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ABSTRACT 
We develop a method which enables us to calculate explicitly matrix elements 

of multiquark operators between two nonstrange baryon states, thus obtaining the 
exact dependence of these operators on N-number of color degrees of quarks. The 
method employs permutation symmetry of the N-quark wave function and it is 
illustrated by evaluating gA/gV and the matrix elements of four-quark (current- 
current) operators which appear in the AS = 0 effective weak Hamiltonian. 
-Implications of these results for the low energy phenomenology and for the in- 
terpretation of the Skyrme model results are discussed. 
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There are many strong arguments to believe that the SU(3)c gauge theory 

of quarks and gluons, known as quantum chromodynamics (&CD), is the theory 

which properly describes the world of hadronic physics. Unfortunately, the com- 

plexity of the phenomena which this theory tries to explain makes it unsolvable 

exactly. However there exists an expansion parameter, i.e. the number of colors, 

N = 3, which gives the possibility of developing a good approximate theory. ‘t 

Hooft’ originally proposed a generalization of QCD from three colors with the 

SU(3)c gauge group to N colors with SU(N)c gauge group. It was hoped that 

such a generalization, together with l/N expansion, could provide an interesting 

insight into QCD problems2 Witten in his excellent paper2 reviewed the ex- 

isting results concerning mesons and gluon states in the l/N expansion scheme 

and showed how to fit baryons into this picture. This approximation scheme 

does provide useful selection rules for strong meson decays and also provides 

us with a systematic way to calculate hadronic matrix elements involving weak 

currents. The SU(N) c-quantum chromodynamics for strong interaction-and 

the Weinberg-Salam gauge theory for weak interaction have been applied to the 

nonleptonic weak decays of D and K mesons,3 and give a reasonable description 

of D + KK and K + 27r decay amplitudes. 

In the last few years chiral perturbation theory, and the Skyrme model in 

particular,4’5 received revival and extensive study. It became clear that large N- 

properties of many physical quantities are very important.6 An important finding 

is that in the N + 00 limit baryons appear to be solitons in the effective mesonic 

field theory. 2 

In this paper we shall develop the method which enables us to evaluate explic- 

itly the matrix elements of multiquark operators, i.e., dimension four (current) or 
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dimension six (current-current) operators, between baryonic states as a function 

of N. This will be done for the simplest case with 2 flavors only, i.e., SU(2)1 case. 

The method is based on permutation symmetry7 of the baryon wave function.8 

The nucleon wave function with N quarks is written as a product of the 

single particle wave functions. It is composed of products of the wave functions in 

four subspaces: the spatial-(X), spin-SU(2)s, isospin-SU(2)I and color-SU(N)c 

subspaces. The wave functions in each of the subspaces are characterized by7 

Young tableau [f], unitary quantum number p and Yamanouchi symbol r which 

is the quantum number of permutation symmetry.8 Quantum numbers [f], p, r 

are extensively explained in Appendix 1C of A. Bohr and B. Mottelson, Ref. 

7. Here we only briefly mention definitions of these quantum numbers. The 

Young tableau is defined as [f] z [ fi, f2,. . . , fn], fi + f2 . . . + fn = N, where 

fi is the number of boxes in the jth row. E.g., the nucleon wave function has 

[fx] = [N] (symmetric), [fs] = [fI] = [v , 91 and [fc] = [l,l,. . . ,l] 

(antisymmetric). The unitary quantum number p is determined by the single 

particle wave functions arranged in the Young tableau. E.g., pi determines the 

third component of isospin 2’3. Yamanouchi symbol r is determined by the ciphers 

from 1 to N arranged in the Young tableau in an increasing order in each row and 

each column. The number of different Yamanouchi symbols h[ f] (or equivalently 

the dimension of the Young tableau) can be cast in the following formula:7 

h[f] = 
N!J-j i<j<n(fi - fj + 3. - i>! 

ni”l,(fi + n - i)! ’ (1) 

The explicit form for the wave function with good [f], r and p is generally 

complicated.g However, in the standard, the so-called Yamanouchi representa- 

tion, one ensures the orthonormality of the wave functions,’ i.e., 
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([fl,~~~l[f'l~~',~') = +][f~] Jrrt Jppp5 as long as the single particle wave functions 

are orthonormal. Also, this representation ensures good permutation symmetry 

with respect to the first two particles. 

Coupling of the wave functions with [fa], ra, pa and [fp], r-p, pp from two 

different subspaces, e.g., spin and isospin subspace, into the wave function with 

new [f], r is determined by the Clebsch-Gordon coefficients for the permutation 

group ([f&m [fplrpl[fl+ Th e Y are difficult to evaluate for the number of quarks 

> 4, so that their evaluation with a computer is needed.” However, when the 

new wave function is symmetric, i.e., [f] = (N], the Clebsch-Gordon coefficients 

have a simple form ([fal~a7[fplrpl[Nl) = 6pa1[fp1 kr,ldm. 
Since the nucleon wave function has symmetric spatial and antisymmetric 

color parts, the spin-isospin part should be symmetric in order to ensure that 

the total wave function is antisymmetric. Using the above results, we can finally 

express the nucleon wave function in the following forms: 

+N = l[Nl,~x) I[& 1, - - - , ~]Pc) 
@f&J 

N 1 N-l I 2 $2 
"'lc I[ 

r=l 

where .Af denotes nucleon. Here h [y , v] = 2N!/ [(v)! (F)!] as ob- 

tained from formula (1). Note that by a similar procedure one can construct 

also A state and other higher spin baryonic states. Although we do not have 

explicit form for the wave functions 1 [v 91 r, ps,~), it is not necessary. We 

will use only the symmetry properties of the wave function for the evaluation of 

the matrix element. 



For an illustration of the method, we shall first evaluate the ratio of the axial- 

vector and vector coupling constants, gA/gV. In the nonrelativistic limit with the 

assumption of contact-interaction for the spatial parts one obtains: 

gA -= 
sv 

(3) 

Here $J: is the nucleon wave function with the total third component of spin 

C3 = +l, while (03)i and (73)i d enote the single particle operators for the third 

component of spin and isospin, respectively. Because +N is totally antisymmetric 

one can use the identity (tikl CtN,1(~)&3)&$,) = N (4,~(~4~(~&&,4). 

Expectation value of operator (rs)~((os)~) is d ff i erent for each of the two sets of 

the wave functions in the isospin (spin) subspace. These two sets are determined 

by the following Yamanouchi symbols: 

One can write the isospin part (and similarly the spin part) of the proton wave 

function with ro and ri in the following way: 

c;o$, ,..., iN-l . . . (l,k2,...,tN-1 

k=l d b(id dh+d - dbib(~~+d]W) (54 
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i [fl(iN-z)d(h-1) + d( in-+(i~-l)]U(N) - h(iN-2)u(iN-l)d(N) . 
1 

One can write the corresponding parts of the neutron wave function in the 

isospin and spin space in a similar way. Although we do not know the coeffi- 

cients ci:9:p: ,..., iN-1, the evaluation of (73)~ can be finally performed using the 

orthonormality of the single particle wave functions. One finds: 

(b01(~3)NI&;) = 0 , (64 

(&,~(73)N~~ro) = -3 (~r;1(T3)N1+r,‘) = T3 3 (64 

where 25, the total third component of the isospin, is +l and -1 for proton and 

neutron, respectively. An equivalent result is obtained for (03)~ operator. Using 

Ew (4, (3) and (6) we arrive at the following expression for gA/gV 

gA 
N-l N-l -= hh- -]+A l-h[y,v] -N+2 9v N+l ‘NT1 h[~,+ 9 h[v,v] 3 - (7) 

The first part of Eq. (7) is obtained by noting that the number of Yamanouchi 

symbols ro is equal to h [v , 91 and is equal to (N - l)!/ [(v)! (9) !] 

according to formula (1). This then leads to the final, well-known result, first 

derived by using the full explicit form of the N-quark nucleon wave function.ll 

In our approach result (9) is obtained in an almost trivial way as a function 

of the ratio of dimensions for two different Young tableaux. This method can be 

extended to a calculation of other current operators and to baryon states with 

higher spins, like A. 

We shall now apply the same method to SU(2)1 dimension six (four-quark) 

operators which appear in the AS = 0 effective weak Hamiltonian and have 
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been classified in Ref. 12 (formula (3.2)). For the purpose of this paper we 

are dealing only with the parity-conserving parts of each operator, because the 

parity-violating operator between two states of the same spin and parity (!J’ in 

our case) vanishes identically. Here we shall calculate the parity-violating (PV) 

n --+ prr- weak amplitude. So we start with PV operators Opv’s from Ref. 

12 and then through the so-called equal time commutator (Fj, OF’] arrive at 

the isospin rotated parity-conserving (PC) operators 6:“. In the nonrelativistic 

limit our method gives: 

81 = [(ndd + ddzu) - (ad& + ;iu~d)]vv+AA 

= i N(N - 1)(1112 - &Z2)(1r12 - -?‘17.2) 

-- 
62 = [2(7iuzu + dddd) + nuzd + ;Zdnu + ad& + &id]vv+AA 

= f N(N - 1)(1112 - ij1&)(3 1112 + -732) 

-- 
6: = [(ZuEu + dddd) - (mdd + ;idau + iid& + &id)]vv+AA 

= gN(N - 1)(h12 - &%)[3(~)1(7~)2 - &-?'2] 

6; = (ouuliu + addd + m&id + dd?.iU)vv+AA 

= N(N - 1)(1112 - &G2) 

6: = (d.du + ;iiddid + &;iid + did&)yy+AA 

6b" = (nu;id-~d~U)yy+AAf(~uuu-;id;id)VV-AA 

= k(N - 4) T3 f id&+&q 
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6i5 = (&did - aid-x ) u U VV+AA f (&iiU + ;ixd;iid)vv-AA 
4 

= ii$j6f5 s . 
s @!J) 

Here & denotes the single particle color operator and 2 is the total spin operator. 

We have used the complete permutation symmetry of the baryon wave function, 

i.e., the two body operator is replaced by the operator which acts only on the 

first two particles (Eqs. (8a,e)) and the single particle operator is replaced by 

the operator which acts on the Nth particle (Eqs. (8f,g)). In Eqs. (8e,g) the 

total antisymmetry of the color part of the baryon wave function gives the same 

expectation value of the operator TiXj for any jth and jth particle. Further, we 

make use of the connection between the unitarity and permutation symmetry, i.e., 

the spin or isospin of the first two particles is one (zero) if the spin or isospin part 

of the wave function is symmetric (antisymmetric) with respect to the exchange 

of the first two particles. In this case: 

1112 -cw2=2(1-Pi9 , 

++ 
r1r2=-1+2F[2. 

(94 
w 

Here F2’ are permutation operators between the first two particles acting on 

the spin and isospin part of the wave function, respectively. Also, for the wave 

function which is antisymmetric with respect to the first two particles, one has: 

(73)1(73)2 = -1 , (104 

(lob) 
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Here the normalization condition TrX’XJ’ = 26ij was used. Using formulae (9,lO). 

we get the matrix elements of operators (8a-e) between the nucleon states: 

h[- N+l N-3 1 =fN(N-1)16 N:l ‘NzI =2(N2+2N-3)) 
hh- 171 (114 

(62) = (6:) = 0, w 
(a)=-2(1+$) @)=-(1+f) (011). (114 

Here h [v ,v] = 2(N - 2)!/ [(v)! (?)!I appears as the number of 

Yamanouchi symbols of the type 

h’l order to evaluate matrix elements of operators 3:” we rewrite 2 &r as 

) ~2++(~-i?N)2 
[ 1 where (3 - 8~)~ = 0,8 for the wave functions with 

ro,ri (see Eq. (7)), respectively. This finally yields: 

(o^i5) =*{N[+(3+3-0) ;/T;Tj ++(3+3-8) (2) (l-;/T;:;)] 

+(N-4) T3=f2(N-1)T3, 
1 

@)=-2(1++) (b5=4N-;) T3. 

(124 

Note that matrix elements for operators 6% !5’s have the opposite sign for the 

neutron and proton states. 

Again the explicit N dependence of the matrix elements for operators Gi ap- 

pears simply as a function of the ratio of dimensions for different Young tableaux. 

The generalization of the method to higher spin states, e.g., A, and for other four 
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quark operators can again be done. However, an extension of this approach to 

baryon states with nonzero strangeness is not obvious because the flavor parts 

of the wave function cannot be written in a way similar to the one given by Eq. 

(5). We expect that the leading N dependence of the matrix elements will remain 

similar also in this case. 

Matrix elements (11, 12) calculated in a quark model with explicit nucleon 

wave functions, e.g., the MIT-bag model or the nonrelativistic harmonic oscilla- 

tors give of course exactly the same result for N = 3. Expressions (11, 12) should 

also be multiplied by an integral I over the quark radial wave function. In the 

MIT-bag model a typical value for I is 0.002 GeV3. 

We can now evaluate U.Jfz PV amplitude13 A(n!? : n + p?r-) which is stud- 

ied in PV nuclear electromagnetic transition. l4 When p, --) 0, application of 

the soft-pion theorem, PCAC and current algebra gives the nonzero contribu- 

tion ACA(n!) from the so-called nonseparable diagrams. With the help of Eqs. 

(11,12) ACA(nc) assumes the following form: 

ACA(nf.) G  i [ (Plqy (PC) IP) - (4qim4 In)] 

-~GF = 
3f?r 

sin2 Bw (Cp - C,‘“) - 2 1+ $ 
( > 

(C,‘” - CT,‘“) 1 (N - 1) I . (13) 
Here fiF, Gp and 6~ are the pion coupling constant, Fermi constant and Weinberg 

angle, respectively, while Ci 15’s denote renormalized coefficients in front of Cf5’s 

operators. E.g., for N = 3 one obtains ACA(n”_) = 5 . 10s8 by using values for 

Ci” from Ref. 12. We do not present the explicit N-dependence for fT, GF and 

Ci5s; however, employing the presented technique this can be done. 

The explicit N-dependence of multiquark operators is also crucial for a proper 
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interpretation of the Skyrme model results which are related to the ones of 

SU(N --$ oo)c theory. However, one would really like to link these results with 

the real world of SU(N = 3)~ theory. For that purpose, in the Skyrme model, the 

experimental values of the nucleon (J) and A masses are chosen as input param- 

eters, thus determining fr and e- the coefficient in front of the Skyrme term (see 

Ref. 5). On the other hand, in the large N limit, WIN oc N, mA - mu[1+6(1/N)] 

and correspondingly fr oc a, e oc l/a. This means that in the Skyrme model 

?nN,A, which have singular N dependence in SU(N + oo)c theory, were adjusted 

to fit the real world with finite N = 3. One therefore expects that quantities of 

the Skyrme model with nonzero leading N-dependence, e.g., gA, pn,p etc., will 

disagree with the corresponding experimental values, while quantities which are 

N independent in the leading order of N, e.g., fi/gA, Ipp/,unl, etc., will be in 

good agreement with the real world. This is really the case; e.g., values for fi/gA 

and /.+,/,x,, are in agreement within 2% with the experimental values, although 

those for fir, m 01 Pn,p are far away from their experimental values (see Ref. 5 

for numerical results). Also, the .A/ - z scattering phase shifts,15 which do not 

have leading N-dependence, are in good agreement with experiment. 

The validity of the Skyrme model results in connection with the real world 

should thus be reexamined by keeping in mind the explicit N-dependence of 

relevant operators; results are reliable only for those quantities which do not 

have leading N dependence and possibly have N-dependent corrections of order 

1/N2. l6 Therefore, having explicit N-dependence of relevant quantities is very 

useful in order to understand which Skyrme model results have strong predictive 

power. Similarly, matrix elements of 6i’s (see Eqs.(8)) evaluated in the Skyrme 

modell’ should be interpreted with care in comparison with corresponding QCD 
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calculations (SU(3)c); only ratios of certain (6i)‘s (see Eqs. (ll,12)) which in 

SU(N)c do not have leading N-dependence, e.g., (o^i)/(@) etc., should be in 

good agreement with QCD results. 

We believe that the method for the evaluation of matrix elements for the 

multi-quark operators between any two non-strange baryon states is not only of 

academic importance, but it will significantly contribute to deeper understanding 

of the large N expansion, to proper interpretation of the Skyrme model results, 

as well as to a simplified analysis of the weak interaction phenomenology. There 

is no doubt that the method drastically simplifies and shortens previously long, 

hard and tedious quark model calculations. It is straightforward and extremely 

useful. 
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