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ABSTRACT 

To leading order in CX~ ( Q2), conformal symmetry specifies the eigensolutions 

of the evolution equation for meson distribution amplitudes, the wavefunctions 

which control large-momentum-transfer exclusive mesonic processes in &CD. We 

find that at next to leading order, the eigensolutions in various field theories 

depend on the regularization scheme, even for zero p-function. This is contrary 

to the expectations of conformal symmetry. 



Conformal symmetry expresses the extended invariances of the Lagrangian 

of a renormalizable Lorentz-invariant theory which has no intrinsic length scale 

[ 11. Classical relativistic field theories which are scale invariant and have a renor- 

malizable renormalizable Lagrangian are also conformal symmetric; i.e., invari- 

ant under the conformal group, which consists of the translations, boosts and 

rotations of the Poincare’ group, together with dilatations (zp -+ Xsp) and con- 

formal transformations; i.e., inversion(xp + -xp/x2) X translation X inversion. 

Scale invariance, and therefore conformal symmetry, is destroyed in quantum 

field theory by masses, and by the renormalization procedure, which inevitably 

introduces a renormalization scale. In a field theory with zero P-function (e.g. 

QCD to one loop-order with Nf = y N,), the coupling constant cannot intro- 

duce any scale dependence, so one expects conformal symmetry (with possibly 

anomalous dimensions for the fields) to be valid at short distances where mass 

effects are negligible. A general, all orders, proof that conformal symmetry is 

satisfied asymptotically in renormalizable field theories with zero P-function has 

in fact been given by Parisi [2]. Th is result, however, may only be true for specific 

ultraviolet regulators(see below). 

In this letter we consider the -application of conformal symmetry to the op- 

erator product expansion of two fields at short distances, 

+(;) $(-?l) - 2 en(z2 - iczg) 2 ri)Z,, - - - Zam O(n)al"'ama(0) (1) 
n m=n 

where i = 1,2 with 

rp = 
{ 

ra i=l 

+/a75 i=2 
(2) 
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(0) = 2 dmnkdak+l . . . P-$(O) I’@“’ . . . E*“$(o) . 
k=O 

(3) 

Here D is the covariant derivative and the En(x2 - icZg) are singular functions 

of well-defined dimension (powers of logarithms in &CD) [3,4]. 

The diagonal matrix elements of this expansion control the scaling-violations 

of deep inelastic structure functions. The off-diagonal matrix element between 

the vacuum and a meson state defines the distribution amplitude [5]: 

4(x;, Q) = / $ 

(9) 

(4 

z+=,Eq=o 

in A+ = 0 gauge. [In other gauges there is a path-ordered factor 

exp(ig J!r ds A+(zs)z-/2) b e ween the $ and $J, making 4 gauge invariant to t 

leading twist.] The pion momentum is chosen as pl = O,p+ = 1. The distribu- 

tion amplitude contains all of the non-perturbative input which enters large mo- 

mentum transfer exclusive process amplitudes such as Fn(q2), M(rr + r+r-), 

etc., but it is itself process-independent. 

Generally exclusive amplitudes involving large momentum transfer can be fac- 

tored into a convolution of distribution amplitudes qS(xi, Q), one for each hadron, 

with a hard-scattering amplitude TH. The pion’s electromagnetic form factor, 

for example, can be written as [5] 

Q2%Q) = &I jidylQ*h,Q) GI(x~,Y~,Q) 4(yi,Q) { 1+ 0 (;)} (5) 
0 0 

where [dy] = dyldyab(l - Ciy;) and Q2 = -q2 is large. Here 4(yi,Q) is the 

probability amplitude for finding the valence q?j Fock state in the initial pion, with 
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constituents carrying longitudinal momentum ylpr and yzpr, respectively; 2’~ is 

the amplitude for scattering the qq state from the initial to the final direction, 

and 4* is the amplitude for the final-state qq to fuse back into a pion. 

The matrix element in eq. (4) contains an ultraviolet divergence coming from 

the light-cone singularity at z2 = 0. This divergence is regulated by introducing a 

momentum cut-off or other renormalization scale equal to Q. Any regulator that 

is both Lorentz invariant and gauge invariant can be used, provided a consistent 

scheme is used when computing both the perturbative hard-scattering amplitude 

TH and the distribution amplitudes. 

Using the expansion (3), C&(X, Q) at large Q2 has the form3 

dxi, Q) = ~1x2 C pn(Xl - x2, as(Q))ii?;t(Q) (6) 
n=O 

where 

cn) (7) 

The functions Pn satisfy 

(8) 
+ J LdY] V(Xi, Yi/i, as) pn(Y1 - Y2, %) - 

If p = 0 the left-hand side of eq. (8) is zero. The kernel V can be defined 

systematically order by order in perturbation theory: 

V(xi, yi, as(Q)) = * Vl(%Yi) + V2(%Yi) + --- (9) 

Clearly 4(x, Q) is only logarithmically dependent on Q; the main Q-dependence 

of an exclusive process is due to 7’~. A detailed procedure for computing V is 
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given in ref. [3]. Th e anomalous dimensions ~(~)(a~) for the operators Ocij (n) have 

already been determined through two loops in the analysis of moments in deep 

inelastic scattering. Thus the diagonal matrix elements of Vz are known. 

If conformal symmetry is applicable, then the off-diagonal matrix elements 

of V and the Pn are kinematically determined by the anomalous dimensions 

~(~1 (cr8), in a way which is analogous to the partial wave expansion for the 

rotation group [4]. The general result for operators Ocnl bilinear in spin zero 

fields in scalar field theory is 

w4 o( (1 ',,) d",: (1 -x 1 
2 [n+(d-1)+&&b)] (10) 

where d is the canonical dimension of c$ (d = 1 in 4-dimensions, d = 2 in six 

dimensions). For spin t fields, with Ocn) as defined in eq. (3) conformal symmetry 

predicts 

w4 Oc (1 ‘,,I fx: (1 - x 2 [~+(d-+)+&z] > (11) 

where d is the canonical dimension of $J (d = i in 4-dimensions, d = k in 2 

dimensions). The results are true in any space-time dimension. Note that for 

the rj4 interaction in 4-dimensions and the ($$) 2 interaction in 2-dimensions 

the potential VI is a contact potential with measure (1 - x2)‘, thus yielding 

Pn(x) = Fn(x) = Legendre polynomials for leading order, in agreement with 

eqs. (10) and (11). (Actually only n = 0 appears in the potential.) In the 

case of 43 in 6-dimensions and gauge theory in 4-dimensions, the leading order 

polynomials are the Cz’“, as expected. 

If conformal symmetry is applicable to a renormalizable theory with /3 = 0, 

then the first order corrections to the Pn(x) must be regulator- and scheme- 
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independent, since the anomalous dimensions do not depend on the ultraviolet 

regulator to this order. However, by explicit two-loop calculations we find that 

this prediction is not correct. 

The analysis is particularly clear in rj3 theory in six dimensions. In [43]s 

we find that the conformal symmetry prediction is correct using dimensional 

regulation but not in Pauli-Villars regularization. By definition, the ultraviolet 

divergence in the distribution amplitude 4(x, Q) is removed in Pauli-Villars reg- 

ularization by subtracting diagrams with the gluon mass set equal to Q. The 

distribution amplitudes in this scheme and dimensional regularization can be re- 

lated to each other through a correction to the evolution kernel beyond leading 

order. In ref. [3] we give a complete calculation of the distribution amplitude and 

the evolution kernel through two loops for [d3]e. We keep only the crossed-ladder 

and ladder contributions, so that the distribution amplitude satisfies the Callan- 

Symansik equation for /? = 0. We then find that the functions Pn(xr - x2, CX~), 

the eigensolutions of the evolution equation for the distribution amplitude, are 

exactly those predicted by conformal symmetry (eq. (lo), with d = 2), but that 

this result holds only for dimensional regularization, not Pauli-Villars. 

The origin of the difference between the regulators is that in dimensional reg- 

ularization [6 - 2~ dimensions] the coupling constant acquires non-zero dimension. 

Thus the scale invariance of the theory is destroyed, and the p-function is non- 

zero even in leading order: 

d 
d-hap 

ci = P(a) = ---EL11 + * - - # 0 . (12) 

Since the two-loop ladder graphs contribute at order 1/c2, there is a surviving l/e 

contribution to the kernel V at order o2 from p # 0. Including this contribution, 
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one retains conformal symmetry to this order using dimensional regularization, 

whereas it is broken using the Pauli-Villars regulator. This effect reflects the 

special sensitivity to the infrared region in the two-loop calculation. 

We find that also in gauge theory conformal symmetry cannot be simul- 

taneously true in both Pauli-Villars and dimensional regularization. In fact 

explicit calculations [6] of the second order evolution kernel in gauge theories 

(Abelian QED and SU(N,) &CD) using dimensional regularization and PO = 0 

(NF = W/2) N) d o not agree with the conformal symmetry prediction. The 

results have been checked in both light-cone and Feynman gauges. This conflict 

is unresolved, and hints at an even subtler breakdown of conformal symmetry in 

gauge theory. 

If the source of this breakdown can be identified, then conformal symmetry 

could still be useful as a guide to the higher order corrections to the distribution 

amplitude. More important, this unexpected breakdown points to new effects 

which control the short distance structure of gauge theory, and gives caution to 

the formal use of conformal symmetry results. 

The proof of conformal symmetry for renormalizable field theories with p = 0 

given by Parisi [2] depends on the existence of subtractions at zero four momen- 

tum; in general this subtraction procedure may not commute with the zero mass 

limit of the theory. In addition, the right-hand side of the Ward identity for 

conformal symmetry is set to zero in the limit p =+ 0 . However, we notice 

this right-hand-side contribution is more singular in the infrared massless limit 

than the corresponding terms in the Ward identity for scale transformations. 

(Compare the r.h.s. of eqs. (2) and (4) of ref. [2].) These effects could be the ori- 

gin of the fundamental inconsistencies with conformal symmetry which we have 
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discussed here. 
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