
SLAC - PUB - 3752 
August 1985 
T 

VACUUM STABIiITY BOUNDS ON ENHANCED 
COUPLINGS OF LIGHT HIGGS FIELDS* 

MIRJAM- CVETIC AND CHRISTIAN R. PREITSCHOPF 

Stanford Linear Accelerator Center 

Stanford University, Stanford, California, 94305 

and 

MARC SHER 

Division of Natural Sciences II 

University of California, Santa Cruz, CA 95064 

ABSTRACT 

In the standard model with more than one Higgs doublet, Yukawa couplings 

can be enhanced by ratios of vacuum values. Georgi, Manohar and Moore argued 

that an enhanced t-quark coupling to a light Higgs could destabilize the effective 

potential of this Higgs; they used this argument to rule out an enhanced t-quark 

coupling to the ~(8.3). W e extend their argument to Higgs fields of any mass, 

critically examine the sensitivity of the result to higher order corrections and to 

effects of the additional scalars, and we examine the validity of the effective field 

theory approximation. 
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One of the interpretations of the now-defunct ~(8.3) was that it was a Higgs 

boson whose coupling to the t-quark was enhanced by a factor of 10. Such an 

enhancement can occur in two-B&s models in which the ratio of vacuum expec- 

tation values, vz/vr, is about 10. A crucial factor in determining the properties 

of such a particle is knowing whether the couplings to the charge-2/3 quarks are 

also enhanced. Shortly after the discovery of the <(8.3), Georgi, Manohar and 

Moore[l] (GMM) argued that the requirement of vacuum stability eliminated 

this possibility. They argued that if vz/vr was large, then one scalar (the ~(8.3)) 

would get a mass of O(Q) and the others would get a mass of O(vz). One can 

then integrate out the heavy degrees of freedom and consider the effective field 

theory (EFT) below vz. By considering the self-coupling, X, of the light scalar 

field, they showed that X, while positive at q2 = vf, is driven negative at q2 < vi 

by contribution of the enhanced coupling of the t-quark to the renormalization 

group equation (RGE). Thus the scalar potential for the light field is unstable if 

the coupling to the top quark is enhanced. 

It is easy to see where this instability comes from. In the standard, single 

Higgs model, a fermion will contribute with a negative sign to the one-loop term in 

the effective potential. Thus a sufficiently heavy fermion will cause the potential 

to be unbounded from below. This was first used to bound fermion masses in the 

standard model in Refs. [2-31, and a more detailed and accurate renormalization 

group analysis was done in Refs. [4-51. In the EFT for q2 < tri mentioned above, 

the scale of the potential (corresponding to 250 GeV in the standard model) is ur, 

which is of order 25 GeV. If one simply scales all masses of this effective theory 

up by a factor of 10, then one has a theory whose potential looks just like the 

standard model (except for gauge boson loops), with an 83 GeV Higgs and a 400 

GeV top quark. Such a potential, as found in Refs. [2-51, is unstable due to the 

one-loop effect is of the heavy fermion. 

The ~(8.3) is no longer with us, but the GMM argument will still apply to 
- - 

any situation in which there is a light Higgs and an enhanced t-quark coupling. 

In this letter, we calculate the upper bound to the enhancement of this coupling 
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for any Higgs mass. It is shown that, for a light Higgs, this bound is much more 

severe than any previous bounds; in the EFT approach uz/ur s 2. We then 

examine the approximations used by GMM more carefully; first estimating the 

higher order effects by considering the renormalization scheme dependence of the 

calculation, then including the effects of the fields with masses of O(Q) on the 

RGE’s and examining the validity of the EFT approximation (which is certainly 

suspect if uz/vr - 2). 

In the two-Higgs model consistent with the discrete symmetry Qz + -@z, 

the potential is 

+ ~3(01) (02) + X4(@@,) (O&) + 4 x5 [(#a,)2 + (@@J2] 
(1) 

. 

The masses of the x+ (charged Higgs), x0 (pseudoscalar Higgs) and 4 and q 

(scalar Higgs) are 

m;, = -(A, + X5) (v: + 41 

m;, = -2x&f + u;) (2) 
mi,, = +2X24 + 2X14 f (2Xavi - 2XlV32 + 4(X3 + X4 + X5)2t# 

where ur and uz are vacuum expectation values of @r and !Dz, respectively. Con- 

straints for the minimum of the Higgs potential are the following: 

{~l,~2, --x5, (-A, - x5),4hx2 - (x3 + x4 + x5)2} > 0 - (3) 

In the limit ur/vz -+ 0, the neutral scalar masses become 

mi = 4X2Vi 

(4 
M2 s rni = [4X1 - (X3 + x4 + x5)2/x2] 4 - - 

and we have one light scalar and four heavy scalars. Integrating out the heavy 

degrees of freedom and defining X s X1 - (X3 + X4 + X5)2/4X2, the potential for 
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4 is V(4) = f X(42 - 2~1)~. As discussed in Ref. [5], one-loop corrections to 

this potential can be found by replacing X by X(q) where q is the energy scale. 

Strictly speaking,‘this neglects the anomalous dimension of 4 and the running 

of ur which, as shown in the renormalization group analysis of Ref. [5] give very 

small effects. The RGE for X is’lcl’ 

dX - = 24X2 + (12h2 - 9g2 - 
dt 

3g12)X - 6h4 + f g4 + ; g2g12 + ; g14 (5) 

where h = mt/ul, t = &en z and we are assuming rnt = 40 GeV. By requiring 

that X(q = uz) be positive (above vz there is no effective theory), one gets a lower 

bound on X(ur) which translates into a lower bound on M E m,p. In the RGE, 

we follow GMM and only include the effects of the Yukawa coupling for q2 > rn; 

and of the gauge coupling for q2 > M&. The results are shown on the solid 

line in Fig. 1. We see that the bound on the enhancement is quite strong (2 2 

for rn+ < 10 GeV), much stronger than any previous bounds[&8]. The ~(8.3) is 

clearly excluded, as is the x(2.2), with an enhancement of - 4. The solid line 

in Fig. 1 does turn over for uz/vr - 12, going back towards rno = 0. However, 

perturbation theory breaks down for uz/ur - 25, so, this turnaround may not be 

meaningful. 

We now exainine the approximations used in the calculation more carefully. 

In GMM, the contribution of the Yukawa coupling to the RGE was neglected 

2 for q2 5 q! = mt . An alternative possibility would be to neglect this contribution 

for q2 2 qf = 4mf, as is done in considering the contribution of a heavy fermion to 

the QCD beta-function[9]. The third possibility is to neuer neglect the Yukawa 

coupling contribution; this mass-independent scheme is precisely that used by 

Coleman and Weinberg[lO] in their pioneering paper. These three possibilities 

are all reasonable renormalization procedures. A renormalization scheme should 

be chosen in such a way as to minimize higher-order corrections; without doing a 

higher-order calculation in a similar problem, we have no way of knowing which 

is preferable. We have therefore repeated the calculation using all three schemes; 
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the discrepancy is a measure of the uncertainty due to higher-order corrections. 

The dotted line in Fig. 1 corresponds to the scheme in which the Yukawacoupling 

contribution to Eq. (5) is dropped for q2 < qf = 4m:, and the dashed line is 

for the mass-independent scheme in which it is never dropped. We see that the 

uncertainty is extremely small for a light Higgs mazs, but increases somewhat for 

larger (2 20 GeV) Higgs masses. In Fig. 2, we have examined the sensitivity of 

the bound to mt, varying mt from 30 to 50 GeV. 

In the EFT approximation, all fields with masses of O(Q) are integrated out. 

It is possible, however, that due to small couplings, some of the fields may have 

masses which are small enough to contribute to the RGE’s at values of q2 well 

below vi. We can improve the EFT approximation by keeping the contribution 

to the RGE’s of these fields for values of q2 greater than their masses. This was 

done above for gauge bosons by keeping the gauge boson contribution to Eq. (5) 

for q2 > M&. We have also found that if one includes this contribution for all 

q2 instead, then the change in the results is negligible due to the small value of 

gauge coupling constant g and g’ compared to the Yukawa coupling h. 

The nature of the curves presented in Figs. l-2 can also be analyzed by using 

the analytic solution for X(q) which in turn determines vz/vr as a function of rn4. 

For the case qf = 0 one obtains the following analytic solution: 

u2 (1+(~+42) 
0 = 

-(& _ I),; + 4m: WWt/Sd) 
- 
Ul 

1 (-45 - 1)mi + 4mp 1 (6) 
where u2 E uf + ui = (173 GeV)2. This solution is in agreement with the 

numerical result presented in Fig. 1 for the dashed line. From Eq. (6) one can 

easily see that when [(uz/ur)’ + 11 en vz/vr >> (4r2u2/@mf), rng approaches 

its fixed point value rnti rnt = l.llmt. For the case with rnr = 40 - - f*p. = (&- l)W 

GeV the fixed point rnp* = 44.4 GeV is reached to within a few percent when 

u2/q > 10. 



i On the other hand when qj = 4rni or qf = rni the analytic solution has a 

complicated form. In this case one can see that the fixed point for rnd is not 

reached. Namely, when ~/or L’dm, the Yukawa coupling h does not 

contribute to the RGE (5) for a range of q between vr and qt. This results in a 

departure from the dashed curve in Fig. 1 in such a way that rn4 increases with a 

smaller slope as v2/vr is increased. Eventually, long before the fixed point for rnd 

is reached, the turnover takes place, so that rnd starts decreasing with increasing 

Q/Q. For the case with rnt = 40 GeV this departure from the dashed line occurs 

when 1)~ /VI 2 1.9 and v2/vr 2 4.2 for qf = 4m: and qf = rni, respectively. These 

values for v)z/ur are significantly smaller than the value u2/vr > 10, which is near 

the fixed point. 

We now turn to the effects of additional scalars. To include these effects, it 

is necessary to use the full RGE’s: 

dh - = 24X; + 2x; + 2x& + A; + A: + 3(4h2 - 3g2 - g12)& 
dt (74 

+ !! 3 i! - 8 g4 + 
4 

g2g’2 + 8 g”’ 6h’ 

db -= 
dt 

24X; + 2x; + 2X& + A; + A: - 9g2& - 3gt2& ( w 

+ 2 g4 + 3 g’2g2 + 3 g” 
8 8 8 

dki - = 4(X1 + X2) (3X3 + A,) + 4X; + 2X; + 2X; + 3(2h2 - 3g2 - g12)X3 (7~) dt 

+ zig4 - SgZg’2 + 3g’4 
4 2 4 

dh - = 4(X1 + X2 + 2X3 + X4)X4 + 8X: + 3(2h2 - 3g2 - g12)X4 + 3g2g12 
dt 

(7d) 

d&i - = x5[4x1+4x2 +8x3+12& -9g2 -3g12 +6h2]. 
dt (74 

- - 

Equation (5) is obtained from Eqs. (7) by ignoring the contribution from X2 

X3, X4 and X5. One can now include the effects of other scalars by integrating 
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the other RGE’s. Consider, for example, the effects of X5. If Xs is large, then ml, 

is large and thus X5 will not contribute to the RGE’s since X5 only contributes for 

q2 > ml,. If it is small, then rn-$, is small and X5 will contribute to the RGE’s. 

However, the effect will be small simply because X5 is small. We have found the 

value of X5 which produces the largest effect on our results, and found the size 

of the effect to be negligible. The same is true for Xz and X4.1Fa’ 

A different result occurs when considering the scalar coupling, X3.'Fa' The 

reason is simple; as can be seen from Eq. (2), it is possible to have X3 large and 

all scalar masses small as long as the minimum constraints (3) are satisfied. This 

necessitates some fine-tuning, of course, since xr must be very near x:/4& in 

order for the light Higgs to remain light. Thus, X3 can contribute to the RGE’s 

for all values of q2, even if it is large. If X3 > 0, we find that bound in Fig. 3a, 

where we have plotted the bound for X3 = 0, 1,2 and 3. The bounds in this case 

are weakened somewhat, but not enough to salvage the x(2.2) or ~(8.3). When 

X3 < 0, the entire picture is different. When X3 is positive or small, as in all 

previous cases, the smallest Higgs mass would occur when X(Q) = 0, and the 

requirement that X(Q) > 0 ensured that X > 0 between ur and vz. In the case of 

X3 negative and large, however, 2 < 0, thus the vacuum stability requirement 

(that X > 0 between ur and uz) mezs that X( up must be large. We have plotted ) 

the resulting bound in Fig. 3b for X3 = 0,-l,-2 and -3. We see that the 

-bounds are weakened considerably if X3 is large and negative. For how large a X3 

should perturbation theory be considered valid? This has been a subject of much 

discussion; arguments[ 111 b ased on the triviality of X44 theory generally give a 

bound of X - 1. If one continues the RGE’s to higher scales, one finds that if 

[X3(212)1 2 1.5 then X3 reaches a Landau pole for scales in the TeV range. In the 

absence of a clear upper limit to the perturbatively reliable value of X3, we have 

simply plotted the bound for various values of X3 and will let the reader decide 

whether the GMM bound can be significantly weakened by a large value of X3. 

How is this potentially large effect of X3 compatible with the EFT approxi- 
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mation? In making the EFT approximation, one does not assume u~/u~ is small, 

but rather that f(Xi)v~/u~ is small, where f(Xi) is a ratio of some combination of 

the Xi. In the case where X3 is large, this function depends on X3/ 7 4x1& - X3, 

and thus the function is large if we have a large X3 and light Higgs scalars (i.e. 

4X1X2 - Xi is small). 

The new features of the bound which arise when the evolution of all the X; 

parameters has been taken into account have its origin in the structure of the 

RGE’s (7). Namely, one observes that dXi/dt’s are in general quadratic functions 

of X;‘s. Thus, RGE’s have in general two sets of fixed points (one attractive and 

one repulsive). The attractive fixed points are: 

@P. =T(&-1), x~-45=o. , , , 

Depending on the initial choice of Xi(v2)‘s one can be in a region of either at- 

tractive fixed points or repulsive ones.‘F41 Results are especially sensitive to the 

initial choice of X3. E.g., for x3(~) 6: 0, one is in a region of repulsive fixed 

points. In this case the evolution of Xi’s yields significantly different results from 

the one which arises from the evolution of effective X determined by Eq. (5). 

Finally, we can consider (in the case where X3 is not large and negative) 

the validity of the EFT approximation. By considering the effects of all of the 

scalars and gauge bosons, we have included many of the higher-order (in v~/v~) 

effects. Another source of corrections involve O(u~/u~) corrections to the mass of 

the light Higgs. The mass given in Eq. (3), including first order corrections, gets 

multiplied by 1 - (x3 + x4 + ~5)2v~/4~,v, 2 2. Including this correction changes our 

figures very slightly (the change in vr /u2 for a given mass is 5 0.3), primarily 

because when u)p/ur is relatively small, the curves are fairly flat and so a small 

change in the Higgs mass is unimportant. 

- Another possible source of corrections will come from mixing between the 

two neutral scalars, which is O(v:/v~). Th e only significant effect of this mixing 

will be in the Yukawa coupling. The coupling to the weak eigenstate is mt/vl, 
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but the coupling to the mass eigenstate is mt cos O/VI. Since cos 0 < 1, it is easy 

to see that, if one uses (vz/vr) cos 8 on the ordinate of Figs. l-3, then the bounds 

are strengthened.. 

It thus appears that corrections to the EFT approximation will not signifi- 

cantly change our results. A complete analysis of the full potential without the 

EFT approximation would necessitate a full renormalization group analysis on 

a potential of more than one field. Except in certain special cases, such as the 

EFT approximation or Coleman-Weinberg symmetry breaking,[l2] such an anal- 

ysis has not been done, is extremely complicated, and beyond the scope of this 

letter. 

We have examined different approaches in determining the upper bound of 

the ratio of vacuum expectation values vz/ur as a function of the light neutral 

Higgs mass rn4. Using the EFT approach we determined the bound with different 

prescriptions for the t-quark contribution to the one-loop RGE (Fig. l), and 

different choices for mt (Fig. 2). In all cases the nature of the bound is the 

same and it is in agreement with the GMM result[l] for light Higgs masses, thus 

excluding an enhanced t-quark coupling of ~(8.3) and x(2.2). If one includes the 

effects of all the Xi parameters the results are not changed significantly except 

when X3 is large and negative (Fig. 3b), in which case bounds are weakened 

considerably. 
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FIGURE CAPTIONS 

1. The upper bound to u2/vr. as a function of the light Higgs mass M E rnd, 

calculated in the effective field theory approximation with mt = 40 GeV, 

cutting off the top quark contribution to the beta-function at mt (solid 

line), 2mt (dotted line) and 0 (dashed line). 

2. The upper bound to v2/vr as a function of the light Higgs mass M s rn4, 

calculated in the effective field theory approximation with different top 

quark masses. 

3. The upper bound to us/u1 as a function of the light Higgs mass M E rn4, 

calculated for various values of As. In (a), X3 > 0 and in (b), X3 < 0. 
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FOOTNOTES 

Fl This disagrees slightly with the equation used in Ref. [l]. 

F2 We redefined 5; to equal X4 + X5, then cut off i at the charged Higgs mass 

(-x(v; + v;)). W h e ave assumed throughout that none of the Xi’s is ex- 

tremely small since radiative corrections will generate effective Xi’s of order 

a2 (except X5). 

F3 For the sake of simplicity we put X4 = X5 = 0 in this analysis. 

F4 Note that the initial choice for effective X, i.e., X(v2) = 0, is always in the 

regime of the attractive fixed point Xf*P* = $ (fi - 1) of RGE (5). 
- - 
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