only if the torsion parallelizes the Ricci tensor. 

Next we would like to elevate the two dimensional supersymmetry to a space- 

time supersymmetry. We will work in ten dimensions. When the compact man- 

ifold is flat this amounts to going from the Neveu-Ramond-Schwarz version of 

the string theory to the Green-Schwarz superstring. Below we investigate the 

relation of these two theories in the light cone gauge, with a nontrivial curved 
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background and torsion. In the Appendix we discuss some aspect of the covari- 

ant approach. We demonstrate how the light cone supersymmetries c and 6 arise 

from the rigid and local supersymmetries of the covariant action [23]. As dis- 

cussed in Ref. [S], the c and 6 supersymmetries are necessary to guarantee an 

N = 1 supersymmetry from the four-dimensional point of view. 

The generalization of the Green-Schwarz superstring to curved space turns 

out to be tricky. The full ten-dimensional N = 1 e supersymmetry does not in 

general exist in the light cone. Only when the manifold is parallelized does the 

full ten-dimensional supersymmetry exist. There are two ways this can happen. 

Either the manifold is flat or the torsion parallalizes the full Riemann tensor. 

This is very similar to the covariant form of the superstring action in flat space. 

The string can be viewed as a sigma model on a supermanifold with parallelizing 

torsion [24]. If the torsion does not parallelize the Riemann tensor the action 

is only invariant under a subset of the eight component c supersymmetry. The 

number of supersymmetries left over is determined by the holonomy group. 

The light cone action for a Green-Schwarz superstring with zero torsion in 

curved space has been considered by Candelas, Horowitz, Strominger and Witten. 

[5] We discuss here the generalization to manifolds with torsion. In this case the 

action is given by 

f giiaaX*aaX’ + ) c”‘BijaaXidpX’ 

. 

+ f S,r+p”D,+S+ + fs-7+paD,S- 

+ ; Rt,~+7+7i7jpaS+3-7+7k7fpa~- 1 
(3.10) 

where S = S+ + S- and S+(S) is a right (left)-moving fermion. The tensor 

gij is the metric in the transverse space. The covariant derivative in Eq. (3.10) 

is Da = da + gfl: and $ = wi f Ti is the connection with torsion in the 
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transverse direction. The Pa’s are the two-dimensional Dirac matrices. We first 

consider only the quadratic terms of the action (3.10) ignoring for the moment 

the O(S4) terms.‘ We return to them later. In flat space the action (3.10) has 

two eight component supersymmetries [5]. 

sx’ = (p+)-‘/2&7’s 

6Sl = i(P+&l’2 (7-7idP * dz”)q 

(3.114 

(3.11b) 

and 

62’ = 0 &ip = p (3.12) 

where c and 6 are eight component real spinors of O(8). In curved space it is 

straightforward to see that the kinetic part of the action in Eq. (3.19) is invariant 

under the &supersymmetry of Eq. (3.12) provided that 6 is covariantly constant. 

Later we shall see that the four-fermi term and hence the full Lagrangian is invari- 

ant as well. In curved space the transformation (3.11b) gets modified by terms 

of the form wi7-S6Xi. One cannot usually implement the full eight components 

c supersymmetry. To see this let us consider the variation of the action to linear 

order in the fermion fields. The variation of the fermionic kinetic term produces 

among others a term of the form 

6Ikinet. ax’ axj 
f = i 3papP - - 7i nje . 

daa ad 
(3.13) 

In two dimensions the gamma matrices satisfy papP = pact@ + gap and therefore 

Eq. (3.13) contains a term proportional to c ap. This term can certainly not be 

cancelled by the variation of any bosonic term unless the torsion term is included. 

In general the variation of torsion only cancels part of the eaP. Furthermore 

since the spin connection ni contains two gamma matrices the term exhibited 

in Eq. (3.13) involves a multiplication of three 7 matrices without any explicit 

symmetrization between them. Such a term cannot be cancelled by other terms 
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appearing in the variation of the action (3.10). These troublesome terms do not 

appear in the flat space case since in this case the spin connection n vanishes. 

In order to understand the fate of the e supersymmetry we study the relation 

between the Neveu-Schwarz-Ramond string and the Green-Schwarz string. In 

the Neveu-Schwarz-Ramond version of the theory the fermion field is a vector 

under O(8) while in the Green-Schwarz version it is a spinor. A prerequisite 

for the two versions to describe the same theory, is that both spinor and vec- 

tor representations have the same dimensionality. This property is unique for 

O(8). Compactifying the theory on a six-dimensional manifold amounts to con- 

sidering the subgroup O(6) x O(2) of O(8). N ow it is clear that in order for the 

construction to make sense there must be a subgroup H c O(6) such that the de- 

composition of the vector and spinor representation under H is the same [5]. This 

is the case for H = SU(3) which is the holonomy group of the six-dimensional 

manifold in the absence of torsion. With torsion the holonomy group can be a 

subgroup of SU(3). If the holonomy group is SU(3) or a subgroup of SU(3) 

we show below the equivalence of the Green-Schwarz and the Neveu-Schwarz- 

Ramond versions of the theory. If we accept this statement ‘it is clear that the 

original Green-Schwarz action without torsion cannot have an eight component 

supersymmetry. This would have implied that the Neveu-Schwarz-Ramond ac- 

tion on the compact manifold has N = 6 supersymmetry. However, it is a well 

known result that supersymmetric non-linear sigma models on Kahler manifold 

have at most N = 2 supersymmetry. 

To prove the equivalence of the Green Schwarz and Neveu-Schwarz-Ramond 

superstring action in the light cone gauge let us consider the action (3.10). From 

the discussion above it is clear that it is useful to work in the SU(3) basis. The 

fermions in this basis have the form 
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A= 1,...,8 

a = 1,2,3 
(3.14) 

This corresponds to the following decomposition of the spinor representation 

under SO(8) > SO(6) z) SU(3) 

8(spinor) +4+343+1+3+1. (3.15) 

The spinors tjla (+a) are triplets (antitriplets) and the spinors ~1 and x2 

are singlets of SU(3). The Majorana condition requires that $a = ($*)* and 

x2 = xi. Since the SU(3) * d’ m ices in Eq. (3.14) are tangent space indices we need 

a vielbein to transform the tangent space indices to world indices. In the SU(3) 

basis the vielbein is defined to be [l3] 

earn = E”m - iEa+3m 
(3.16) 

i?am = Earn + iEa+‘m = (earn)* 

where En m is the six-bein in the real basis. To write the action in the SU(3) 

basis it is convenient to use the SU(3) covariant 7 matrices 

ra = i (r, + ira+3) 

Vu = 2 1 (I?, - ira+3) = (7”)+ (3.17) 

{7”97’) = {7a97/3) = O -t7a,Tpl = bUp 

where the l?l’s are the 8 x 8 hermitian Dirac matrices 

rl= -ol xQ1 x a2 r2 = --cI~ x o2 x I r3 = g1 x a3 x Q2 
r4 = 

(3.18) 
02 x 02 x Ul r5 = -02 x 02 x 03 r6 =a2xlxo2. 

We now return to the fermionic kinetic term and rewrite it in the SU(3) basis. 

The covariant derivative has two pieces: the ordinary derivative and the connec- 
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tion part. In the SU(3) b asis the ordinary derivative part for the right moving 

fermion has the form 

tl = fS+7+pS+ = $ $+a?$$ + x+29X+1 1 
=-- f { 8ea$(eF+$) + Z+ZpX+l 1 (3.19) 

i =- 
2 gi&?#- + iJ~(ea$ep)& + ~+2~x+1 

{ 1 

. 

We have defined $J’ through $,* = ca& = ($a)* and we have used the fact 

that gi; = e”ie,T The two-dimensional gamma matrix p” stays intact and just 

gives g. We have a similar expression for the left moving fermions. From now 

on we drop the singlet fields ~1 and x2 and only consider the fields that carry 

non-trivial SU(3) quantum numbers. These are the only fields which couple to 

the spin connection. 

Next we consider the connection part 

fZz = f S+7+pa$& n’s, (3.20) 

where 

nt A t i n~ab[7a7b] . 

In the SU(3) b asis the spin connection fZi can be decomposed as follows 

b[7ayb] = [7? TaIntup - (3.21) 

The different terms in Eq. (3.21) correspond to the decomposition of the adjoint 

of SO(6) under SU(3) 

15+8+3+3+1. (3.22) 

Similar expressions hold for the left moving fermions. When the holonomy group 
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is SU(3) only the adjoint of SU(3) survives in the decomposition of Eq.(3.21) 

L eag =flLtaP =0, and n,faa =O. (3.7) 

This form of the spin connection can also be understood by studying the covari- 

antly constant spinors Dpv = 0. Under SU(3) the spinor of O(8) decomposes 

as 8 + 3 + V + 1 + 1. From the commutator [Dn, Dm]q = Rmnpq7P+v it is 

clear that the SU(3) singlets in the decomposition of the spinor correspond to 

the covariantly constant spinors. From Eqs. (3.14) and (3.18) it follows that 

the covariantly constant spinors have the form q = (OOOaOOOb).  Therefore in the 

basis provided by (3.18) the equation Dpq = 0 is satisfied provided the spin con- 

nection has the block diagonal form determined by Eq. (3.23). If the holonomy 

group is a subgroup of SU(3) some of the elements of nap vanish. Now it is 

straightforward to rewrite &a in the SU(3) basis 

Lz = f {q+Op - $ n;a& + r+p. g nfa++,} 

=- 
f 

{ 
q+aP ’ g [-e@eT + eirtije;] +FJ 

1 

+F+,.E * . [-e’,i+eT + ei l$jt$]$$ 
1 

i 
=- 

2 1 - &eai&$V( + 9jk$+p * g l?$i$$ + gzk$$p - g rtTj+$ 
1 

(3.24) 

Combining Eqs. (3.19) and (3.24) we get 

lkin = (3.25) 

where 

JD*t& = p - g (ai@ + r-$b$) + p - $f (+& + r#) . (3.26) 
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Equation (3.25) just gives us the correct fermionic kinetic term of the super- 

symmetric non-linear sigma model with fermions transforming as vectors. This is 

the Neveu-Schwarz-Ramondversion of the string in curved background including 

torsion. Since the compact manifold is a complex manifold with SU(3) holonomy, 

the non-linear sigma model has an N = 2 supersymmetry. As we have remarked 

before this already implies that no general N = 1 ten-dimensional (two eight 

components) supersymmetry is expected to exist in the covariant (light cone) 

approach. 

Above we showed that the Green-Schwarzstring theory on curved background 

with torsion is not invariant under the full ten-dimensional e supersymmetry. To 

see what part of the full supersymmetry survives in curved space we again use 

the SU(3) basis and the existence of an SU(3) holonomy. To keep our analysis as 

simple as possible we consider the supersymmetry transformation of the bosonic 

fields, 

6x’ = (p+)-Wq’s . (3.27) 

The transformation of the fermionic fields works in a similar way. We consider 

only the compact part of the background manifold. It is advantageous to work 

with the SU(3) triplet and anti-triplet combinationof the z’s defined in Eq.(2.15). 

The spinor e has a similar decomposition under SU(3) as 11, given in Eq.(3.14). 

The action for the superstring is invariant when the triplet ea and anti triplet ea 

-vanish. Equation (3.27) takes the form 

6zm = Zl er@ = Sl$” 

and 

(3.28) 

(3.29) 

where ~1 and 9 are the SU(3) singlets and ~2 = c;. We thus obtain two super- 

symmetries on the curved space associated with the singlet parameters ~1 = E;. 
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This is of course a manifestation of the SU(3) holonomy. Since the SU(3) group 

is unbroken it is obvious that the N = 2 supersymmetry parameters in the Neveu- 

Schwarz-Ramondversion, must correspond to the SU(3) singlets. As far as the 

flat space part is concerned we have two other supersymmetries under which the 

single spinors x1 and x2 of Eq. (3.14) transform. These two supersymmetries are 

associated with yet another c spinor which again have the form (O,O, 0, cs,O, 0, ~4) 

where ~3 and ~4 are also SU(3) singlets.* 

So far we have not considered the higher order fermionic terms. In the SU(3) 

basis the light cone Green-Schwarz string reduces to the Neveu-Schwarz-Ramond 

string which is just a sigma model on a curved manifold. Therefore it is clear 

that in the light cone the action will be invariant provided the e has the form e = 

(O,O, 0, Q, O,O,O, ~2). To check the &supersymmetry is equally straightforward. 

Since 6 is covariantly constant spinor we have 

(&b,,7*7*)63t = 0 . (3.30) 

Furthermore since RAnpq = Rpmn it follows that the superstring action (3.10) is 

invariant under the 6 supersymmetry. 

* Actually to work it in details we have to construct all the 32 x 32 gamma matrices associated 
with SO(10). Until now we could work with the six 8 x 8 gamma matrices of SO(6) in 
Eq. (3.18). These SO(10) gamma matrices can be taken to be 7,, 0 18, 75 8 l’i with rP, 76 
the usual four-dimensional Dirac matrices (/z = 1,. . . ,4) and I’i the 8 x 8 gamma matrices 
of Eq. (3.18) (i = 1,. . . , 6). When we impose the Weyl condition we can work with 16 
component spinors. 
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4. Compactification on M6 X (S3 X 9) 

To illustrate some of the general discussion of the previous sections let us 

consider string theory on Ms x K where the compact manifold K is the her- 

mitian “integer CP2” manifold. This is a four-dimensional manifold with two 

complex coordinates (zr,z2). The points (zr,z2) and (nzl, nz2) are identified for 

all integers n. The natural metric for this manifold in complex coordinates is 

dx2 = 
d&z1 + dz2dz2 

flZ1 +z’222 ’ (4.1) 

The manifold defined by the metric (4.1) is S3 x S’. To show this we introduce 

real coordinates (4’) 42, #, w) . Th ese are related to the complex coordinates 

~19~2 by 
21 = P(# + if)2) 22 = cw (d+i+q . (44 

In these real coordinates the metric has the form 

ds2 = (d~)~ •t gabd4ad4b gab = Jab + ~14a~~1) - 

and the manifold is indeed S3 x Sr. To parallelize S3 we introduce torsion 

T abc 7 (1 _ ;;,2)1,2 Qc 

(4.3) _ 

to the sigma model via the Wess-Zumino term [8]. In Eq. (4.4) a is a numerical 

constant. It will be determined by the requirement that the theory is both con- 

formal invariant and has a two-dimensional N = 2 supersymmetry. In complex 

coordinates the nonvanishing components of the torsion are 

T iji = (lzl 12 Tz2i2)2 
i# j i,j=1,2. (4.5) 

Tis = -iZZj 

(Ial + Iz212)2 

27 



The non-zero components of the connection 

rj, = + f (Tjki- T'jk - Tikj) a (4.6) 

are proportional to either u - 1 or a + 1. In Eq (4.6) { ik} is the Christoffel 

connection. The generalized curvature vanishes whenever a = fl. This certainly 

guarantees that the P-function vanishes. This also guarantees that the conditions 

of Eq. (3.7) hold. The sigma model has an N = 2 supersymmetry if a = fl. 

To write down the torsion and curvature it is convenient to introduce new real 

coordinates xi i=l . . .4 defined by 

Zl = x1 + ix2 22 = x3 + ix4 . (4-V 

In these coordinates, the torsion turns out to be 

T mnp = a 
emnpqxq 

(142)2 
1x12 = xxi” (4.8) 

The generalized curvature is given by 

R mnpq = 
2(1 - a2) 

(l42)3 {. 
&qXnXP - 6qnXmXP 

(4-g) 

- JmpXnXq + &pXmZq + 6mp&qjX12 - 6npbmqIXj’ 

> 

. 

and the spin connection including torsion is 

1 
nabm = -2 

I I 
’ - bmbxa) + a t”~~~zu . 

Note that the spin connection for a = fl is either self dual or anti self dual. This 

means that in the Lagrangian of Eq. (3.1) the kinetic term for the left or right 
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handed fermions involves only simple derivative. Since the generalized curvature 

is zero for a = fl (Eq. (4.9)) the connection is na pure gauge”. Therefore we 

can by a change of basis move the connection from the right handed to the left 

hand fermions and vice versa. There are four covariantly constant spinors: two 

left handed and two right handed and therefore the sigma model has N = 4 

supersymmetry. As we remarked earlier the compact manifold should admit a 

covariantly constant complex structure. For a = fl Eq. (3.7) has a solution. 

We find 
0 1 0 0 

Pm = 
-10 0 0 

0 0 0 a l 

(4.11) 

It is interesting to note that the condition a = fl arises from both the conformal 

and supersymmetry invariance. The only condition of Section 2 which is not met 

by our example is that of Eq. (2.2). An explicit calculation shows that 

HE* = id%, . (4.12) 

As we mentioned in the Introduction, K is associated with the cosmological term. 

An indication to this statement can be obtained by looking at the gravitino 

transformation law, comparing it to the transformation law in four dimension 

with cosmological term [5]. 

Similar analysis can be repeated for the manifold M4 x S3 x S3. Again 

torsion appears as the Wess-Zumino terms on each of the S3 spheres. The torsion 

parallelizes the compact manifold, hence the associated p-function vanishes. 

In the analysis so far we investigated the compact part K. The actual man- 

ifold is M x K. Form the nonlinear sigma model point of view the p-function 

should vanish on M as well as on K. Compactifications which lead to cosmo- 

logical constants are inconsistent if M is maximally symmetric. On an (anti) 

de-Sitter space the Ricci tensor does not vanish hence the p-function is non-zero. 
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A priori one could contemplate having other background fields on M. As long as 

M is maximally symmetric the dilaton cannot appear as a background field. It 

is also straightforward to show. that torsion cannot be introduced to parallelize 

the generalized Ricci tensor on an (anti) de-Sitter space. This conclusion is in 

accordance with a recent argument by Witten [25] who has shown using scaling 

arguments that solutions to the ten dimensional supergravity equations of motion 

do not allow cosmological constant. Compactifications on M which is not maxi- 

mally symmetric and which lead to cosmological constant, may turn out to be of 

interest as cosmological vacuum configurations. It would be interesting to find 

out whether in the presence of metric and/or torsion and/or dilaton background 

fields such solutions exist. 

5. Conclusions and Remarks 

We have considered string theories with metric and torsion as background 

fields. We have shown that in this case the string theory has a four-dimensional 

N = 1 supersymmetry in four dimensions only if torsion vanishes on the compact 

manifold. In our proofs we have invoked both string considerations and effective 

field theory considerations based on the transformation laws of the modified 

Chaplin-Manton ten-dimensional supergravity. For the effective field theory ap- 

proach we were limited to the case in which the radius of compactification was 

-much larger than the Planck length and therefore the higher derivative terms 

in the effective supergravity theory could be neglected. If this condition is not 

satisfied [9],[10] one cannot rely on our analysis of the effective field theory ap- 

proach. However, the string approach based on the sigma model is more general 

and does not rely on truncating the higher order modes. 

For the sigma model approach the conclusion that the torsion must van- 

ish relied heavily on the fact that the generalized Ricci tensor had to vanish. 

We must emphasize that Ricci flatness was demanded on the basis of one loop 

finiteness. This may not be true in all orders. One is lead then to consider a 
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situation in which the /Mmction has a nontrivial fixed point rather than being 

identically zero. Furthermore we have not investigated the possibility of more 

general representations of the compactified string theory that may include ad- 

ditional background fields such as the dilaton and gauge fields. Therefore the 

conclusion of zero torsion which followed from the vanishing of the Ricci tensor 

may be relaxed in a more general theory. 

Recently it has been argued [26] that the P-function vanishes when the gen- 

eralized Ricci tensor has the form ViAj where AJ’ is some globally defined vector 

field. In this csse the one loop counterterms in the sigma model can be ab- 

sorbed into the redefinition of the coordinates xi + xi + A’ since f!(g’j + Bij) = 

ViAj where f! is the Lie derivative and Vi is the covariant derivative with 

torsion. Clearly a counterterm of the form lCc.:. = J dzO(VtiAj)a,x’a,x’ + 

V(iAj~~~x’~~X’&) vanishes on shell when one integrates by parts. To decide 

if the theory is conformally invariant one has to calculate the trace of the en- 

ergy momentum tensor (0:). This calculation is most easily done by introducing 

the dilaton field 4 and coupling it to 0:. In 2 + c dimensions this amounts to 

considering the Lagrangian 

t = 
/ 

d2+‘u e”(‘)(gija,x’PX + BijP’~~Xi~~X’) l 

The trace of the energy momentum tensor is now given by the derivative of the 

effective action with respect to the dilaton field q5 at 4 = 0. Since (0:) is local 

we cannot integrate by parts as above in the effective action to get rid of terms 

of the form ViAj.* 

The torsion in the sigma model action is a density only in two dimensions. 

Therefore we have to introduce the factor ecu in front of this term once we go to 

2 + E dimensions. This factor guarantees that the classical action is conformally 

invariant. However, in the presence of this factor we lose gauge invariance. To 

+ The preceding argument was developed in conversation with D. Reedman. 
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phrase it differently, the equation of motion for X includes now the gauge field 

Bij explicitly, rather than the field strength Tijks The condition for conformal 

invariance was analyzed in detail by Callan, Perry, Martinet and Friedan [18]. 

It is important to realize that the result of their calculation is gauge invariant 

and therefore gives us some confidence that it is the correct result. Nevertheless 

a regularization scheme which preserves conformal invariance, gauge invariance 

and supersymmetry (for supersymmetric models) is clearly needed. 

There still remains the possibility that for some Aj one can define a new 

symmetric traceless and conserved energy momentum tensor. When A’ = Vi+ 

the freedom of performing coordinate transformations amounts to introducing a 

background dilaton field. The one loop contribution of a dilaton to the P-function 

is indeed of the form V’Aj with A’ = Vid. Therefore we expect that in this case 

the modified energy momentum tensor is the same as for the theory with the 

dilaton 4 as a background field. 

In this paper we have also constructed string theories on compact manifold 

with torsion in the light cone gauge. In order for the corresponding sigma models 

to have N = 2 supersymmetry we had to restrict ourselves to hermitian manifolds 

which admit covariantly constant complex structure. Furthermore, in order to 

have vanishing p-function torsion must parallelize the Ricci tensor. 

The starting point of our construction of the light cone string theory in curved 

-space with torsion was based on the Neveu-Schwarz-Ramondtype of string theory 

because in this string theory the fermions are vectors of O(d-2). In ten dimension 

we used this theory as a guideline to construct a string theory of the Green- 

Schwarz type in the light-cone gauge. Using the SU(3) holonomy of the compact 

space we were able to show the equivalence of the two theories. This analysis 

was done in the presence of torsion. 

The restriction to an holonomy group H c SU(3) is crucial to our approach. 

It restricts the fermionic interaction term in the light cone Lagrangian to a four- 

fermion coupling. In the covariant approach it gives rise to fermionic terms only 
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up to eight-fermion couplings [27]. 

We thank M. Peskin for bringing to our attention the revised version of Ref. 

5 where one can find arguments that the torsion must vanish on the compact 

manifold. The construction of the Green-Schwarz light cone action in curved 

space with SU(3) h o onomy is discussed also in recent papers by Fradkin and 1 

Tseytlin [28]. 
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APPENDIX 

In this appendix we discuss the relationship between the supersymmetry 

transformation of the covariant Green-Schwarz action and the light cone action. 

In flat background the Green-Schwarz superstring is invariant under the following 

supersymmetry transformation (231 

a,sA = ‘IA A= 1,2 (A-1) 

&&xp = ;jfAy'SA A= 1,2 (A-2) 

In addition the green-Schwarz superstring action is invariant under a local fer- 

mionic symmetry [23] 

&SA = 2i7 - raleAa = 2i7,(aaxr - ;sB7pd,sB)&a (A.31 

&X" = iSA7QKSA . (A.4 

This fermionic symmetry allows one to eliminate the unphysical fermionic degrees 

of freedom. In the light cone the fermions satisfy the condition 7+S = 0. From 

the transformation (A.2) and (A.4) it immediately follows that 

6,X+ =6,x+=0 (A.4 

when 7+S = 0. 

Unlike S, q and IC need not obey the light cone condition. We show below 

that if one imposes this condition on Q(K) we recover the 6(c) supersymmetry of 

the light cone action. When 7 satisfies the light cone condition 7+q = 0 Eqs. 

(A.l) and (A.2) take the simple form 

&SA = rjA (A.6) 
_ 
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b&=0. WV 

This is precisely the ksupersymmetry of the light cone action. The c supersym- 

metry of the light cone action arises when one imposes the condition 7+~ = 0. 

In this case the transformation of Eqs. (Al-A4) have the form 

&SA = qA (A.81 

s,x’ = @A79 (A4 

6,x’ = 0 (A.lO) 

&SA = Z!+y+p+~~~ + 2i7iaaX’KaA (A.ll) 

Adding Eqs. (A.8)-(A.ll) we find 

6,x’ = (6q + &)xi = (p+) -1k7is 

&S = (l& + &)S = 2i(p+)"27-7i(p. ax$ 

where ICY = -;(p+) -1/27-pae and Q = i(p+)-1/27+7-po~. ‘Thus the e super- 

symmetry of the light cone theory appears as a linear combination of v and IE 

transformations. 

We expect that the above consideration can be repeated in curved space. 

However, in this case 6 must be covariantly constant. Therefore q must also be 

covariantly constant. From this it immediately follows that E in the light cone 

must be covariantly constant. This agrees with our considerations of Section 3. 

35 



REFERENCES 

[l] A. Neveu and J. Schwarz, Nucl. Phys. B31 (1971) 86; P. Ramond, Phys. 

Rev. D3 (1971) 2415. 

[2] M. Green and J. Schwarz, Nucl. Phys. I3181 (1981) 502. 

[3] G. Chapline and N. Manton, Phys. Lett. 120B (1983) 105. 

[4] M. Green and J. Schwarz, Phys. Lett. 149B (1984) 117. 

[5] P. Candelas, G. Horowitz, A. Strominger and E. Witten, ITP preprint 

NSF-ITP-84-170. 

[6] D. Friedan and S. Shenker, unpublished. 

[7] P. Howe and G. Sierra, Phys. Lett. 148B (1984) 451; S. Gates, C. Hull and 

M. Roeek, Nucl. Phys. B248 (1984) 157. 

[8] E. Braaten, T. Curtright and C. Zachos, Florida preprint, UFTP85-01 
(1985). 

[9] M. Dine and N. Seiberg, IAS preprint, May and June (1985). 

[lo] V. Kaplunovsky, Princeton preprint (1985). 

[ll] D. Friedan, 1982 Les Houches Summer School, J.-B. Zuber and R. Stora 

eds, (North-Holland, 1984). 

[12] D. Friedan, UC-Berkeley, Ph.D. Thesis (August 1980), LBL preprint LBL- 

11517. 

[13] I. Bars, USC preprint 85/015 (1985). 

[14] E. Witten, Phys. Lett. 149B (1984) 351. 

[15] D. Nemeschansky and S. Yankielowicz, Phys. Rev. Lett. 54 (1985) 620. 

[16] D. Olive and P. Goddard, Nucl. Phys. B257 (1985) 226; V. Krizhnik and Z. 

Zamolodchikov, Nucl. Phys. B247 (1984) 83; D. Friedan and S. Shenker, 

unpublished; S. Jain, R. Shankar and S. Wadia, Tata Institute, preprint 

TIFR/PH/85-3. 

36 



[17] E. Witten, Comm. Math. Phys. $Q (1984) 455. 

[ 181 C. Callan, E-: Martinet, M, Perry and D. Friedan, Princeton preprint (1985). 

[ 191 A. Sen, Fermilab preprint (1985). 

[20] P. DiVeccia, V. Knizhnik, J. Petersen and P. Rossi, Nucl. Phys. B253 

(1985) 77. 

[21] C. Hull and E. Witten, Princeton preprint (1985). 

[22] D. Gross, J. Harvey, E. Martinet and R. Rohm, Nucl. Phys. 256 (1985) 

253. 

[23] M. Green and J. Schwarz, Nucl. Phys. I3243 (1984) 285. 

[24] T. Curtright, L. Mezincescu and C. Zachos, Florida preprint UFTP-85-04 

(1985). 

[25] E. Witten, Phys. Lett. 155B (1985) 151. 

[26] C. Hull, MIT preprint (1985). 

[27] J. Bagger, D. Nemeschansky and S. Yankielowicz, in preparation. 

[28] E. Fradkin and A. Tseytlin, Lebedev Institute preprint N150 (1985). 

37 


