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ABSTRACT 

Kaluza-Klein relativity is an exotic version of Kaluza-Klein theory in which 

the four dimensional space-times are submanifolds embedded in the high dimen- 

sional space. Dimensional reduction is obtained by reversing the embedding 

procedure. That is, given a space with dimension D > 4, find the largest dimen- 

sion and geometries of its submanifolds obeying a dynamical principle. Using 

gravitational Casimir-like effect, these submanifolds would collapse into a single 

one. However this collapse is prevented by the presence of large Dirac fermionic 

masses associated with the embedding symmetry group. These masses reduce to 

the usual (small) masses in the limit of vanishing gravitation. 



1. Kaluza-Klein Relativity 

It has been suggested on several occasions and under different contexts that a 

high dimensional theory can be derived from the assumption that any four dimen- 

sional space-time is a subspace locally and isometrically embedded into another 

space. The extra dimensions required by the embedding would account for the 

gauge degrees of freedom.lm3 Such hypothesis has been investigated to some ex- 

tent, particularly in the case where the embedding space is a 4 + n dimensional 

flat space M4+n. The result, called Kaluza-Klein (special) relativity resembles 

but is distinct in many respects form the standard Kaluza-Klein theory.4 

The use of a flat space greatly simplifies the embedding problem due to 

the vast number of known results. The maximum dimensionality required to 

differentially embed a space-time is 14 but this limit reduces to 10 when the 

embedding is given by analytic functions. These embeddings are determined up 

to a isometry SO(p,q) of M 4+n (called the embedding symmetry). The purpose 

of this note is to investigate the mass spectrum associated with this symmetry 

and its influence on the problem of dimensional reduction. Any chirality related 

questions are left to a subsequent paper. 

While the embedding procedure enables us to derive extra dimensions out of 

four, the following dimensional reduction scheme works like an inverse embedding 

procedure: we assume that the world started with a D > 4 dimensional space 

with metric signature (p, q) and look for the physical conditions leading to the 

formation of submanifolds with the highest possible dimension d. 

In the case of analytical embedding d relates to D as d(d + 1) = 20 and in - - 
the case of differentiable embeddings the relation is d(d + 3) = 2D.4 We may 

set D = d + n and use D or n as phenomenological inputs. For example we may 
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take D = 10 from superstrings or n = 7 from the standard SU(3) x SU(2) x U(1) 

model to obtain analytically embedded manifolds with d = 4. Those interested 

in a SO(10) GUT may want to consider differentiable embeddings with n = 10, 

again obtaining d = 4. 

Once obtained the dimensionality of these manifolds, denoted by VJ, we may 

ask about their geometries. In an isometric embedding the metric of 74 is in- 

duced by that of MD. This is sufficient to establish a set of constraints on va, the 

Gauss-Codazzi-Ricci equations, involving three sets of tensor fields: the metric 

gij, the second quadratic form &j, and the torsion vector xi of v4. However, 

after eliminating all interdependencies between these equations resulting from 

the Bianchi identities, we end up with less equations than variables so that an 

additional dynamical principle is required. Following the Kaluza-Klein idea, that 

dynamical principle uses the Einstein-Hilbert action imposed on the high dimen- 

sional space itself, rather than directly on the submanifolds (as it is done in string 

theory). Thus, the flat space MD is regarded as a particular solution of the D 

dimensional Einstein’s equations resulting from that principle, representing the 

ground state of the theory. 

Setting D = 4+n it follows from that dynamical principle that each subman- 

ifold vd generate a n-parameter family of manifolds orthogonal to the n extra 

dimensions, each member of which being a solution of Einstein-Yang-Mills equa- 

tions with gauge group SO(p - 3, q - l), called a space-time section Vi.4 Conse- 

quently, the physical phenomena in MD associated with that dynamical principle 

is not restricted to the single &dimensional manifold v4 but it takes place in a - - 
region RD of MD covered by the family of space-time sections. A D-world line 

of a particle in RD would consist of a continuous sequence of points located at 
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each space-time section. This picture is similar to the usual decomposition of 

space-time in local time and space-like sections (as in the Arnowitt-Deser-Misner 

formulation of General Relativity). The difference is that here local time is re- 

placed by the n extra dimensions and the space-like sections are replaced by the 

space-time sections. 

As it happens, the region RD does not extend to infinity along the n-extra 

dimensions but it is bounded by v4 and by another 4-manifold vl, the locus 

of curvature centers of v4, where the metrics of the space-time sections become 

singular. Therefore the physical region of MD relative to the said dynamical 

principle and to 74 is a 4 + n dimensional “sheet” bounded by two &dimensional 

manifolds and with a local thickness a(p) function of the curvature radius p of 

v4. 

The boundary v4 is a particular member of the family of space-time sections 

corresponding to the vanishing of the n parameters. If we apply this condition 

to the Einstein-Yang-Mills equations then the gauge term disappears so that 74 

itself is not a solution of those equations but it is a solution of a compatible set of 

equations Gij = tij(6) where tij(6) depends only on the second quadratic form $ij 

of v4. If we assume that v4 is a solution of Einstein’s equations Cij = tij (source) 

and take it to be the physical space for low energy physics (say as compared to 

10lg GeVs), then Jij may be related to the source. Furthermore an observer in 

v4 may agree that RD is a physical space if points located at different space-time 

sections are identified with a single point in rd. Then, this observer may look at 

the parameter space as an internal space which will appear to him as a bounded - - 
and closed space. Therefore the compactification of this space is an extrinsic 

rather than intrinsic property of itself. 
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The only condition imposed by the embedding on a(p) is that it should be 

smaller than the smallest curvature radius of V4. Therefore a(p) should be small 

under strong gravitational field but it appears to be impossible to derive a quanti- 

tative description of a(p) by geometric means only. However it has been suggested 

that quantum effects of strong gravitational fields in MD produce a Casimir-like 

effect acting on the boundaries v4 and vi, making a(p) shrink to zero.5 In such 

a case we can say roughly that a(p) vary with negative powers of p. 

If quantum effects of gravitation produce a(p) --) 0 we would obtain a full 

dimensional reduction of RD to 74, a process which could be called space-time 

morphogenesis. In reality this may never happen because at some stage fermionic 

matter must appear (so far we have used only bosonic fields). It has been shown 

that the presence of large fermionic masses near the beginning of the universe 

may intervene in the right proportion to halt the collapse of a(p) to zero.6 

2. Dirac’s Equation in A&+,, 

The generalization of Dirac’s equation for the de Sitter space-time was given 

by Dirac in 1935: 

(f%x-M)$=o a = 1,...,5 (1) 

where the de Sitter space-time was embedded in a 5-dimensional space M5 with 

metric qap with signature (p,q) = (4,l) (or (3,2) for the anti de Sitter space- 

time).7 In this case the 4 x 4 matrices are representations of the Clifford algebra 

ldaEP) = qaP in Ms. The mass operator is proportional to the second order 

_ Casimir operator of the embedding symmetry SU(4,l) (or SO(3,2)): 

M2 = f LapLap cl!,/?= 1,...,5 (2) 
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where Lap denote the Lie algebra generator of that group and R is the curvature 

radius of the universe. This generalization is a consequence of the well-known 

property that the de Sitter group contracts into the Poincare group as the con- 

tracting factor l/R tend to zero (which means the flat limit of space-time). Si- 

multaneously the mass operator M transforms into the Poincare mass operator 

in that limit. Such property has led to a great deal of interest in the de Sitter 

group as a cosmological replacement for the Poincare group. The important con- 

sequence of this replacement if it is taken seriously is that gravitation, even at 

the extreme weak level of a cosmological model, would play a role in the particle 

structure, notably in what concern their masses and mass splittings. 8’g As it has 

been noted’ this could mean that local and strong gravitational fields such as 

the one existing moments after the Big Bang cannot be neglected in the analysis 

of fermionic masses. 

The contraction property of the de Sitter group can be generalized to the case 

of a local gravitational field in a straightforward manner. Instead of M5 we take 

the local embedding space M4+n with a group of isometries SO(p, q). Instead of 

R we take the n local curvature radii pA corresponding to each extra dimension 

so that p2 = &ApA”, A = 5 . . .4 + n, cA = fl depending on the signature (p, q). 

Then using l/pA as contracting factors, as pA + 00 we obtain the contraction4” 

SO(p,q) + p4 x SO(P - 3,q - 1) * 

Therefore it is possible to generalize (2) to a local gravitational field using the 
- - 

SO(p, q) covariance. Constructing the Clifford algebra over M4+n and finding its 

representations we obtain a set of matrices IQ and 2[4+n1/2 component spinors. 
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Then the equation corresponding to (2), covariant under SO(p, q) is 

-(I-& - M(p)) 11, = 0 a= 1,...,4+n, (3) 

where now M(p) is proportional to the second order Casimir operator of that 

group: 

L,p Lap M2(p) =K2(p) p2 , Q,p=1,...,4+n (4 

where Lap is a Lie algebra generator of SO(p, q). The factor K(p) was included 

to eliminate mass divergence at extreme gravitational field. Therefore we require 

that hn? K(p)/p = 0 and to avoid interference with the group contraction process 

we also require that lip+ K(p) = 1. Again as SO(p, q) contracts in the flat limit 

of the space-time v4, M(p) tend to the PoincarG mass operator. 

For an observer sitting in v4 Eq. (3) appears as if projected (that is re- 

stricted) to v4: 

(r”a~+I’A~~-M)~lvd =0, i= l,..., 4, A=5 ,..., 4+n. (5) 

where as in conventional Kaluza-Klein theory, PAdA is interpreted by that ob- 

server as an internal mass operator. Therefore the total mass operator is PA&t - 

M. Remembering that for that observer the extra coordinates appear as peri- 

odic, $ can be harmonically expanded in these coordinates. If the observer does 

not possess a high energy probe he can detect only the zero mode $J(‘) of that 

expansion so that at low energies (5) reduces to 

- - 
(ridi - M) $b(O) = 0 , i = 1,. . . ,4 . 

In the flat limit of v4 this equation reduces to the usual Dirac equation (in a 

high dimensional spinor representation) with the usual mass spectrum. 
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It is also possible that the observer while still in v4 can use a high energy 

probe so that a dependence of $ on the extra coordinates is detected. In this 

case the two mass terms in (5) contribute to the total mass (nonzero modes being 

considered). The internal mass term ‘yAaA?+!Jlv, is the same as the conventional 

Kaluza-Klein theory, proportional to l/a(p). If we take that at the Big Bang 

a(p) + 00 this term does not contribute to mass at that moment. However soon 

after that, quantum gravitation imposes that a(p) becomes small to the order of 

Planck’s length rcg, so that this term contributes to large fermionic masses. The 

second contribution to mass given by M is zero at the Big Bang itself pA + 0 

but again, as u(p) --+ rco (4) indicates that this term contributes to large masses. 

It may sound strange to have two mass terms contributing to large masses at 

the beginning of the universe. In fact we have only one mass operator and the 

division in two terms is only a particular view of the four dimensional observer. 

Notice that in (4) LapLap also contain internal operators. 

As the universe expands and gravitation becomes weak (pA + 00) the con- 

tribution from IAdA vanishes (because only $J(‘) appears) while the contribution 

from M gives masses approaching the observed values. 

In conclusion we can say that considerations on the symmetry SO(p, q) and 

the corresponding covariant Dirac equation makes it possible to halt the gravi- 

tational Casimir effect soon after the beginning of the universe and still end up 

with the usual fermionic masses when the universe expands. 
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