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ABSTRACT 

We review the application of perturbative QCD and light-cone Fock 

methods to the structure of hadrons and nuclei and their exclusive and 

inclusive interactions at short distances. 
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1. INTRODUCTION 

The basic premise of the lectures at this school is the validity of the Standard Model SU(3) x 

SU(2) x U(1) as the theory of strong, electromagnetic, and weak interactions. In particular, we 

now have a fundamental theory of the basic interactions and degrees’of freedom of both hadrons 

and nuclei. The postulated theory is quantum chromodynamics (QCD), the renormalizable the- 

ory of spin-l/2 quark fields and spin-l gluon fields, based on an underlying SU(3)-color gauge 

symmetry. 

In principle, QCD could give just as accurate a description of hadronic phenomena as quantum 

electrodynamics provides for the interactions of leptons, but because of its non-Abelian nature, 

calculations in QCD are much more complex. The central feature of the theory is, in fact, its 

non-perturbative nature which leads to the confinement of quarks and gluons in color-singlet 

bound states. Because of the confinement of the colored quanta, observables always involve the 

dynamics of bound systems; hadron-hadron interactions are thus at least as complicated as the 

Van der Waals and cov+nt exchange forces of neutral atoms. r - 

Unlike atomic physics, the constituents of hadrons are highly relativistic; because the forces 

are non-static, a hadron cannot be represented as a state of fixed number of quanta at a fixed 

time. The vacuum structure of QCD relative to the perturbative basis is also complex; virtually 

every local color-singlet operator constructed from the product of quark and gluon fields has a 

non-zero vacuum condensate expectation value. 

At large distances, the gluonic sector of QCD has been shown to be effectively equivalent-to 

a non-linear sigma model of psuedoscalar mesons, at least for large number of colors.’ The topo- 

logical solitons (Skyrmions) can be consistently identified as baryons. The connection between 

this representation of hadrons at long wavelength and the intuitive concept of the mesons and 

baryons as composites of quark fields at short distances is at this time only vaguely understood. . 

. 

Despite the complexity of the theory, QCD has several key properties which make calculations 

tractable and systematic, at least in the short-distance, high momentum-transfer domain. The 

critical feature is asymptotic freedom: the effective coupling constant cr8(Q2) which controls the 

interactions of quarks and gluons at momentum transfer Q2 vanishes logarithmically at high Q2: 

47r 
a’(‘21 = p log(Q2/A&D) 

(Q2 > A2) . (14 

[Here /3 = 11 - 3 nf is derived from the gluonic and quark loop corrections to the effective 

coupling constant; nl is the number of quark contributions to the vacuum polarizations with 

rnt ~5 Q2.] The parameter AQCD normalizes the value of a,(Q$) at‘ a given momentum transfer 

Qg > A2, given a specific renormalization or cutoff scheme. Recently aI has been determined 
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fairly unambiguously using the measured branching ratio for upsilon radiative decay Y(b6) + 

a,(O.157 MT) = a,(l.S GeV) = 0.23 f 0.03 . (1.2) 

Taking the standard MS dimensional 

In more physical terms, the effective 

icF = 413 for n, = 31,’ 

m 4zav(Q2) 
V(Q2) = -bF Q2 

regularization scheme, this gives Am = 119- 34 ’ 52 MeV. 

potential between infinitely heavy quarks has the form 

(1.3) 
av(Q2) = /3 lop&A9 (Q2wA;) 

where Av = A=e5f6 ,N 270 f 100 MeV. Thus the effective physical scale of QCD is - 1 I;‘. 

At momentum transfers beyond this scale, aI becomes small, QCD perturbation theory becomes 
- 

applicable, and a micr&%pic description of short-distance hadronic and nuclear phenomena in 

terms of quark and gluon subprocesses becomes viable. 

Thus perturbative calculations for processes in which all of the interacting particles are forced 

to exchange large momentum transfer is justified. Complimentary to asymptotic freedom is the 

existence of factorization theorems for both exclusive and inclusive processes at large momentum 

transfer. In the case of exclusive processes (in which the kinematics of all the final state hadrons 

are fixed) the hadronic amplitude can be represented as the product of a hard-scattering amplitude 

for the constituent quarks convoluted with a distribution amplitude for each ingoing or outgoing 

hadron. The distribution amplitude contains all of the bound-state dynamics and specifies the 

momentum distribution of the quarks in ther hadron. The hard scattering amplitiude can be 

calculated pertubatively in powers of a8(Q2). The predictions can be applied to form factors, 

exclusive photon-photon reactions, photoproduction, fixed-angle scattering, etc. 

In the case of high momentum transfer inclusive reactions (in which final state hadrons are 

summed over), the hadronic cross section can be computed from the product of a perturbatively- 

calculable hard-scattering subprocess cross section invovingquarks and gluons convoluted with the 

appropriate quark and gluon structure functions which incorporate all of bound-state dynamics.’ 

Since the distribution amplitudes and structure functions only depend on the composition of 

the respective hadron but not the nature of the high momentum transfer reaction, the compli- 

cated non-perturbative QCD dynamics is factorized out as universal quantities which may be 

parameterized to give useful phenomenological predictions. 

The general structure of QCD indeed meshes remakarbly well with the facts of the hadronic 

world, especially quark-based spectroscopy, current algebra, the approximate point-like structure 
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of large momentum transfer inclusive reactions, and the logarithmic violation of scale invariance 

in deep inelastic lepton-hadron reactions. QCD has been remakably successful in predicting the 

features of electron-positron and photon-photon annnihilation into hadrons, including the magni- 

tude and scaling of the cross sections, the production of hadronic jets with patterns conforming to 

elementary quark and gluon subprocess, as well as phenomena associated with the production and 

decay of heavy hadrons. Recent Monte-Carlo studies incorporating some features of coherence 

(angle-ordering) have been very successful reproducing the detailed features of the two-jet (qg) 

and three-jet (qqg) reactions. All of the experimental measurements appear to be consistent with 

the basic postulates of QCD, that the the charge and weak currents within hadrons are carried 

by fractionally-charged quarks, and that the strength of the interactions between the quarks and 

gluons becomes weak at short distances, consistent with asymptotic freedom. 

-- 

The central unknown in the QCD predictions is the composition of the hadrons in terms 

of their quark and gluon quanta. Recently several important tools have been developed which 

allow specific predictions for the hadronic wavefunctions directly from the theory. A primary 

tool is the use of light-cone qua@ization to construct a consistent relativistic Fock state basis for 
-L- r - 

the hadrons in terms of quark and gluon quanta. The distribution amplitude and the structure 

functions are defined directly in terms of these light-cone wavefunctions. The form factor of a 

hadron can be computed exactly in terms of a convolution of initial and final light-cone Fock 

state wavefunctions. 

A second important tool is the use of QCD sum rules to provide constraints on the moments. 

of the hadron distribution amplitudes.’ This method has yielded important information on the 

possible momentum space strucure of hadrons. A particularly important advance is the construc- 

tion of nucleon distribution amplitudes, which together with the QCD factorization formulae, 

predicts the correct sign and magnitude as well BS scaling behavior of the proton and neutron 

form factors. 

Another recent advance has been the development of a formalism to calculate the moments 

of the distribution using lattice guage theory.6 The initial results are extremely interesting - 

suggesting a highly structured oscillating momentum-space valence wavefunction for the meson. 

The results from both the lattice calculations and QCD sum rules also demonstrate that the light 

quarks are highly relativistic in the bound state wavefunctions. This gives further indication that 

while potential models are useful for ennumerating the spectrum of hadrons (because they express 

the relevant degrees of freedom), they are not reliable predicting wavefunction structure. 

The plan of these lectures is then as follows. A brief introduction to the construction of a Fock 

representation of hadronic wavefunctions on the light-cone is given in Chapter 2. The explicit 

construction and quantization of field theories on the light cone including the application to QCD 

is given in Appendixes A and B. The application of this formalism to large momentum transfer 
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processes is presented in Chapter 3. The constraints imposed by QCD sum rules on the hadronic 

wavefunctions is reviewed. We also discuss the explicit predictions of QCD for the form factors of 

bound states of heavy quarks. In thii case the distribution amplitude is fixed by non-relativistic 

constraints. An interesting prediction is an exact zero in the cross section for the production of 

two heavy psuedoscalar mesons at a predictable energy in electron-positron annihilation. 

In Chapter 4 we discuss some novel applications of QCD to exclusive nuclear processes. The 

role of hidden color in multiquark systems is discussed in Chapter 5 as well as rigorous constraints 

on the short distance behavior of the nuclear force. The breakdown of the traditional impulse 

approximation and the emergence of reduced-amplitude scaling is demonstrated in Appendix C. 

Other limitations on traditional nuclear physics and conclusions are presented in Chapter 6.’ 
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2. QCD ON, THE LIGHT-CONE 

A central problem in hadron (and nuclear) physics is how to represent analytically the wave 

function of a relativistic multi-particle composite system. In general, it is not possible to represent 

a relativistic field theoretic bound system with a single wave function limited to a fixed number 

of constituents at a given time since the interactions create new quanta. In principle, the Bethe- 

Salpeter formalism (or its covariant equivalents) can be used, but in practice such tools are 

intractab!e. For example, in order to derive the Dirac equation for the electron in a static 

Coulomb field from the Bethe-Salpeter equation for muonium with m,,/m, + oo one reqires an 

infinite number of irreducible kernel contributions to the QED potential. The calculation of the 

deep inelastic structure functions of a composite system requires Bethe-Salpeter amplitudes of 

an arbitrary number of fields. Matrix elements of currents and the wave function normalization 

also require, at least formally, the consideration of an infinite sum of irreducible kernels. The ’ 

relative-time dependence of the covariant formalism adds further complexities. The difficulties 

are even worse in QCD for the multi-field degrees of freedom of hadrons and nuclei. 
-*. - 

A different and more mtuitive procedure would be to extend the Sihr&dinger wave function 

description of bound states to the relativistic domain by developing a relativistic many-body Fock 

expansion for the hadronic state. Formally this can be done by quantizing QCD at equal time, 

and calculating matrix elements from the time-ordered expansion of the S-matrix. For example, 

the calculation of a covariant Feynman diagram with n-vertices requires the calculation of n! 

frame-dependent time-ordered amplitudes. Even worse, the calculation of the normalization of 

a bound state wave function (or the matrix element of a charge or current operator) requires 

the computation of contributions from all amplitudes involving particle production from the 

vacuum. (Note that even after normal-ordering the interaction Hamiltonian density for QED, 

HI = e : ~~,T,LJA~ :, contains contributions b+d+a+ which create particles from the perturbative 

vacuum.) 

Fortunately, there is a natural and consistent covariant framework, originally due to Dirac,’ 

for describing bound states in gauge theory analogous to the Fock state in non-relativistic physics. 

This framework is the light-cone formalism in which 

Each wave function component &, etc. describes a state of fixed number of quark and gluon 

quanta evaluated in the interaction picture at equal light-cone ‘time” r = t+r/c. Given the {&}, 

virtually any hadronic property can be computed, including anomalous moments, form factors, 

structure functions for inclusive processes, distribution amplitudes for exclusive processes, etc.2 
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The use of light-cone quantization and equal r wave functions, rather than equal t wave 

functions, is necessary for a sensible Fock state expansion. It is also convenient to use r-ordered 

light-cone perturbation theory (LCPTh) in place of covariant perturbation theory for much of the i 
analysis of light-cone dominated processes such as deep inelastic scattering, or large-p* exclusive 

reactions. Light-cone quantization and perturbation theory are developed in detail in Appendices 

A and B. 

In light-cone quantization, the Fock state vacuum is an eigenstate of the full light-cone Hamil- 

tonian (k~c I P- = PO - P3, conjugate to r), and also all of the bare quanta in an hadronic 

Fock state are associated with the hadron; none are disconnected elements of the vacuum. This 

follows because of four-momentum conservation and because all particles in LCPTh, just as in 

TOPTh, are on the mass shell. The momentum components P+ E P” + P3 and FL = (P’, P2) 

are conserved, and since each particle is on-shell, P+ is positive. Furthermore, since all P,? are ; 

positive and conserved, amplitudes for vertices with zero particles entering or leaving vanish. 

An essential feature of the light-cone Fock state basis is its orthornormality, providing a 

convenient basis for expa”nding the physical states and physical observables in terms of quark and 

gluon degrees of freedom. For example the form factor of a general system can be written in a 

simple and elegant form directly in terms of the Fock state wavefunctions:’ (a sum over Fock 

components tin is understood) 

where & is absorbed by ath quark, p1 = Q2, and 

This formula is easily derived from the matrix element of the current (p/Jr(O) Ip + q) by choosing 

the ~1 = + component in a frame where pi = 0 and q+ = 0. [ See Fig. 1.1 Since the current 

conserves the + component of the struck constituent and the interactions cannot create particles 

from the vacuum, the form factor takes on a simple local form of a convolution of light-cone 

wavefucntions. Similarily, the structure functions for inclusive reactions can be written down as 

a simple summation over the square of the light-cone Fock state wavefuctions. [See Table 3.1.1 

In the gauge A+ = 0 there are no negative-norm ghost contributions even in non-Abelian gauge 

theory. 
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Fig. 1. Calculation of current matrix ele- 
ments in light-cone.perturbation theory. 

As we show in Appendix B, the light-cone method in its descretized form for a finite z- interval 

gives a block diagonal Hamiltonian for field theories in one space and one time dimension. This . 

opens the possibility of an optimized numerical solution to a class of non-trivial theories. 

The application of these methods to high momentum processes in QCD is discussed in the 

next Chapter. -A. -, - . 
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3. EXCLUSIVE PROCESSES IN QCD 

Although we do not have complete information on the hadronic wave functions in QCD, it is 

still possible to make predictions at large momentum transfer directly from the theory. The results 

are rigorous and can be proved to arbitrary order in perturbation theory. The processes which are 

most easily analyzed are those in which all final particles are measured at large invariant masses 

compared to each other, i.e.: large momentum transfer exclusive reactions. This includes form 

factors of hadrons and nuclei at large momentum transfer Q and large angle scattering reactions 

such as photoproduction -yp -+ ~+n, nucleon-nucleon scattering, photodisintegration yd + np at 

large angles and energies, etc. A key result is that such amplitudes factorize at large momentum 

transfer in the form of a convolution of a hard scattering amplitude TH which can be computed 

perturbatively from quark-gluon subprocesses multiplied by process-independent “distribution 

amplitudes” +(z,Q) h’ h w rc contain all of the bound-state non-perturbative dynamics of each of 

the interacting hadrons. To leading order in l/Q the scattering amplitude has the form’ 

M 

Here TH is the probability 

0 < Zj < 1 from the incident to 

(34 
‘0 Hi 

amplitude to scatter quarks with fractional momentum 

final hadron directions, and ~~~ is the probability amplitude to. 

find quarks in the wavefunction of hadron Hi collinear up to the scale Q, and 

[dZ]=fid~j6(1-~~~) 
j=l k 

(3.2) 

The key to the derivation of this factorization of perturbative and non-perturbative dynamics 

is the use of the Fock basis {&(zi,Zli, Xi)) defined at equal T = t + P/C on the light-cone to 

represent relativistic color singlet bound states. Here Xi are the helicities; zi E (kf +kf)/(pO+p*), 

(CT& Zi = l), and ZLi, (& Zli = 0), are the relative momentum coordinates. Thus the pro- 

ton is represented as a column vector of states $J+,~, +,rg4#, $J~*~Q~. . . . In the light-cone gauge, 

A+ = A0 + 43 = 0, only the minimal “valence” Fock state needs to be considered at large mo- 

mentum transfer since any additional quark or gluon forced to absorb large momentum transfer 

yields a power-law suppressed contribution to the hadronic amplitude. For example at large 

Q2, the baryon form factor can be systematically computed by iterating the valence FOCI state 

wavefunction equation of motion wherever large relative momentum occurs. To leading order the 

kernel is effectively one-gluon exchange. The sum of the hard gluon exchange contributions is the 

gauge invariant amplitude TH. The residual factor from the wavefunction is the distribution am- 

plitude 4~ which plays the role of the wavefunction at the origin in the analogous non-relativistic 
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calculation. Thus we obtain the form: [See Fig. 2(a)] 

1 1 

FOB = I[&/] /[dz] 4L(yi, Q)TH(zi,Yj, Q)4B(G,Q) v 
0 0 

(3.3) 

where to leading order in cr,(Q2), TH is computed from 3q+r* + 3q tree graph amplitudes: [Fig. 

ml 

and 

TH = 
[ 1  

w 2f(Zi, Yj) (34 

4B(zic 6) = /[d2kl] h (ziv ~~i)~(& < Q2) (3.5) 

is the valence three-quark wavefunction [Fig. 2(c)] evaluated at quark- impact separation bl - 

0 (Q-l). Since t$B only depends logarithmically on Q2 in QCD, the main dynamical dependence 

of J’B (Q2) is the power behavior (Q 2 ) -* derived from scaling of the elementary propagators in 

TH. Thus, modulo loga&hmic fctors, one obtains a dimensional counting rule’ for any hadronic 

or nuclear form factor at large Q2 (A = A’ = 0 or l/2) 

( > 

n-l 

F(Q2) ,.+ $ , (3.6) 

F:-$9 Fr-$9 Fd+. (3.7) . . 

where n is the minimum number of fields in the hadron. Since quark helicity is conserved in TH 

and +(zi, Q) is the L, = 0 projection of the wavefunction, total hadronic helicity is conserved at 

large momentum transfer for any QCD exclusive reaction.’ The dominant nucleon form factor thus 

corresponds to Fl (Q2) or GM(Q~); the Pauli form factor F2 (Q2) is suppressed by an extra power of 

Q2. In the case of the deuteron, the dominant form factor has helicity X = A’ = 0, corresponding 

to dm. The general form of the logarithmic dependence of F(Qz) can be derived from 

the operator product expansion at short distance or by solving an evolution equation for the 

distribution amplitude computed from gluon exchange [Fig. 2(c)), the only QCD contribution 

which falls sufficiently small at large transverse momentum to effect the large Q2 dependence. 

The distribution amplitude for a baryon is determined by an evolution equation which can 

be derived from the Bethe-Salpeter equation at large transverse momentum projected on the 

light-cone: ’ 

a 
2 

Q2z@+ 2p > 
4(zi, Q) = 7 /[dy] V(zi,Yii) ti(Yi, 9) 3 (34 

where CF = (nz - 1)/h, = 4/3, CB = (n, + 1)/2n, = 2/3, p = 11 - (2/3)n/, and V(Ziy yi) is 

computed to leading order in a, from the single-gluon-exchange kernel. The evolution equation 

. 
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(b) 

(Cl 

. - .3 

z+iz+ 
=Ag+= -E + 

$ + 
L 

=oe + 
3 + . . . 
c 

+ . . . 

3793*13 

-- 

Fig. 2. (a) Factorization of the nucleon form factor at large Q2 in QCD. The 
optimal scale 5 for the distribution amplitude d(z, 6) is discussed in Ref. 9. (b) 
The leading order diagrams for the hard scattering amplitude TH. The dots indicate 
insertions which enter the renormalization of the coupling constant. (c) The leading 
order diagrams which determine the Q2 dependence of ~B(z, Q). 

automatically sums to leading order in 08(Q2) all of the contributions from multiple gluon ex- 

change which determine the tail of the valence wavefunction and thus the Q2-dependence of the 

distribution amplitude. The general solution of this equation is 

where the anomalous dimensions T,, and the eigenfunctions &(zi) satisfy the characteristic equa- 

tion: 

z12223 [-%I + 5) Bn(zi) = F ][h/] V(zicyii) dln(yi) - (3.10) 
0 

In the large Q2 limit, only the leading anomalous dimension 70 contributes to the form factor. 

A useful technique for solving the evolution equations is to construct completely antisymmetric 

representations as a polynomial orthonomal basis for the distribution amplitude of multiquark 

bound states.’ In this way one obtain a distinctive classification of nucleon (N) and delta (A) 

wave functions and the corresponding Q2 dependence which discriminates N and A form factors. 

The antisymmetrization technique will be presented in detail in chapter 6 for nuclear systems. 
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The result for the large Q2 behavior of the baryon form factor in QCD is then1’5’6 

FB&'*) (3.11) 

where the v,, are computable anomalous dimensions of the baryon three-quark wave function at 

short distance and the d,, are determined from the value of the distribution amplitude +B(z, 0;) 

at a given point Qi and the normalization of TH. Asymptotically, the dominant term has the 

minimum anomalous dimension. The dominant part of the form factor comes from the region 

of the z integration where each quark has a finite fraction of the light cone momentum; the end 

point region where the struck quark has z = 1 and spectator quarks have x N 0 is asymptotically 

suppressed by quark (Sudakov) form factor gluon radiative corrections. 

In Table 3.1 we give a summary of the main scaling laws and properties of large momentum : 

transfer exclusive and inclusive cross sections which are derivable starting from the light-cone 

Fock space basis and the perturbative expansion for QCD. 

As shown in Fig. -3”the power laws predicted by-perturbative QCD are consistent with 

experiment.’ The behavior Q’GM(Q*) w const at large Q* [see Fig. 4] provides a direct check 

that the minimal Fock state in the nucleon contains three quarks and that the quark propagator 

and the qq -+ qq scattering amplitudes are approximately scale-free. More generally, the nominal 

power law predicted for large momentum transfer exclusive reactions is given by the dimensional 

counting rule M N Q4-“TOTF(fl cm where noon is the total number of elementary fields which ) 

scatter in the reaction. The predictions are apparently compatible with experiment.* In addition, 

for some scattering reactions there are contributions from multiple scattering diagrams (Land- 

shoff contributions) which together with Sudakov effects can lead to small power-law corrections, 

as well as a complicated spin, and amplitude phase phenomenology.’ As shown in Fig. 5, recent 

measurements of 77 + rr+~-, K+K- at large invariant pair mass are also consistent with the 

QCD predictions. lo In principle it should be possible to use measurements of the scaling and an- 

gular dependence of the 77 -+ MA? reaction8 to measure the shape of the distribution amplitude 

hdz, 0). 

An actual calculation of d(z, Q) from QCD requires non-perturbative method8 such as lattice 

gauge theory, or more directly, the solution of the light-cone equation of motion 

(3.12) 

The explicit form for the matrix representation of VQCD and a discussion of the infrared and 

ultraviolet regulation required to interpret this result is given in Ref. 1. Thus far experiment 

. has not been sufficiently precise to measure the logarithmic modification of dimensional counting 

rules predicted by QCD. 
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Table 3.1 Comparison of Exclusive and Inclusive Cross Sections 

Exclusive Amplitudes Inclusive Cross Sections 

Measure 4 in 77 + Ma 

aG,Q) = 
a log Q* a6 

I 
b/l v(GY) 4(Y) 

-rc- - 

du - I-I +a, 8) 8 Wza, 0) 

Evolution 

aGhQ) = 
a log Q* a6 

I 
& +/Y) G(Y) 

r - 
dimrn ~(2, Q) = '(') ' 

Power Law Behavior 

$A+B +C+D)S 

n=nA$ng+nC+nD 

TH : expansion in 06(Q2) 

nod = na •k nb $ nc + nd 

d6 : expansion in a6(Q2) 

Complications 

End point singularties 

Pinch singularities 

High Fock states 

Multiple scales 

Phase-space limits on evolution 

Heavy quark thresholds 

Higher twist multiparticle processes 

Initial and final state interactions 
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10-3 
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10-4 1 I III -I- , 

0 2 4 6 
..- O2 (GeV2) II 8’ 

Fig. 3. Comparison of experiment with the 
QCD dimensional counting rule (Q*)+l F(Q*) 
- const for form factors. The proton data ex- 
tends beyond 30 GeV*. 

MARK II 

I I I /I I I I I 

0.6 

t 

$; ‘- 
:I 1’ -I 

_ ~0.0001_ 
1O.G 

--. ,o. I 

-0- 
0 lo- 20 30 

I.” Cl2 (GeV2) , ., 

Fig. 4. Prediction for Q4GG(Q2) for vari- 
ous QCD scale parameters A* (in GeV*). The 
data are from Ref. 25. The initial wave func- 
tion is taken as 4(2,X) a 6(zl - $)6(zr - f). 

at X2 = 2 GeV*. The factor (1 + $)-? is 
included in the prediction as a representative 
of mass effects; problems with the overall nor- 
malization and sign are ignored here. 

Fig. 5. Measured cross section for 77 + rr+7rT- 
plus r+y + K’K- integrated over the angular 
region 1 cos 6*I c 0.3. The errors contain sys- 
tematic as well as statistical contributions. The 
curve is a perturbative QCD prediction. 
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Checks of the normalization of (Q*)“-lF(Q*) re q uire independent determinations of the va- 

lence wavefunction, for example, as has been obtained through QCD sum rules. [See Section 

3.1.1 It has also been suggested that the relatively large normalization of Q’Ga(Q*) at large 

Q* can be understood if the valence three-quark state has small transverse size, i.e., is large at 

the origin.” The physical radius of the proton measured from Fl(Q*) at low momentum trans- 

fer then reflects the contributions of the higher Fock states qqqg, qqqgq (or meson cloud), etc. 

A small size for the proton valence wavefunction (e.g., R&g N 0.2 to 0.3 jm) can also explain 

the large magnitude of (ki) of the intrinsic quark momentum distribution needed to understand 

hard-scattering inclusive reactions. The necessity for small valence state Fock components can be 

demonstrated explicitly for the pion wavefunction, since &,J, is constrained by sum rules derived 

from rr+ + L++y, and x0 -+ 77. One finds a valence state radius R& u 0.4 jm, corresponding to 

a probability PJ!i!i N l/4. The consequences of a small valence radius are discussed in Chapter 6. ; 

3.1 Q  CD SUM RULE CONSTRAINTS ON HADRON WAVEFUNCTIONS 

-- 

Useful constraints%r the lowest moments of the distribution amplitude can be obtained using 

the QCD sum rule approach of the ITEP Group or by resonance saturation of vertex functions.‘* 

Although the numerical accuracy of these complementary methods is not, known the general 

agreement between their predictions and overall consistency with other hadron phenomenology 

lends credence to their validity. 

Let us first illustrate the QCD sum rule method for the case of the pion distribution amplitude. 

The moments (2”) are expressible as matrix elements of gauge invariant local operators: 

(% - p)“+‘f~W) = (fW(z)I r(p)) E (flla Prs(iz - Z)“+(P)) 

(2”) = ] dz ~Vu(z) 
-1 

where z = zr - 22, (z”) = 1, jr 1 133 MeV, pJ‘ is the pion four momentum, z is a light-like 

vector: z* = 0, z .p = p+, E, = 3, -Err where 3, = z,, - igA;- y. This relation is simplest 

in the gauge ,z - A = A+ = 0. The state IfI) is the true QCD vacuum. 

In order to obtain constraints on the (2”) one considers the correlation function between two 

of the 0,: 

Ino(z,q) = i / 
d’y c”‘~(~IT On(~)Oo(O)lfl) 

= (2  * q)“+* Ino s  

The “signal” between OF’ and On(y) is carried by the pion, higher meson resonances, and the 

continuum. At high q* =+ -co, y* H 0(1/Q*) and the operator product expansion allows one to 
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calculate Ino as an expansion in power of 1/02: 

i 
Lo(q2) = W-q2) 

-q,Z (n+l;n+3) + 
O-WG:,(W) 

12q’ 

y;(ll+ An) I(nlFpw + c (bn) . 
k>4 (q21k 

Operators proportional to current quark masses m, and rnd have been neglected. The first term 

is the perturbative quark-pair contribution. The “condensates” (G2) and I( terms give the 

leading effect for quark propagation in the QCD vacuum. From other phenomenology the ITEP 

group have determined 

(0 I$G21 0) = 1.2 x lo-’ GeV’, 

(q&a4 0) = 1.35 x lo-’ GeVm2 . 
-6. r 

On the other hand 1,,,(q2) can be computed from a dispersion integral over intermediate states: 

00 
Ino(q2) = i J I*8~o~;‘,“s, . 

0 

In the approach of Ref. 5 one approximates the spectral density by the form 

which takes into account the pion and Al-meson contributions and a continuum which coincides 

with the contribution of free quarks. The threshold value sn is an adjustable parameter. 

The identification of the power-law and resonance contributions is a form of a duality rela- 

tion. The matching of contributions is usually performed using a Bore1 transformation which 

de-emphasizes the high mass region: 

1 O” J ds c-“f”‘Im Ino = d- 
3 

XM2 47r2 (n + l)(n + 3) + 
(Ol~G210) 

12M” 
0 

+ 81 
%(ll + 4n) Iw&6wo12 (--lJk (“l~klo> M6 

+ Fick(“)(, (M2)k ’ 

For small n, M2 can be chosen small so that the simultaneok values for the (16kl) and values 
. 
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for the (9’) can be extracted. The best fit obtained in Ref. 5 are 

(z2), = 0.40, (=2)Al = 0.04 - 0.07 

i (M2 = 1.5 GeV’, Ss s 1.8 GeV2) 

(z’), = 0.24 

: (M2 = 2.2 GeV2, S4 z 2.5 GeV’) 

((z~)A~ is small but not determined accurately.) The value of the renormalization scale is of the 

order of &i2 or S,. 

The relatively large values for the second and fourth moments imply that the pion distribution 

is quite broad. An additional constraint on the distribution amplitude is that 4 vanishes at least 

as fast as $bF:“yrnP’ at the endpoints z -+ fl. Together these constraints imply a double-humped 

distribution; the model proposed in Ref. 5 is 

There are a numberofappro3imations which make it-difficult to assess the numerical accuracy 

of the results. Nevertheless the distribution amplitudes derived by Chernyak and Zhitnitshy serve 

as useful forms for making QCD predictions for exclusive processes. 

One of the consequences of the QCD sum rule approach is a striking dependence of the 
- . 

shape of the p-meson distribution amplitude on its helicity. This can be traced to the fact that 

the (&!J&+!J) contribution changes sign because of the helicity dependence of the gluon-exchange 

interaction. A simple model for the p which satisfy the moment constraints is: 

dP(z9 cl) = hrympt (2) ( g 2122 x = fl 

1+ Q ((21 - 22)s - %) x = 0 . 

In each case the evolution from ~1 = 500 MeV can be computed by expanding in terms of two 

lowest order Gegenbauer polynominal eigensolution. The strong helicity dependence of the p 

distribution amplitude has interesting consequences of the angular dependence of rr + pp cross 

sections. 5,lO 

The requirement that the nucleon is the I = l/2, S = l/2 color singlet representation of three 

quark fields in QCD uniquely specifies the zi permutation symmetry of the proton distribution 

amplitude: l3 

The neutron distribution amplitude is determined by the substitution &, = -4p(u + d). Mo- 
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ments of the nucleon distribution amplitude can be computed from the correlation function of 

the appropriate local quark field operators that carry the nucleon quantum numbers. 

The model wavefunction proposed in Ref. 13, consistent with the derived moments, is 

+N(ZlZ223) = 4orympt *[11.35(2: + 2:) + 8.82~3 - 1.68~3 - 2.94 -6.72(~3 -$)I 

where 4arymt = 120 21~2~3. -The renormalization scale is JL Z 1 GeV. The normalization of the 

nucleon valence wavefunction is also. determined: 

fN(P = 1 GeV) = (5.2 f 0.3) x lo-' GeV . 

A striking feature of the QCD sum rule prediction is the strong asymmetry implied by the first 

moment: 65% of the proton momentum (at Pz =+ oo) is carried by the u quark with helicity 

parallel to that of the proton. [See Fig. 6.1 The two remaining quarks each carry H 15 to 20% 

of the total momentum. It is this feature of strong asymmetry, together with the value for f~, 

which gives perturbative predictions for the proton and neutron form factors consistent in sign 
-4. - * T 

and magnitude with experiment. [See Fig. 7.1 

I 
I +N(x) = V(x)-A(x) 

8-85 

I E\ Proton doto 4 

o-1 
0 IO 20 3.0 to2 IO3 IO4 

(GeV’) 5207** 

Fig. 6. QCD sum rule prediction for a proton 
distribution amplitude. 

Fig. 7. Perturbative QCD predictions for the 
proton (curve a) and the neutron (curve b) 
form factors given by Ref. 13. 

The distribution amplitudes based on QCD sum rules are strikingly different from the sym- 

metric forms derived in the Q2 + oo limit. This is in analogy to the case of deep inelastic 

structure functions which only approach the formal limit of a d-function at z = 0 at a momen- 

tum transfer scale very remote from the experimentally accessible range. The implication that 

the nucleon and pion valence wavefunctions are broad in longitudinal momentum also suggests a 

broad transverse momentum distribution (small radius) and indicates that quarks bound in light 

hadrons are highly relativistic. 
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3.2 EXCLUSIVE PRODUCTION OF HIGHER GENERATION HADRONS AND 

FORM FACTOR ZEROS IN Q CD 

As we have discussed in this chapter, one of the important testing grounds of the perturba- 

tive aspects of QCD is exclusive processes at moderate to large momentum transfer. By use of 

the factorization theorem for exclusive processes and evolution equations for distribution ampli- 

tudes, the leading scaling behavior and helicity dependence of form factors and hadron scattering 

amplitudes can be predicted. In some cases, notably 77 ---) U+A- and K+K-, predictions for 

the normalization and angular behavior of the cross sections can also be made without explicit 

information on the nature of the bound state wavefunctions. lo Recent measurements of the nor- 

malization and scaling behavior are, in fact, in good agreement with the QCD predictions. [See 

Fig. 5). In most cases, however, detailed predictions for exclusive processes require knowledge of 

the nonperturbative structure of the hadrons as summarized by the valence quark distribution 1 

amplitudes 4H(zi,Q) of the hadrons. For example, we have discussed how, by imposing con- 

straints from QCD sum rules, Chernyak and Zhitnitsky have constructed nucleon distribution 

amplitudes which account&r the-sign and normalization as well as the scaling behavior of the 

proton and neutron magnetic form factors at -q2 > 10 GeVz. 

- 

In this section we show that exclusive pair production of heavy hadrons IQr~,), ]QrQrQs) 

consisting of higher generation quarks (Qi = t, b, c, and possibly s) can be reliably predicted” 

within the framework of perturbative QCD, since the required wavefunction input is essentially 

determined from nonrelativistic considerations. The results can be applied to e+e- annihilation, 

77 annihilation, and W and 2 decay into higher generation pairs. The normalization, angular 

dependence and helicity structure can be predicted away from threshold, allowing a detailed study 

of the basic elements of heavy quark hadronization. 

A particularly striking feature of the QCD predictions is the existence of a zero in the form 

factor and e+e- annihilation cross section for zero-helicity hadron pair production close to the 

specific timelike value q2/4M& = mh/2mt where mh and rnt are the heavier and lighter quark 

masses, respectively. This zero reflects the destructive interference between the spin-dependent 

and spin-independent (Coulomb exchange) couplings of the gluon in QCD. In fact, all pseudoscalar 

meson form factors are predicted in QCD to reverse sign from spacelike to timelike asymptotic 

momentum transfer because of their essentially monopole form. For rnh > 2rnf the form factor 

zero occurs in the physical region. 

To.leading order in l/q2, the production amplitude for hadron pair production is given by 

the factorized form 

M,Jj = J J [hI [dYjI $L(zi, T) &(Yj, ?) TH(zi, Yj; q2, @CM) 

where [dzi] = 6 (c;=, zk - 1) n;=, dzk and n = 2,3 is the number of quarks in the valence 

IQ 



I 

A 

Fock state. The scale p is set from higher order calculations, but it reflects the minimum 

momentum transfer in the process.’ The main dynamical dependence of the form factor is 

controlled by the hard scattering amplitude TH which is computed by replacing each hadron by 

collinear constituents PiN = ZiPi. Since the collinear divergences are,summed in +H, TH can be 

systematically computed as a perturbation expansion in a,(q2). 

The distribution amplitude 

k:+‘l 
4H(ziv 02) = J [d2kli]$(“)(zi, CAi) (3.14) 

with 

is computed from the valtnce wgvefunction of the hadren at equal time r = t + z on the light 

cone and gives the probability amplitude for the constituents with light-cone momentum fraction 

Zi = (k,O + kf)/(P& + Pi;) t o combine into the hadron with relative transverse momentum up to 

the scale Q2. For the case of heavy quark bound states, we shall assume that the constituents 

are sufficiently non-relativistic that gluon emission, higher Fock states, and retardation of the 

effective potential can be neglected. The quark distributions are then controlled by a simple 

nonrelativistic wavefunction, which we take in the model form: 

$A4 tzi9 zJJ = 
c 

+?j M2 - H 

(3.15) 

We choose this form since it coincides with the usual Schrsdinger- Coulomb wavefunction in 

the nonrelativistic limit for hydrogenic atoms and has the correct large momentum behavior 

induced from the spin- independent gluon couplings. The wavefunction is peaked at the mass 

ratio Zi = mi/MH: 

(zi-~)2A$ (3.16) 

where (ki) is evaluated in the rest frame. Normalizing the wavefunction to unit probability gives 

c2 = 128~ ((u’))“/“m~(ml + mz) (3.17) 

where (u2) is the mean square relative velocity and m, = mlmz/(mr + mr) is the reduced mass. 
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The corresponding distribution amplitude is 

4(Zi) = c 1 
167r2 [zlzzM& - z2rn: - zlrni] 

(3.18) 

It is easy to see from the structure of TH for c+e- + Mil? that the spectator quark pair is 

produced with momentum transfer squared q2z,y, 2 4m 3. Thus heavy hadron pair production 

is dominated by diagrams in which the primary coupling of the virtual photon is to the heavier 

quark pair. The perturbative predictions are thus expected to be accurate even near threshold 

to leading order in oI(4m:) where ml is the mass of lighter quark in the meson. 

We have computed the leading order e+e- production helicity amplitudes for higher generation 

meson (A = 0, fl) and baryon (A = &l/2, f3/2) pairs from Eq. (3.13) as a function of q2 and the 

quark masses. The Lore& and gauge invariant form factors for meson pair production are defined 

by the electromagnetic coupling of the meson as shown in Table 3.2. The analysis is simplified by 

using the peaked form of the distribution amplitude, Eq. (3.18). From the calculation of helicity 

amplitudes, we found that V2(q2) = MH T(q2). Therefore, we use the following notation: 

Fo,o(q2) = S(q2) 

&,I (q2) = v, (q2) 

Fo,l(q’) = MH T(q2) = b(e2) - 

In the case of meson pairs the (unpolarized) e+e- annihilation cross section has the general 

form 

x 
1 
IFo,o(q2) I2 + t1 -‘lp2,, 

{ 
(3 - 2P2 + 3P’viJ b12) I2 

- 4(1+ P2) Re (l5.1 (q2)G,l (q2)) + 4ih,r (q2)12 11 
3P2 

+ 2(1 - p) (1+ cm2 qlFo,1(q2)12 
I 

(3.19) 

2 

where q2 = s = 4M$g2 and the meson velocity is p = 1 - ‘9. The production form factors 
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Table 3.2. Definition of meson form factors. The dashed and solid lines 

represent the pseudoscalar and vector mesons respectively. 

Vertex Type ax, 

9 

/3 A A. ie (Pr + p’p) S(q2) 
P p’=p+q 

9 

/Ax 

44 * W’) (Pp + P:) v, (q2) 

-a-c {c(X) * p’ E;‘(X) 

6 (X),P A’), p’= p+q -+ P(M) * p c,(A)i v&2) 

5222A4 

c $wpa P ” CyX’) 4” T(q2) 

have the general form 

F (u2j2 - = - (AAX + g*B,$ AX (q2)” (3.20) 

where A and B reflect the Coulomb-like and transverse gluon couplings, respectively. The results 

to leading order in aI are given in Table 3.3. In general A and B have a slow logarithmic 

dependence due to the q2-evolution of the distribution amplitudes. The form factor zero for the 

case of pseudoscalar pair production reflects the numerator structure of the TH amplitude. 

Numerator 1 N cl 4 2 - - rnf - - - mf - 21 
4Mk Z2Yl 4M3r +Y2 > 

For the peaked wavefunction, 

(3.21) 

(3.22) 

If ml is much greater than mr then the er is dominant and changes sign at q2/4Mh = ml/2mz. 

. 
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The contribution of the e2 term and higher order contributions are small and nearly constant in 

the region where the er term changes sign; such contributions can displace slightly but not remove 

the form factor zero. 

Table 3.3. The results for the meson form factors. 

.-A and B are defined by Eq. (3.23). 

Kw) (04 (14 

A elm: + e2ml, 

(ml + m2) 
4 

eTl;z2Ti e;f;z2mf 

1 1 

B - 2mlm2(elm~ + e2mf) 

frnr + m3\’ 
0 0 

These results also hold in quantum electrodynamicsf e.g. pair production of muonium (p - e) 1 

atoms in e+e- annihilation. Gauge theory predicts a zero for paramuonium production at q2 = 

q&b 

These explicit results -for fzrm factors also shows that the onset of the leading power-law 

scaling of a form factor is controlled by the ratio of the A and B terms in Eq. (3.20); i.e., when 

the transverse contributions exceed the Coulomb mass-dominated contributions. The Coulomb 

contribution to the form factor can also be computed directly from the convolution of the initial 

and final wavefunctions. Thus, contrary to the claim of Ref. 15 there are no extra factors of 

a8(q2) which suppress the ‘hard” versus nonperturbative contributions. 

The form factors for the heavy hadrons are normalized by the constraint that the Coulomb 

contribution to the form factor equals the total hadronic charge at q2 = 0. Further, by the corre- 

spondence principle, the form factor should agree with the standard non-relativistic calculation 

at small momentum transfer. All of these constraints are satisfied by the form 

q2 2m2 
- - - 

4M& ml 
+.1er2 . 

At large q2 the form factor can also be written as 

1 fM +(102), -= J 26 o 
WhQ) 

(3.23) 

(3.24) 

where fM = (67s/7rM~)112 is the meson decay constant. Predictions for various heavy mesons 

are shown in the figures. The results for the cross sections are given in units of R using the 

p+p- rate as reference. The basic unknown is r2 = v2mf which sets the scale for capture into 

the wavefunction in relative transverse momentum. The same probability amplitude enters the 

normalization of the inclusive production of heavy hadrons in heavy quark hadronization. 
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Although the mass of the strange quark may be too low to trust these predictions, we also give 

predictions for FF production [see Figs. 8 and 91 since the predicted zero appears in a domain 

accessible to present storage rings. 
i 

1.5 

7 1.0 
‘0 - 

c 

--A. 0 

8-85 

I 2 ..3 

q2/4Mf, 
5207A23 

Fig. 8. Perturbative QCD prediction for RBezc = 
o(e+e- -+ B,B,) 
a(e+e- 4 p+p- - 

8 

0 I I 

I 2 3 4 

6-05 q2/4 ME 
5207A24 

Fig. 9. Perturbative QCD prediction for R,F = 
o(e+e- --t FF) 

o(e+e- 4 p+p- ’ 
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At low relative velocity of the hadron pair one also expects resonance contributions to the 

form factors. For these heavy systems such resonances could be related to qqQQ bound states. 

From Watson’s theorem, one expects any resonance structure to introduce a final-state phase 

factor, but not destroy the zero of the underlying QCD prediction. 

We have &lso performed analogous calculations of the baryon form factor, retaining the con- 

stituent mass structure. The numerator structure for spin l/2 baryons has the form 

A+Bq2+cq’. (3.25) 

Thus it is possible to have two form factor zeros; e.g. at spacelike and timelike values of q2. 

Although the measurements are difficult and require large luminosity, the observation of the : 

striking zero structure predicted by QCD would provide a unique test of the theory and its 

applicability to exclusive processes. As we have shown, the onset of leading power behavior is 

controlled simply by th_e_cm_sss pmameters of the theory; there is no way to postpone the region of P 
validity of the perturbative predictions. The results of this work may also be applicable to lower 

mass systems, but in this csse the msss parameters for the light quarks are evidently replaced by 

vacuum condensate and other nonperturbative contributions. 
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4. NUCLEAR CHROMODYNAMICS 

Nuclear chromodynamics is concerned with the application of quantum chromodynamics to 

nuclear physics. Its goal is to give a fundamental description of nuclear dynamics and nuclear 

properties in terms of quark and gluon fields at short distance, and to obtain a synthesis at long 

distances with the normal nucleon, isobar, and meson degrees of freedom. NCD provides an 

important testing ground for coherent effects in QCD and nuclear effects at the interface between 

perturbative and non-perturbative dynamics.’ 

Among the areas of interest: 

- 

1. The representation of the nuclear force in terms of quark and gluon subprocesses. The 

nuclear force between nucleons can in principle be represented at a fundamental level in 

QCD in terms of quark interchange (equivalent at large distances to pion and other meson 

exchange) and multiple-gluon exchange. Although calculations from fist principles are still. 

’ too complicated, recent results derived from effective potential, bag, and soliton models -&- - - 
suggest that many of the basic features of the nuclear force can be understood from the 

underlying QCD substructure. At a more basic level we will show directly from QCD that 

the nucleon-nucleon force must be repulsive at short distances. At high momentum trans- 

fer the nucleon-nucleon interactions agree with the scaling laws predicted by the simplest 

constituent exchange processes. 

2. The composition of the nucleon and nuclear state in terms of quark and gluon quanta. The 

light-cone quantization formalism provides a consistent relativistic Fock state momentum 

space representation of multiquark and gluon color singlet bound states. 

3. The propagation of quarks and gluons through nuclear matter:’ one is interested in the in- 

terplay between multiple scattering, induced radiation, the Landau-Pomeranchukcoherence 

effect,’ shadowing phenomena, and confinement. 

4. Factorization theorems for inclusive and exclusive reactions: for nuclear reactions one is 

particularly interested in the origin of the EMC non-additivity effect’ and other nuclear- 

induced effects in high transverse momentum reactions. 6 

5. Novel nuclear phenomena in QCD such as (a) color coherence effects in high momentum 

transfer quasi-elastic reactions in nuclei;’ (b) the nuclear number dependence of strange 

and charm quarks in the sea; (c) new color singlet multiquark states. 

6. The use of reduced nuclear amplitudes in order to obtain a consistent and covariant identi- 

fication of the effects of nucleon compositeness in nuclear reactions. 

Conversely, nuclear chromodynamics implies in some cases a breakdown of traditional nuclear 

physics concepts. For example, we can identify where off-shell effects modify traditional nuclear 
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physics formulas, such as the impulse approximation for elastic nuclear form factors. At high 

momentum transfer nuclear amplitudes are predicted to have a power law fall off in QCD in 

contrast to the Gaussian or exponential fall off usually assumed in nuclear physics. There are 

other areas where conventional techniques in nuclear theory, such as the use of local meson nucleon 

field theories break down. We djscuss some of these problems in the last chapter. 

In QCD, the fundamental degrees of freedom of nuclei as well as hadrons are postulated 

to be the spin-l/2 quark and spin-l gluon quanta. Nuclear systems are identified as color- 

singlet composites of quark and gluon fields, beginning with the six-quark Fock component of 

the deuteron. An immediate consequence is that nuclear states are a mixture of several color 

representations which cannot be described solely in terms of the conventional nucleon, meson, 

and isobar degrees of freedom: there must also exist ‘hidden color” multiquark wavefunction 

components-nuclear states which are not separable at large distances into the usual color singlet ’ 

nucleon clusters. 

The goal of nuclear chromody_namics is thus to understand the fundamental basis of nuclear 
-A- - - 

amplitudes. Solutions to QCD for bound states eventually may be obtained from lattice gauge 

theory or the light-cone quantization formalism. Nevertheless, even without explicit solutions, (1) 

we can use asymptotic freedom to calculate the underlying quark and gluon subprocess amplitudes 

at short distances, (2) we can derive factorization theorems for both inclusive and exclusive 

processes which separate the hadronic bound state physics from perturbative dynamics, and (3) : 

we can use the apparatus of light cone quantization (i.e.: equal time r = t + z/c wave function:) 

to represent bound states of composite systems in a consistent covariant manner. In some cases, 

we can derive exact constraints on the wave functions, or use approximation methods and sum 

rules to model the wave functions. ‘I9 We can also derive connections with the non-relativistic 

wavefunctions. In the caSe of multiquark systems we can derive asymptotic constraints such 

as the form of the deuteron wavefunction. lo Using these techniques we can analyze the role of 

hidden color degrees of freedom in ordinary nuclei, and understand the role of QCD relativistic 

effects. The introduction of reduced nuclear amplitudes then allows the direct phenomenological 

study of the specific role of QCD in nuclear physics. Finally, we can derive constraints on the 

hadronic meson nucleon vertices which are required for calculating meson and exchange currents 

and similar coherent phenomena. 

Just 8s Bohr’s correspondence principle played a crucial role in bridging the gap between 

classical and.quantum mechanics, we also need a similar correspondence principle to bridge the 

gap between nuclear physics at large distances and QCD at short distances. Since QCD has the 

same natural length scale - 1 fm as nuclear physics it is difficult to argue that nuclear physics 

can be studied in isolation from QCD. Thus one of the most interesting questions in nuclear 

physics is the transition between conventional meson-nucleon degrees of freedom to the quark 
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and gluon degrees of freedom of QCD. As one probes distances shorter than A& N 1 fm the 

meson-nucleon degrees of freedom must break down, and we expect new nuclear phenomena, 

new physics intrinsic to composite nucleons and mesons, and new phenomena outside the range 

of traditional nuclear physics. One apparent signal for this is the experimental evidence from 

deep inelastic lepton-nucleus scattering that nuclear structure functions deviate significantly from 

simple nucleon additivity, much more than would have been expected for lightly bound systems5 

Certainly for distances greater than 1 fm, i.e.: momentum transfer less than 200 MeV, non- 

relativistic Schroedinger equation and potential theory provide an accurate phenomenological 

description of nuclear matter. Similarly, in the short distance domain (distances less than 0.2 fm 

or momentum transfer 1 1 GeV) the quark-gluon degrees of QCD give a good representation of 

strong interaction dynamics. 

The synthesis between nuclear physics and QCD is then the analogue to the correspondence 

principle. For example, the nuclear potential can now be understood in terms of quark inter- 

change and gluon exchange amplitude at the high momentum transfer region. l1 At long distances 

these contributions muit?merge%rto the traditional meson and Yukawa force. The nuclear state, 

which can be primarily represented as meson and nucleon degrees of freedom at large distances; 

at short distances must give way to a description in terms of quark and gluon degrees of free- 

dom, specifically hidden color components, at very short distances. The electromagnetic and 

weak interactions of the nucleus, which is traditionally described in terms of nucleonand meson 

currents, is replaced in QCD by interactions which couple directly to the quark currents at any 

momentum transfer scale. What we perceive at large distances and refer to as meson and nucleon 

degrees of freedom are thus coherent effects in QCD. The form factor in nuclear physics in the 

non-relativistic domain can be represented as a Fourier transform of a charge distribution. At 

relativistic energies, this is replaced by an exact QCD calculation of the probability amplitude 

for the nuclear system to remain intact. Asymptotic results are given in later sections of this 

chapter. 

The joining of nuclear physics at long distances and QCD at short distances also brings a 

number of new general analytical tools, including (a) light cone quantization, (b) a relativistic 

Fock state expansion, (c) factorization theorems, (d) evolution equations which give the leading 

behavior of hadronic amplitudes at short distances, and (e) a system of counting rules for obtaining 

the leading power behavior and leading helicity behavior of nuclear reduced amplitudes.12 In 

particular, one now has a completely relativistic framework for multi-particle systems applicable 

to nuclear systems: light cone quantization provides a Hamiltonian formulation for QCD and is 

an alternative to the Bethe-Salpeter formalism. 

Despite its generality, in concept, and often in practice, light-cone quantization is as simple 

to use as Schroedinger many body theory.8’g Using this formalism one can readily obtain exact 
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results for the form of the nucleon, meson, and nuclear form factors and other exclusive nuclear 

amplitudes at large momentum transfer, such as the phot*disintegration of the deuteron at large 

BCM. One obtains rigorous constraints on the six-quark wave function of the deuteron at small 

relative distances as well as a value for the percentage of hidden color at short distances in the 

deuteron wave.function. More, generally, as we discuss in a later section, one can identify the 

degrees of freedom of multi-quark system and obtain a completely anti-symmetrized basis Fock 

state representation for multi-quark states.” 

The fact that the degrees of freedom and permutation symmetries of the covariant QCD equa- 

tion of motion for multiquark states on the light-cone are the same as those of the non-relativistic 

quark model I4 can account for the successes of the non-relativistic approach for describing the 

hadronic spectrum despite the dynamical failure of non-relativistic equations for describing wave- 

functions and structure functions. 

4.1 THE DEUTERON IN QCD 
-c- - - - 

Of the five color-singlet representations of six quarks, only one corresponds to the usual 

system of two color singlet baryonic clusters. 13’15 Notice that the exchange of a virtual gluon in 

the deuteron at short distance inevitably produces Fock state components where the three-quark 

clusters correspond to color octet nucleons or isobars. Thus, in general, the deuteron wavefunction. 

will have a complete spectrum of hidden-color wavefunction components, although it is likely th.at 

these states are important only at small internucleon separation. 

Despite the complexity of the multi-color representations of nuclear wavefunctions, the 

analysis l3 of the deuteron form factor at large momentum transfer can be carried out in parallel 

with the nucleon case. Only the minimal six-quark Fock state needs to be considered to leading 

order in 1/Q2, The deuteron form factor can then be written as a convolution [see Fig. lo], 

1 

Fd(Q2) = /[dz] [&I &I, Q) T++“*-+%, Y, 9) Adz, 8) 9 

0 

where the hard scattering amplitude scales as 

T’%+-l-q = 
H [ 1 w 5 t(z,y) [I + O(e(Q2))] (4.2) 

(4.1) 

The anomalous dimensions rf are calculated from the evolution equations for $d(zi, Q) derived 
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Fig. 10. Factorization of the deuteron form factor at large Q2. 

to leading order in QED from pairwise gluon-exchange interactions: (CF = 4/3, Cd = -CF/~) ’ 

(4.3) 

Here we have defined 

@(siv Q) = Ip Ztg(%, Q), 
k=l 

(4.4 

and the evolution is in the variable 

(4.5) 

The kernel V is computed to leading order in o,(Q2) f rom the sum of glubn interactions between 

quark pairs. The general matrix representations of 7,, with bases n:=, 27’ will be given 
I > 

in Ref. 13. The effective leading anomalous dimension 70, corresponding to the eigenfunction 

i(zi) = 1, is 70 = (6/5)(C~/p) (see the next section). 

In order to make more detailed and experimentally accessible predictions, we will define the 

%educed” nuclear form factor in order to remove the effects of nucleon compositeness: 16 

The arguments for each of the nucleon form factors (FN) is Q2/4 since in the limit of zero binding 

energy each nucleon must change its momentum from - p/2 to (p + q)/2. Since the leading 
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Fig. 11. (a) Comparison of the asymptotic QCD 
-diction (18) and (19) with experiment using 

FN(Q~) ti {l + (Q2/0.71GeV2)]-2. The nor- 
malization is fit at Q2 = 4 GeV2. (b) Com- 
parison of the prediction [l + (Q2/mi)]fd(Q2) 
a (-!nQ2)-1-(2~5)(c~~~) with data. The value 
rnz = 0.28 GeV2 is used. 

anomalous dimensions of the nucleon distribution amplitude is C~/2/3, the QCD prediction for 

the asymptotic Q2-behavior of fd(Q’) is 

fd(Q2) H * 
Q2 w 

where -(2/5)(C~/p) = -8/145 for nf = 2. 

Although this QCD prediction is for asymptotic momentum transfer, it is interesting to com- 

pare it directly with the available high Q2 data” [see Fig. 111. In general one would expect 

corrections from higher twist effects (e.g., mass and kl smearing), higher particle number Fock 

states, higher order contributions in a,(Q2), as well BS non-leading anomalous dimensions. How- 

ever, the agreement of the data with simple Q2jd(Q2) N con& behavior for Q2 > l/2 GeVr 

implies that, unless there is a fortuitous cancellation, all of the scale-breaking effects are small, 

and the present QCD perturbative calculations are viable and applicable even in the nuclear 

physics domain. The lack of deviation from the QCD parameterization also suggests that the 

parameter A is small. A comparison with a standard definition such as A- would require a 

calculation of next to leading effects. A more definitive check of QCD can be made by calculating 

the normalization of fd(Q2) f rom TH and the evolution of the deuteron wave function to short 
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distances. It is also important to confirm experimentally that the helicity X = X’ = 0 form factor 

is indeed dominant. 

The calculation of the normalization l$‘+“Otiti to leading order in cx,(Q2) will require the 

evaluation of over 300,000 Feynman diagrams involving five exchanged gluons. Fortunately this 

appears possible using the algebraic computer methods introduced by Farrar and Neri. ‘* The 

method of setting the appropriate scale Q of a,“(Q2) in TH is given in Ref. 19. 

We note that the deuteron wave function which contributes to the asymptotic limit of the form 

factor is the totally antisymmetric wave function corresponding to the orbital Young symmetry 

given by [6] and isospin (T)+ spin (S) Young symmetry given by (33). The deuteron state with 

this symmetry is related to the NN, AA, and hidden color (CC) physical bases, for both the 

(TS) =‘(Ol) and (10) cases, by the formula 20 

-6. - . ., 

Thus the physical deuteron state, which is mostly $JNN at large distance, must evolve to the 

t,f~~~l{~s) state when the six quark transverse separations bi < 0(1/Q) + 0. Since this state is 

80% hidden color, the deuteron wave function cannot be described by the meson-nucleon isobar 

degrees of freedom in this domain. The fact that the six-quark color singlet state inevitably 

evolves in QCD to a dominantly hidden-color configuration at small transverse separation also 

has implications for the form of the nucleon-nucleon (S, = 0) potential, which can be considered as 

one interaction component in a coupled scattering channel system. As the two nucleons approach 

each other, the system must do work in order to change the six-quark state to a dominantly hidden 

color configuration; i.e., QCD requires that the nucleon-nucleon potential must be repulsive at 

short distances [see Fig. 12].2’ The evolution equation for the six-quark system suggests that 

the distance where this change occurs is in the domain where a,(Q2) most strongly varies. The 

general solutions of the evolution equation for multiquark systems is discussed in Chapter 5. Some 

of the solutions are orthogonal to the usual nuclear configurations which correspond to separated 

nucleons or isobars at large distances. 

4.2 REDUCED NUCLEAR AMPLITUDES 

One of the basic problems in the analysis of nuclear scattering amplitudes is how to consis- 

tently account for the effects of the underlying quark/gluon component structure of nucleons. 

Traditional methods based on the use of an effective nucleon/meson local Lagrangian field theory 

are not really applicable, giving the wrong dynamical dependence in virtually every kinematic 

variable for composite hadrons. The inclusion of od hoc vertex form factors is unsatisfactory since 

one must understand the off-shell dependence in each leg while retaining gauge invariance; such 
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Fig. 12. Schematic representation of the deuteron 
wave function in QCD indicating the presence of 
hidden color six-quark components at short dis- 
tances. 

methods have little predictive power. On the other hand, the explicit evaluation of the multi- 

quark hard-scattering am@itudesneeded to predict the normalization and angular dependence - - T 
for a nuclear process, even at leading order in a6 requires the consideration of millions of Feyn- 

man diagrams. Beyond leading order one must include contributions of non-valence Fock states 

wavefunctions, and a rapidly expanding number of radiative corrections and loop diagrams. 

The reduced amplitude method,16 although not an exact replacement for a full QCD cal- 

culation, provides a simple method for identifying the dynamical effects of nuclear substructure, 1 

consistent with covariance, QCD scaling laws and gauge invariance. The basic idea has already 

been introduced for the reduced deuteron form factor. More generally if we neglect nuclear 

binding, then the light-cone nuclear wavefunction can be written as a cluster decomposition of 

collinear nucleons: tiqj~ = $N/A &v *q/N where each nucleon has l/A of the nuclear momen- 

tum. A large momentum transfer nucleon amplitude then contains as a factor the probability 

amplitude for each nucleon to remain intact after absorbing l/A of the respective nuclear mo- 

mentum transfer. We can identify each probability amplitude with the respective nucleon form 

factor F (ii = & tA). Thus for any exclusive nuclear scattering process, we define the reduced 

nuclear amplitude 

The QCD scaling law for the reduced nuclear amplitude m is then identical to that of nuclei with 

point-like nuclear components: e.g., the reduced nuclear form factors obey 

(4.10) 

Comparisons with experiment and’ predictions for leading logarithmic corrections to this result 
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are given in Ref. 16. In the case of photo- (or electre) disintegration of the deuteron one has 

(4.11) 

i.e., the same elementary scaling behavior as for M.,M+~~. Comparison with experiment is en- 

couraging [see Fig. 131, showing that ss was the case for Q2f,+(Q2), the perturbative QCD scaling 

regime begins at Q2 2 1 GeV2. Detailed comparisons and a model for the angular dependence 

and the virtual photon-mass dependence of deuteron electrodisintegration are discussed in Ref. 

16. Other potentially useful checks of QCD scaling of reduced amplitudes are 

-d.- - 

mpp-rdr+ - PG2 m/4 

mpd+H’r+ - PF’ fW 

mrd-crd - PT’ fW * 

* 

(4.12) : 

Fig. 13. Comparison of deuteron 
photo-disintegration data with the 
scaling prediction which requires 
f2 (e,.,.) to be independent of en- 
ergy at large momentum trans- 
fer. The data are from H. My- 
ers et al., Phys. Rev. m, 630 
(1961); R. Ching and C. Schaerf, 
Phys. Rev. m, 1320 (1966); 
P. Dougan et aL, Z. Phys. A 276, 
55 (1976). 
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It is also possible to use these QCD scaling laws for the reduced amplitude hs a parametrization 

for the background for detecting possible new dibaryon resonance states. 
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5. EVOLUTION OF MULTIQUARK STATES 

The short-distance behavior of multiquark wavefunctions can be systematically computed 

in perturbative QCD. In this paper we analyze the wavefunction of a four-quark color-singlet 

bound state in SU(2)c as an analogue to the six-quark problem in QCD. We first solve the QCD 

evolution equation for the multi-quark distribution amplitude at short distances in the basis of 

completely antisymmetrized quark representations. The eigensolutions of the evolution kernel 

correspond to a spectrum of candidate states of the relativistic multi-quark system. We then 

connect the four-quark antisymmetric representations and the eigensolutions to the physical two- 

cluster basis of SU(2)c dibaryon (NN, NA, AA) and hidden color (CC) components and derive 

constraints on the effective nuclear potential between two clusters. We also find anomalous states 

in the spectrum which cannot exist without substantial hidden-color degrees of freedom. 

Among the most important goals in the application of quantum chromodynamics (QCD) to 

nuclear physics are to predict the bound-state spectrum of relativistic multi-quark color-singlet 
- 

systems and to identiqae role of non-nucleonic degrei& of freedom ih a’nucleus. In Appendix 

C we have given a general method for solving the QCD evolution equations for distribution am- 

plitudes, the equations which determine the behavior of hadron wavefunctions at short distances. 

An important simplification of the analysis is to choose ss a basis of the evolution kernel the set 

of antisymmetrized multi-quark representations. Since the evolution equation is relativistic and 

obeys all the conservation laws and symmetries of the full QCD Lagrangian, its set of eigensolu- 

tions should correspond closely to the structure of the true spectrum. Applications of the method 

to the baryon system have been presented in Ref. 1. 

In this chapter, we analyze the structure of the spectrum and the short-distance behavior of 

the four-quark system in SU(2)c as a first attempt in analyzing actual multiquark color-singlet 

bound states in QCD. Even though this is a toy model, the results have a number of interesting 

implications for the realistic dibaryon system. 

An outline of the method is as follows: we first construct the set of completely antisymmetric 

four-quark representations ss a basis for diagonalizing the QCD evolution kernel. After diago 

nalizing the mixing matrices, we find the eigenvalues and the eigensolutions of the four-quark 

evolution equation. The eigenvalues are the anomalous dimensions of the distribution ampli- 

tudes which describe the short distance behavior of the system. The eigensolutions correspond 

to candidate four-quark states for the spectrum of the full SU(2)c Hamiltonian. 

A relativistic color-singlet bound state in QCD has a consistent Fock representation at equal 

time on the light cone in A+ gauge. The lowest Fock amplitude is referred to as the valence 

wavefunction. In the evolution equation formalism,2 the valence wavefunction is represented by 

the distribution amplitude 4(Zi, Q), the amplitude for the valence quanta to each carry light-cone 
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longitudinal momentum fraction 

+ 9 s 

zi = c2l k; = ‘&;: kf) ’ 

collinear in relative transverse momenta up to the scale Q. Physically, 4(zi, Q) at large Q2 

probes the short-distance behavior of the quark system, in the regime where all the constituents 

are within a transverse distance l/Q of each other. In general, the logarithmic Q2 dependence 

for 4(zi,Q) is predicted by QCD from the anomalous dimensions (eigenvalues) of the evolution 

equation. 

The four-quark eigensolutions can be expanded on the physical basis of effective clusters, the 

analogs of the NN, AA, NA, and CC states in QCD. By analyzing.the behavior of ti(zi,Q) at 

large Q2, we can predict the effective potential between two clusters. For example, we find that . 

one of the hidden color states has a large projection on the eigensolution with leading anomalous 

dimension (dominant at short distances), whereas the states analogous to NN and AA in QCD 

have an almost negligible leadingcomponent. This implies that the effective potential tends to be 
-4. - . 

repulsive between color-singlet clusters and attractive between colored clusters at short distance. 

We also find two other types of four-quark states in SU(2) color which cannot be identified 

with dibaryon degrees of freedom. One of these states has equal NN, AA and CC components. 

The other state is an anomalous hidden-color two-cluster system orthogonal to the usual hidden- 

color state which has the unusual feature that it has very small projection on the eigensolutions 

which dominate at short distance; i.e. the effective potential between the colorful clusters of the 

anomalous hidden color state tends to be repulsive. We speculate that the analogous anoma- 

lous states in QCD could be quasi-stable non-nucleonic nuclear systems, possibly related to the 

anomalous phenomena apparently observed in nuclear collisions.3*4 These results also give some 

support to the conjecture that multiquark hidden color components exist in ordinary nuclei.’ 

In Ref. 1 we presented a general method for constructing antisymmetric representations of 

relativistic many-fermion systems at equal time on the light-cone and used it to solve the evolution 

equation in QCD for the three quark system. 2 Essentially, we use the following procedure:. 

1. Construct the irreducible representations in each quantum space, color (C), isospin (T), spin 

(S) and orbital (0) in t erms of the irreducible representations of the permutation group by 

using the Young diagram technique.5 For the orbital representations, we use the index-power 

space which is constructe’d from the powers ni of the longitudinal momentum fractions 2;. 

The orbital representations for the L quark system are the polynomials nt, a$’ with the 

orthonormalization condition, 

where 4s and & are the orbital representations constructed by the same Young diagram 

. 
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with the index-power n and m, and w(Zi) = ni=, 2i. 

2. Construct completely antisymmetric representations in the entire CTSO space from the in- 

ner product of Young diagrams, using the Clebsch-Gordan coefficients of the St permutation 

group. 

The color singlet state of the four-quark system in SU(2)c is given by the Young diagram 

. There are two orthogonal representations given by 

h) 

+ 52 - a), 

where 

-A. --h & 
= I(bwbw + wbw_b) _ 

fi = -$wbbw + bwwb) 

and 

= +bb ww +wwbb) . 
s-3 4 

* . 

(5.2) 

Note that unlike the three quark system in QCD which has a unique antisymmetric color rep: 

resentation, the SU(2)c multiquark system has mixed color symmetry; i.e., several orthogonal 

representations. 

The notation used in Eq. (5.3) can be repeated for isospin and spin. We denote these 

representations by Tl, T2, and T3 (Sl, S2, and Ss) for T = 0 (S = 0) with the substitution of 

(b) by (u,d) ((t, 1)). Al so we use the conjugate notation ‘Fr , Fr, and 7s (31, 32 and 3s) 

_ with the U-‘-” sign instead of “+” sign between the two terms in the respective representations for 

the (T, Tz) = (LO) ((s, sz) = (LO)) t t s a es. In this analysis, we consider the T = 0 case, the 

analogue to the actual deuteron system. 

The results of the four-quark antisymmetric representations are summarized in Table I. For 

convenience, we present only effective representations which are sufficient to show the operation 

of the evolution kernel. In the Sz = 0 case, the SlT3 and glT3 terms are presented for S = 0 and 

1 representations, respectively. In the Sz = 1 and 2 cases the (fftl)Tl and (tttf)Tl terms are 

presented, respectively. Also, we denote in parentheses in Table I the spin-orbit Young diagrams 

for the cases in which several spin-orbit total symmetries are allowed from the inner product of 

spin and orbit representations. 
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A 

TABLE I 

A set of antisymmetric representations for T = 
s, = 

0 four-quark distribution amplitude (i) Sz = 0 (ii) S, = 1 (iii) 
2 case. The normalisation factors are given in (iv). For simplicity we present the effective representations 

which are a part of completely antisymmetric representations ruch as SITS or SITS terms for (i), (ITll) Tl terms 
for (ii), and (tttt) TI terms for (iii). 

(i) Sz = 0: SITa orsAT terms 

Spin x Orbital (SO) Effective Representations 
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(ii) s, = 1: (tttl) Tl terms 

Spin x Orbital (SO) Effective Representations 
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(iii) sz =2: (tttt) TI terms 

Spin x Orbital Effective Representations 

-*- - - 

(iv) NormaLration Factors: For every representations, the follow- 
ing normalization constants must be multiplied according to their 
orbital representations. 

Orbital Normalization 
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5.1 EVOLUTION OF THE FOUR-QUARK SYSTEM 

The distribution amplitude 4(zi, Q) is the valence Fock State wave function at equal time on 

the light cone integrated over transverse momenta & S Q2: 

The wave function $0 (Zig Gli) satisfies a Bethe-Salpeter type bound state wave equation. One can 

derive an evolution equation for the four-quark color-singlet state which expresses the variation 

of $(zi,Q) as Q2 is increased: 

where 

d(zi, Q) = 21222324 &zig Q), 

(5.5) 

and p = ll- $11 (n/ is the number of flavors) and CF = (ns - 1)/2n, (=3/4 in SU(2)c). The 

term 9 in Eq. (5.5) is derived from the wavefunction renormalization of the quark propagators. 

TO leading order in aa( V(Zi,gi) is computed from the single-gluon exchange kernel and is 

given by 

W  6 hix. A x- -+- 
=i Zi + Zj l l i-% 

= v(Yi9zi) 9 

(5.8) 

where 7’= (71, rr, 7s) are the SU(2)c Pauli matrices and 6hii;j = l(0) when the constituents {;,j} 

have antiparallel (parallel) helicities. The infrared singularity in the kernel at Zi = yi cancels for 

color singlet bound states: AJ(yi,Q) = J(yi,Q) - J(Zi,Q). 
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The general solution of Eq. (5.5) crux be written in the form 

: where 7,, and &, are the eigenvalues and eigensolutions of the following characteristic equation: 

The & basis is given in Table I, as explained in the last section. The remaining task is to find 

the anomalous dimensions 7n which determine the short-distance behavior of the four-quark wave 

function by computing the matrix of the evolution kernel in this basis and diagonalizing it. Note : 

that when a gluon isexchanged between the first and second quarks then the basis vectors ~1 and 

52 can be interchanged while $3 preserves itself. Thus the calculation of the color factors is not as 

simple as the three-quarkQCDcese and requires a complete matrix analysis. 

- 

The mixing between different spin and orbital multiplets is similar to the three-quark case. 

For example, the mixing matrix for the orbital power n = 2 has dimension 4 x 4 for the Sz = 1 

case and dimension 6 x 6 for the Sz = 0. After diagonalizing the mixiig matrices, we find the 

eigenvalues 7n and the eigensolutions &. The results are summarized in Table II. * 

5.2 TWO-CLUSTER DECOMPOSITION 

In this section, we will connect the eigensolutions of the four-quark evolution equation to the 

physical two-cluster basis and derive constraints on the effective nuclear potential between the 

clusters. 

The four-quark antisymmetric representations can always be decomposed into a sum of prod- 

ucts of pairs of two-quark representations. The two-quark antisymmetric representation is called 

a cluster which is classified according to its quantum numbers under G = SU(2); x Sum x 

SU(2)s. In N(2) c a four-quark color singlet can be constructed not only from a pair of two- 

quark color singlet, but also from the product of tw-quark color triplets (C). These correspond 

to dibaryon and hidden color states, respectively. The dibaryon states are classified by their 

isospin quantum numbers : N and A correspond to T = 0 and 1, in analogy to the T = l/2 and 

312 states in QCD. 

A given four-quark antisymmetric representation (A) can be decomposed onto two clusters 

(AI 8 As) using the following steps: 

1. Represent the four-quark antisymmetric representation as an inner product form A = C x . 
TxSxO. 

46 



I 
A 

TABLE II 

Eigenvalues and eigensolutions for T = 0 four-quark system up to total orbital power n = 2. Every eigensolution 
is a linear combination of completely titieymmetric repreeentationa given by Table I. For convenience, we represent 
eigensolutions as Young diagrams of spin and orbital rpacw rince the color and bospin Young diagram is 6xed by 

bnlxa = (2 + bn)C~lBl Spin x Orbit (SO) 

s, = 0 8 a- 
3 

-2.13 

-1.94 

2 -a 
9 

0 

0 

0.32 r177] - 0.03 

-0.24 m’ - 0.61 
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& 

bha = (2 + bn)Cf la] Spin x Orbit (SO) 
i 

s. = 0 0.006 -0.47(pmilq+ B) xppqqq+o.Io~]x yy 
E3 

8 
6 

10 
-T 

+tt x 00 m 4 11 11 0.55 [qq -to.35 

m Eli 

- 0.03 

3.5 
-*- - 

-0.42([m] - M)x m];O.53[m/ x m 

4.75 

-o.ro~J - 0.06 

5.40 

__ 
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i haI7, = (2 + b$Flal Spin x Orbit (SO) 

S,=l 
11-m 

. 18 

-1 m'X'-+pp] 

-0.98 

+p x p (-0.17r-1-1q -0.16B) 

1.13 -0.12pTqq.q x fqqqq -0.2oppTT'iJ x ; ; 
H 

-&‘ 

11-r- 
18 

2.51 0.04 jqql-i' )( 0011 '-j-'-r' -o.o7p/qTq x y ': 
83 

+p x p (,.,,m\ -0.78@) 
U 

s, = 2 

4.4 

0 

0 

14 
T 

0.76 m] 
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2. Decompose each four-quark representations C, T, S and 0 as an outer product of two 

twequark representations using fractional parentage coefficients,e’ e.g. C = Cr 8 Cr. 

3. Recombine the representations as an inner product: A = (Cl @ Cz) x (Tl@ Tz) x (Sl@ Sz) x 

(01 @ 02). 

4. Commute the order of inner product and outer product, gathering together representations 

of the same cluster: A = (Cl x Tl x Sl x 01) 8 (C2 x T2 x S2 x 02) E A1 @As. 

5. It is sufficient to consider only the coefficient of the symmetric orbitals Or and 02 to classify 

the clusters such as NN, NA, AA and CC. 

Using these steps, we can determine the relation between antisymmetrized four-quark antisym- 

metric representations and the effective two-cluster representations. For the T = S = 0 case, 

we obtain the transition table given in Table III which relates the two kinds of representations. ’ 

M. Harvey7 has already obtained the analogous transformation matrices between the physical 

b&sand the symmetry basis for six-quark systems. His definitions of the physical and symmetry 

bases are essentially thexrtie as the two-cluster representations and the completely antisymmetric 

representations used here. 

TABLE III 
Transition between four-quark antisymmetric represen- 
tations and effective two-cluster representations. Square 
and curly brackets represent the orbital (0) and spin- 
isospin (TS) symmetries respectively. 

W221 PW2) WI{41 1221{1111) 

NN -l/2 -l/2 1IJz 0 

AA l/2 l/2 l/Jz 0 

(CC)1 l/d -l/d 0 0 

(CC), 0 0 0 1 

From Table III, we can relate the twecluster distribution amplitudes with the completely 

antisymmetric quark distribution amplitudes. For example, the dinucleon distribution amplitude 

is given by 

qhv(Zi, 0) = - ; 4[,]{22} h 0) + ; 4[22]{22)(% 0) 

-5 4~22]{4h 0) , 
where the orbital and the spin-isospin symmetries are represented inside the square and the 
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curly brackets. Since the eigensolutions are linear combinations of completely antisymmetric 
representations, we can relate the right-hand side of Eq. (5.11) with the eigensolutions given by 
Table II. The eigensolutions & (Zig Q) have the following form: 

, O,,(zivQ) = e -‘nC(*a) 4qn(Zi) s (5.12) 

Consequently, we can expand each twecluster distribution amplitudes in terms of the orbital in- 
dex power representations &,, (Zi). To probe the high Q2 behavior of the two-cluster distribution 
amplitudes, it is sufficient to consider only the leading terms which have the lowest anomalous 
dimensions m because of the damping factor of Eq. (5.12). The lowest orbital power with rep- 
resentations which provide well-defined two-cluster distribution amplitudes is n = 2. We will 
discuss the special properties of the n = 0 representation in the next section. 

The n = 2 two-chrster distribution amplitudes can be expanded in terms of the orbital repre- 
sentations 472(2i) E &: 

and 

+ 0.39 em2*01T 4-2.01 - 0.47 ~-550T4-5.50 

+ 0.44 e-s*75F 4-6.75 + 0.15 e-7*4°~4-,.40 , 

(5.13a) 

dAA(Zi,Q) = -0.07 e""3'40.13 -0.59 c-~'~'~-o.~ 

+ 0.32 e-2*01r 4-2.01 + 0.47 e-5'50F4-5.50 (5.13b) 

- 0.55 P5~4-&,5 0.15 e-7.4°~4-,.40 - , 

4(CC), = - 0.70 P74,.,3 - 0.35 ,-o*@4-o.os 

- 0.61 e-201~4-2.01 - 0.08 ~~~~~~~~~~~~~ (5.13c) 

+ 0.02 e-s.75~ 4-6.75 + 0.05 t-7'40F4-,.40 , 

where r= c yc(Q2). We will discuss the second hidden-color state 4(c,q, in the next section. 

As seen from Eq. (5.13), each distribution amplitude has’s distinct high Q2 behavior which 

depends on whether it is composed of colorless or colorful clusters. The prototypes of the dibaryon 
system have a negligible coefficient for the most leading term at high Q2 and relatively large coef- 

. ficients for the next-toleading terms, whereas the hidden color state (CC), has a large coefficient 
for the leading term. 

. 
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One can imagine constructing a state at the scale Qc which only has the NN component of Eq. 
(5.13a) and then studying its evolution as Q increases. The high Q2 behavior of 4(Zi, Q) gives the 
probability amplitude that all the quarks have impact separation less than l/Q. Thus the colorful 
clusters tend to coexist at short distances; i.e., the colorful clusters tend to attract each other 
and the colorless clusters tend to repel each other at short distances. Although these results are 
strictly only applicable in the limit of vanishing interparticle separation, they do provide rigorous 
constraints on the effective nuclear potential at short distances. 

5.3 ANOMALOUS STATES 

In the last section, we expanded the effective two-cluster representations in terms of the 
eigensolutions of the evolution equation and derived constraints on the effective nuclear potential 
at short distances. A state which. at large distances corresponds to two colorless clusters (such 
as NN and AA) acts as if there is a short-distance repulsive potential between them. On the 
other hand, a state wh’c,h consi+ of two colorful clusters at large distance ( (CC)1 ) sees an 
attractive potential at short distances. These results show that the leading contribution of QCD 
to the multiquark wavefunction at short distances has a behavior consistent with the repulsive 

core nucleon-nucleon potential of conventional nuclear physics.8 However, we also find that the 
theory predicts the existence of anomalous states which differ from the normal nuclear degree of 

freedoms. 

As shown in Table III, if the total power n of orbital representation is zero, then only the com- 
pletely symmetric orbital is possible. Thus, we can read Table III vertically but not horizontally. 
Since this state cannot exist without including hidden color components with 50% probability,g 
we cannot interpret this state with normal nucleonic degrees of freedom. If such states exist in 

physical nuclei then they can provide non-additive nuclear phenomena, such BS that observed in 
the EMC effect’ in deep inelastic iepton-nucleus structure functions. 

The (CC)2 state in the orthonormal cluster basis also has anomalous properties. If we expand 
the n = 2 component in terms of eigensolutions, then 

d(cc), (zi, Q) = - 0.04t~~*‘~’ 40.13 - 0*30~-5*50’ 4-5.50 

(5.14) 
- 0.95e-‘-40~4-,.40 . 

Since this state has negligible coefficients for the leading terms and very large coefficient for the 

strongly damped non-leading terms, the (CC)2 state acts as if there is a repulsive potential be- 
tween two colorful clusters at short distances. This behavior contrasts with the more conventional 

behavior of (CC)r. 
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If such a nuclear state were quasi-stable it could have unusual interaction properties. Since 
it consists of separated triplets (octets in‘SU(3)c) the state has a large color-dipole moment, 
producing large hadronic cross sections and short mean free paths. It is amusing to speculate 
whether the states in QCD analogous to the (CC), cluster configurations have any connection 
with the anomalous phenomena apparently observed in heavy ion collisions.3*10 

5.4 IMPLICATIONS OF HIDDEN COLOR STATES 

The results discussed in this chapter represent a first attempt to extract exact results for the 
composition and interactions of multiquark nuclear systems at short distances. For simplicity, 
we have analyzed four-quark bound states in SU(2)c, but we expect that many of the derived 
properties extend to six-quark states in QCD. l1 In particular, since the leading eigensolution 
at high momentum transfer has 80% hidden color probability,’ we expect a transition of the 

ordinary nuclear state to non-nucleonic degrees of freedom as one evolves from long to short 
distances. 

The set of eigensolutions of the evolution equation represent all the possible degrees of freedom 
of the multiquark bound state system since its kernel has the same invariances and symmetries o{ 
the full QCD Hamiltonian. We thus expect that the eigensolutions of the evolution kernel which 
are dominantly hidden-color to correspond to actual states and excitations of ordinary nuclei. A 
careful experimental search for these exotic resonances should be made. Possible channels where 
signals for such states may be observed include Compton and pion photoproduction on a deuteron. 
target at large angles. 

REFERENCES 

1. S. J. Brodsky and Chueng-Ryong Ji, SLAC-PUB-3076(1985). 
2. G. P. Lepage and S. J. Brodsky, Phys. Rev. D =,2157 (1980). S. J. Brodsky, SLAC-PUB- 

3191, published in Short-distance Phenomena in Nuclear Physics, D. H. Boa1 and R. M. 
Woloshyn eds. Plenum (1983). 

3. B. Judek, Can. J. Phys. 96, 343 (1968); a, 2082 (1972); I. Otterlund, Sixth High Energy 
Heavy Ion Study and Second Workshop on Anomaly, held at LBL, June 28 to July 1 (1983); 
E.M.Friedlander et. al., Phys. Rev.Lett. ti, 1084(1980). 

4. R. Jaffe, Nature, 296, 305 (1982); E. Gabathuler, Progress in Particle and Nuclear Physics, 
Vol. 13, Chapter 12, edited by A. Faessler (1985). 

5. M. Hammermesh, Group Theory (Addison-Wesley, Reading, Mass. 1962). 
6. M. Harvey, lectures given at TRIUMF, 20-24 October 1980; H. A. Jahn and H. Van Wierin- 

gen, Proc. Roy. Sot. &@, 502 (1951); J. P. Elliott, J. Hope and H. A. Jahn, Phil. Trans. 
Roy. Sot. 246, 241 (1953). 

7. M. Harvey, Nucl. Phys. m, 301 (1981); m, 326 (1981). 

53 



8. C. Detar, Harvard University Report No. HU-TFT-82-6, 1982 (unpublished); M. Harvey, 
Ref. 7; R. L. Jaffe, Phys. Rev. Lett. a, 228 (1983); G. E. Brown, Progress in Particle 
Nuclear Physics, Vol. 8, Chapter 5, edited by D. Wilkinson (1982); A. Faessler, Progress in 
Particle and Nuclear Physics, Vol. 13, Chapter 9, edited by A. Faessler (1985). 

9. The realistic six-quark state has 80% hidden color state. See S. J. Brodsky, C.-R. Ji and G. 
P. Lepage, Phys. Rev. Lett. && 83 (1983). 

10. P. J. S. Watson, Phys. Lett. m, 289 (1983); W. J. Romo and P. J. S. Watson, Phys. 
Lett. &!B, 354 (1979). 

11. The.+quark evolution formalism is developed and the leading anomalous dimension of a 
realistic deuteron are given in Chueng-Ryong Ji and S. J. Brodsky, SLAC-PUB-3148. 

-d.- - 

54 



6. LIMITATIONS OF TRADITIONAL NUCLEAR PHYSICS 

The fact that the QCD prediction for the reduced form factor Q2fd(Q2) N const [see Chapter 
41 appears to be an excellent agreement with experiment for Q2 > 1 ,GeVs provides an excellent 
check on the six-quark description of the deuteron at short-distance as well as the scale-invariance 
of the qq + qq scattering amplitude. On the other hand, as we show in Appendix C, the standard 
“impulse approximation” used in standard nuclear physics calculations’ 

JUQ2) = FN(Q~) x hody(Q2) (6.1) 

is invalid in QCD at large Q2 since off-shell nucleon form factors enter [see Fig. 14(a)]. The usual 
treatment of nuclear form factors also overestimates the contribution of meson exchange currents 1 
[Fig. 14(b)] and N# contributions [Fig. 14(c)] since they are strongly suppressed by vertex form 
factors as we shall show in this section. 

--e- - 

J/j&&- 

d P P+q n 

( 0,) 

+3fy+gJ,)+++yjY&)- 

3-83 (b) (cl 4507Al8 

Fig. 14. Critique of the standard nuclear physics approach to the 
deuteron form factor at large Q2. (a) The effective nucleon form 
factor has one or both legs off-shell: Ipi - pi/ u q2/2. (b) Meson 
exchange currents are suppressed in QCD .because of off-shell form 
factors. (c) The nucleon pair contribution is suppressed because of 
nucleon compositeness. Contact terms appear only at the quark level. 

At long distances and small, non-relativistic momenta, the traditional description of nuclear 

forces and nuclear dynamics baaed on nucleon, isobar, and meson degrees of freedom appears to 
give a viable phenomenology of nuclear reactions and spectroscopy. It is natural to try to extend 
the predictions of these models to the relativistic domain, e.g., by utilizing local meson-nucleon 
field theories to represent the basic nuclear dynamics, and to use an effective Dirac equation to 

describe the propagation of nucleons in nuclear matter. An interesting question is whether such 
approaches can be derived as a %orrespondence” limit of QCD, at least in the low momentum 

transfer (Q2Ri < 1) and low excitation energy domain (Mv & M’2 - M2). 
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The existence of hidden-color Fock state components in the nuclear state in principle precludes 
an exact treatment of nuclear properties based on meson-nucleon-isobar degrees of freedom since 
these hadronic degrees of freedom do not form a complete basis on QCD. Since the deuteron form 
factor is dominated by hidden color states at large momentum transfer, it cannot be described by 
np, AA wavefunction components on meson exchange currents alone. It is likely that the hidden 
color states give less than a few percent correction to the global properties of nuclei; nevertheless, 
since extra degrees of freedom lower the energy of a system it is even conceivable that the deuteron 
would be.unbound were it not for its hidden color components. 

Independent of hidden color effects, we can still ask whether it is possible-in principle- 
to represent composite systems such as mesons and baryons as local fields in a Lagrangian field 
theory, at least for sufficiently long wavelengths such that internal structure of the hadrons cannot 
be discerned. Here we will outline a method to construct an effective Lagrangian of this sort. First, ; 
consider the ultraviolet-regulated QCD Lagrangian density t&D defined such that all internal 
loops in the perturbative expansion are cut off below a given momentum scale n. Normally n is 
chosen to be much large_rthan allrelevant physical scale. Because QCD is renormalizable, f zcD - . 
is form-invariant under changes of n provided that the coupling constant o,(n2) and quark mass 
parameter VZ(K~) are appropriately defined. However, if we insist on choosing the cutoff n to 
be as small as hadronic scales then extra (“higher twist”) contributions will be generated in the 
effective Lagrangian density: 

(6.2) 

where fg is the standard Lagrangian and the “higher twist” terms of order ns2, n-‘, . . . are 
schematic representations of the quark Pauli form factor, the pion and nucleon Dirac form fac- 
tors, and the pion nucleon-antinucleon coupling. The pion and nucleon fields 4* and $JN represent 
composite operators constructed and normalized from the valence Fock amplitudes and the leading 
interpolating quark operators. One can use the above equation to estimate the effective asymp- 
totic power law behaviors of the couplings, e.g., a!$ - l/Q2, Fr - jz/Q”, GM - ji/Q’ and the 

effective rrfi7sNFWN~ coupling: FINn(Q2) - MN ji jW/Q6. The net pion exchange amplitude for 
NN - NN scatterings thus falls off very rapidly at large momentum transfer MsN+NN - (Q2)-’ 
much faster than the leading quark interchange amplitude MQNQN+NN - (Q2)-‘. Similarly, the 
vector exchange contributions give contributions MhN+NN - (Q2)-6. Thus meson exchange 
amplitudes and currents, even summed over their excited spectra, do not contribute to the lead- 
ing asymptotic behavior of the nucleon-nucleon scattering amplitudes or deuteron form factors 
once proper account is taken of the off-shell form factors which control the meson-nucleon-nucleon 
vertices. 
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Aside from such estimates, an effective Lagrangian only has utility as a rough tree graph 
approximation; in higher order the hadronic field terms give loop integrals highly sensitive to the 
ultraviolet cutoff because of their non-renormalizable character. Thus an effective meson-nucleon 
Lagrangian serves to organize and catalog low energy constraints and effective couplings, but 
it is not very gredictive for obtaining the actual dynamical and off-shell behavior of hadronic 
amplitudes due to the internal quark and gluon structure. 

Local Lagrangian field theories for systems which are intrinsically composite are however mis- 
leading in another respect.2 Consider the low-energy theorem for the forward Compton amplitude 
on a (spin-average) nucleon target 

“IF0 M 7p+p(v,t = 0) = -2z.P $ 1 
P 

(6.3) 

One can directly derive this result from the underlying quark currents as indicated in Fig. 15(b).’ 
However, if one assumz$e nucleon is a local field, then the entire contribution to the Compton r . 
amplitude at Y = 0 would arise from the nucleon pair s-graph amplitude, as indicated in Fig. 
15(a). Since each calculation is Lorentz and gauge invariant, both give the desired result. However, 

in actuality, the nucleon is composite and the Nfi pair term is strongly suppressed: each 7pp 
vertex is proportional to 

(01 J’(O) IPP) a Fp (Q2 = 4Mi) ; (6.4) 

i.e., the timelike form factor as determined from e+e- + pfr near threshold. Thus, as would 
be expected physically, the NiV pair contribution is highly suppressed for a composite system 
(even for real photons). Clearly a Lagrangian based on local nucleon fields gives an inaccurate 
description of the actual dynamics and cannot be trusted away from the forward scattering, low 
energy limit. 

We can see from the above discussion that a necessary condition for utilizing a local Lagrangian 
field theory as a dynamical approximation to a given composite system H is that its timelike form 
factor at the Compton scale must be close to 1: 

FH(Q2 =4M2)d. (6.5) 

For example, even if it turns out that the electron is a composite system at very short distances, 

the QED Lagrangian will still be a highly accurate tool. The above condition on the timelike 
form factor of threshold fails for all hadrons, save the pion. This result does suggest that effective 
chiral field theories which couple point-like pions to quarks could be a viable approximation to 

QCD. 
. 
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Fig. 15. Time-ordered contributions to (a) The Compton ampli- 
tudes in a local Lagrangian theory such as QED. Only the Z-graphs 
contribute in the forward low energy limit. (b) Calculation of the 
Compton+iu3plitu& for composite systems, . 

More generally, one should be critical of any use of point-like couplings for nucleon-antinucleon 

pair production, e.g., in calculations of deuteron form factors, photc+ and electro-disintegration 
since such contributions are always suppressed by the timelike nucleon form factor. Notice that 
7Nm point-like couplings are r.& needed for gauge invariance, once all quark current contributions. 
including pointlike qQ pair terms are taken into account. 

We also note that a relativistic composite fermionic system, whether it is a nucleon or nucleus, 
does not obey the usual Dirac equation- with a momentum-independent potential-beyond first 
Born approximation. Again, the difficulty concerns intermediate states containing Nfl pair terms: 
the validity of the Dirac equation requires that (pi Vat Ip’) and (01 V,t Ip’p) be related by simple 
crossing, as for leptons in QED. For composite systems the pair production terms are again 

suppressed by the timelike form factor. It is however possible that one can write an effective, 
approximate relativistic equation for a nucleon in an external potential of the form 

(z * p’+ pmN + A+V&A+)~N = EON (6.6) 

where the projection operator A+ removes the Nm pair terms, and Veff includes the local (seagull) 
contributions from q&pair intermediate states, as well as contributions from nucleon excitation. 

An essential property of a predictive theory is its renormalizability, the fact that physics at a 

very high momentum scale k2 > n2 has no effect on the dynamics other than to define the effective 
coupling constant a(~~) and mass terms rn(~~). Renormalizability also implies that fixed angle 
unitarity is satisfied at the tree-graph (no-loop) level. In addition, it has recently been shown that 
the tree graph amplitude for photon emission for any renormalizable gauge theory has the same 
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amplitude zero structure as classical electrodynamics. Specifically, the tree graph amplitude for 
photon emission caused by the scattering of charged particles uunishce (independent of spin) in 
the kinematic region where the ratios Qi/pi.k for all the external charged lines are identical.’ This 
“null zone” of zero radiation is not restricted to soft photon momentum, although it is identical 

to the kinematic domain for the,complete destructive interference of the radiation associated with 
classical electromagnetic currents of the external charged particles. Thus the tree graph structure 
of gauge theories, in which each elementary charged field has eero anomalous moment (g = 2) is 
properly consistent with the classical (ti = 0) limit. On the other hand, local field theories which 
couple particles with non-zero anomalous moments violate fixed angle unitarity and the above 
classical correspondence limit at the tree graph level. The anomalous moment of the nucleon is 
clearly a property of its internal quantum structure; by itself, this precludes the representation 
of the nucleon as a local field. 

The essential conflict between quark and meson-nucleon field theory is thus at a very basic 
level: because of Lorentz invariance a conserved charge must be carried by a local (point-like) 

current; there is no con&st-ent relativistic theory where-fundamental eonstituent nucleon fields 
have an extended charge structure. 

6.1 WHEN IS PERTURBATIVE Q CD APPLICABLE? 

An important phenomenological question for the application of QCD to nuclear physics is the. 
momentum transfer scale p where perturbative predictions become reliable. Ignoring heavy quark 
thresholds, the natural scale parameters of QCD are A= (- 100 f 50 MeV), the msss scale of 

the light hadrons (2 1 GeV), and the constituent transverse momenta (ki)1/2 N 300 MeV. Thus 
u priori we expect the nominal power-law behavior predicted by QCD hard subprocesses to be 
reliable for Q2 W p2; i.e., Q2 beyond a few GeV 2. In fact, for the explicit calculations of form 
factors for heavy hadrons [See Chapter 21 we find that non-leading contributions are controlled 

by the mass of the heavy quarks. 

In the case of deep inelastic lepton-nucleon scattering, Bjorken scaling, which reflects the scale- 
invariant behavior of incoherent lepton quark scattering becomes evident for Q2 > 1 GeV2, W > 
1.8 GeV. Coherent contributions, which occur when, e.g., two different struck quarks interfere 
become relevant for Q2 5 0 (k:) such that there is significant overlap in the final state. In the case 
of exclusive processes, the leading QCD power law dominates when the nucleon valence Iqqq) or 
meson valence lqg) Fock state contributions overtake the faster falling contributions from higher 
Fock states. Phenomenologically, the onset of the leading power law occurs at Q2 H few GeV2. 

In the case of the deuteron form factor, (Q2)5Fd(Q2) cannot be expected to approach constant 
behavior until considerably larger Q2 since the virtual photon’s momentum in the underlying hard 
subprocess is divided six ways: i.e. one requires (Q/6)2 w (k:). (Detailed numerical estimates 
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are given in Ref. 5.) On the other hand, reduced nuclear amplitudes such as the reduced deuteron 

form factor can be expected to approach scaling law Q2jd(Q2) + const quickly since the relevant 
hard propagators route to large momentum transfer N S/6 Q. All other sources of scale breaking 
by definition divide out via the nucleon form factors. 

The scaling behavior of the form factors shown in Fig. 3 bear out these expectations. Other 
QCD predictions for the leading power behavior, including pp + pp, vrp + np, 7p + x+n, etc. 
are consistent with the predicted nominal scaling law at momentum transfer p$ 2 3 GeV2. 

Recent measurements* of the basic QCD process 77 + &rr- at large angles agree with the QCD 
predicted scaling behavior for invariant mass W > 1.8 GeV. 

An essential question is whether QCD also correctly accounts for the normalization as well 
as the scaling behavior of high momentum transfer form factors and other exclusive process 
data. The 77 -+ &.A-, K+K- agree very well with the absolutely normalized QCD predictions. 

Meson form factor predictions for Q2F’(Q2) are within a factor or two of the QCD prediction’ 
using the most naive fzrr,m_of the meson distribution amplitude, i.e.: 9(z) = Cz(1 - 2). Since 
this distribution is relevant only at asymptotic momentum scales (where the leading anomalous 
dimension dominates), there is no conflict with existing data. 

As we have discussed in Chapter 2, the possibility of significant asymmetry in the z-distribution 
of the valence wavefunction of the nucleon has been investigated by Chernyak and Zhitnitsky us- 

ing the constraints of the ITEP sum rules. The result is the prediction that the u-quark with spin’ 

parallel to the proton carries N 2/3 of the nucleon momentum, leaving l/6 each for the other two 
quarks. The predicted normalization for Q’G$ and $J --* pp is again in good agreement with the 

data, even using normal a valence state radius. The corresponding calculations for the pion form 

factor also are in excellent agreement with the available data. 

In the case of the nucleon form factor, the normalization of the QCD prediction Q4G~(Q2) H 
const is sensitive to three effects: 

1. The average interquark separation d, of the valena wavefunction: it should be emphasized 

that Gw(Q2) is proportional to the fourth inverse power of dv. 

2. The shape of the nucleon distribution amplitude 4N(Zi) especially near Zi N 1. 

3. The use of the running coupling constant a,(Q2) at the correct scale in the 3q + 7’ + 3q 

hard scattering amplitudes. This removes an “accidental” cancellation in GL(Q2). when 
the asymptotic distribution amplitude #N(Z) = Czrx2z3 is assumed. 

If one uses fixed coupling constant, together with a naive non-relativistic wavefunction with 
symmetric quark distributions and the standard rms radius u 0.8 jm, then the predicted nor- 
malization of Q4GG(Q2) ’ t rs wo orders of magnitude below experiment. However, by taking into 
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account the above three effects it is straightforward to fit the experimental normalization of GM 
as well as YW,~ at z + 1 and the decay rate for $ --) pp.’ 

In our work we have noted that the valance wavefunction of the nucleon is likely to be much 
more compact than indicated by the physical proton radius as derived from an average over all 
Fock states. More precisely, we’define the QCD Fock state expansion for the proton wavefunction 
at equal r = t + z on the light-cone and A+ = 0 gauge, at a given renormalization scale n. 

At small Q2 where the proton rms radius is determined (from 6 & Fr(Q2)1c+c) all Fock states 
contribute. At large Q2iwhereQ4Ga(Q2) becomes nearly constant_ the valence Fock state r 
$J~~~ (ri, kli) is dominant. Since the higher Fock states are analogous to states containing a 
meson cloud, it .is reasonable that the valence state radius (k~)&1’2 is smaller than the total 
radius. In fact in the case of the pion, this statement can be demonstrated explicitly. Using 
normalization constraints from the decay amplitudes A- --P p-u and rr” + 77 we can determine 
the valence state probability and radius (Peqilr - f, (r2)i$. - 0.42 jm). This suggests that the. 
nucleon form factors be parametrized with at least two components, one soft, falling at least ss 
fast as (Q2)-3 and the other with a large > 1 GeV2 mass scale falling as (Q2)-2. asymptotically. 
It is in fact easy to find parametrizations of this type which fit the standard dipole form.’ 

The correct QCD explanation may well involve a combination of the above effects. A final reso- 
lution to the problem will require more Eventually, lattice gauge theory and other non-pertubative 
tools can provide constraints and actual solutions to the nucleon bound state wavefunction in 
QCD. Certainly at this point there is no evidence of any difficulty or conflict with the predictions 
of perturbative QCD for either the scaling behavior or the normalization of exclusive processes 
in the few GeV2 momentum transfer region. 

6.2 FUTURE DIRECTIONS 

QCD can be regarded as the underlying theory of nuclear phenomena in the same sense that 
QED is the ‘basis for atomic and molecular physics. At this ,point we are only at the beginning 
of quantitative calculations, and further progress will require the development of new theoretical 
techniques for solving strong coupling theories, boundary condition models, etc. We will also 

need new experimental input, especially in the transition region between coherent and incoherent 

quark processes. At this point, theoretical progress is being made in the following areas: 

61 



I 

A 

1. One can now find approximate analytic solutions to the light-cone equation of motion 
in the valence quark sector, thus allowing model computations of hadronic and nuclear 
wavefunctions, distribution amplitudes, and structure functions. Recently, together with 
M. Sawicki,’ we have developed fixed particle number equations analogous to the non- 
retardation approximation in atomic physics. Because this approach consistently restricts 
the equation to fixed particle number, non-analytic “cusps” of the type derived by Karmonov” 
are avoided. 

2. Discretized light-cone quantization [see Appendix A] provides a complimentary method 
to lattice gauge theory for actually solving field theories, determining both the spectrum 
and wavefunctions. Lattice gauge theory is now also providing constraints on the valence 
wavefuntions and a check on predictions from QCD sum rules. We have also emphasized 
the importance of two photon exclusive channels as a measure of the shape of distribution . 
amplitudes. 

3. The normalization of the deuteron form factor at large Q2 is a formidable though feasible 
-&. - 

task. The calculation of Z’H(6q + 7’ 
.! 

+ 6q) should befeasible using the methods of Farrar, 
Maina, and Neri.‘” The normalization of 4d(zi, Q) re q uires a careful study of the six-quark 
evolution equation and matching to the non-relativistic regime. 

4. The above study also allows estimates of corrections to the reduced amplitude formalism and 
the effects of hidden color states. In Appendix C we examine the transition from-reduced 
form factors to the low momentum transfer regime (Q2 s 2McgE) where the impulse 
approximation form becomes valid. More generally the reduced amplitude formalism can 
be used to redefine the nuclear potential in such a way that nucleon structure is consistently 

removed. 

5. A systematic analysis of all sources of non-additivity in inelastic lepton-nucleus scattering, 
lepton pair production, and their effects on specific final states is needed before we have 
a clear understanding of the EMC effect. For example, one possible origin of anomalous 
A-dependence is non-additivity of strange and other sea quarks in the nucleus, which will 
be apparent in the A-dependence of K- electroproduction. The decrease of the mean 
value of z with increasing nucleon number implies by rotational symmetry a corresponding 
decrease of (ki)1/2. The decrease of the intrinsic transverse momentum should then lead 
to a contribution to the average transverse momentum of lepton pairs produced in hadron- 

nucleus collisions decreasing with A.12 There is also the possibility of non-additive coherent 

contributions at low z which leave the nucleus intact. l3 Non-additive radiative corrections 
must also be carefully considered.” 

6. The role of intrinsic charm and other heavy virtual particle pairs in the hadron wavefunc- 
‘tions can be important for heavy hadron production. The status of this phenomenology is 

62 



discussed in Ref. 15. 
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APPENDIX A 

QUANTIZATION ON THE LIGHT CONE 

(This appendix was written in collaboration with H.-C. Pauli’ ) 

In this section we develop in detail light-cone quantization as a tool to actually solve for the 
spectrum and bound state wavefunctions of a quantum field theory. As a simple, but non-trivial, 
example we apply the method to the Yukawa theory in one-space one-time dimensions. 

As we shall discuss, the problem of finding solutions to a field theory becomes enormously 
easier if the fields are quantized at equal light cone.time t + z/c rather than at equal usual time 
t.2 Light cone quantization was proposed originally by Dirat~,~ and rediscovered by Weinberg’ 
in the context of covariant formu!ation of time-ordered perturbation theory. Sometimes called 

the infinite momentum frame approach,2’5-8 it continues to be an important tool for many 
applications.2 The folfn,afism was thoroughly investigated and reviewed by Chang et al.’ In - . 
Appendix B. we quantize QCD and construct the Fock state basis and perturbation rules. 

The Lagrangian density for interacting fermion and scalar boson fields, $J and p, respectively, 

is given by 10,ll 

?nF and mg are the bare masses for the fermions and the bosons, respectively, to be determined 

below, and the bare coupling constant X is considered a free parameter. The Lagrangian density is 

manifestly hermitean, although only the total Lagrangian J drL has to be so by physical reasons. 

The volume element d7 denotes integration over all covariant coordinates zp. 

The metric tensors gpv and g,,,, are defined as the raising and lowering operators, 9 = 

Ph and z,, = g,,,,zv , respectively, such that the scalar product z~I,, E g~“xvz,, remains 
an invariant under Lorentz transformations. This implies, that they are inverse to each other, i.e. 

Pgvrc = g. As long as one does not write out the sums explicitly, the Lagrangian in four is 
the same as in two dimensions. Henceforth we shall restrict ourselves to the latter case. In the 

usual parameterization with z” = ct being the time and z1 = z being the space coordinate, gpv 
has the nonvanishing elements g” = -go0 = 1. 

There is no compelling reaSon why the fields must be treated always as functions of the usual 

time and space coordinates. Any invertible parameterization of space and time is admissible as 

well. For example, one can consider them as functions like ~(z-,z+) = ~(z - ct,z + ct). If one 
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transforms the coordinates to a rotated fraple, the metric tensor becomes ( gij = azi/a=j ) 

W) 

Scalar products become, for example 

k,,z’ s k+z+ + k-z- = ;(k- z+ + k’z-) = 2(k-si+ + k+z-), (A31 

or even simpler, k,kp = k+k’ = 4k-k+. As shown in Fig. 16, the above transformation corre- 
sponds to a real rotation in phase space by -45’, combined with an irrelevant stretching of scale. 
Upon rotation, time and space lose their meaning. Nevertheless, in line with familiar phrasing,2’Q 
one refers to z+ = z” + z1 as the light cone time, and correspondingly, to Z- = z” - z1 as 1 
the light cone position. It is somewhat unfortunate that this way of parameterization has also 
been described as the infinite momentum frame approach. In fact, the light cone formulation is 
frame-independent, the--menturn is always finite, and it is not really correct to think of the 
above rotation as a Lorentz transformation which boosts the system to high momenta. Dirac’s 
original formulation seems to be more adequate-z 

X0 X’ 

Fig. 16. The light cone in space-time (left) and 
in light-cone (right) representation. 

In a quantized theory, the Lagrangian does not completely specify the problem, one has 
to know the commutation properties of the operators 9 and $. But before one can formulate 
these, one must be clear about which of the field components may be considered as independent 

variables.’ This can be investigated through the equations of motion, as obtained by the canonical 
variation” of the Lagrangian, i.e. 
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and 

bw 

When transforming the frame, the differential equations change their structure, as we shall 

demonstrate now for the Dirac equation (AS). The Dirac matrices 7p obey the relation 7’yv + 
7y7’L = Zg”“. In l+l dimensions they are 2 by 2 matrices,12 i.e. 

7’=(; -;) and 7’=(-; :). (A6) 

and transform like coordinates 7+ = 7O + 7’ and 7- = 70 - 71. Written out, the commutation 
relations become 7+7+ = 0,7-r- = 0, and 7+7- + 7-7+ = 4. Thus, the two operators 

A(+) = ’ - a7 7 + md A(-) = ’ + - 47 7 (A7) 

have the property of prbjdtors v&h A(+) + A(-) = 1; Ke. w 

and A(-) = i (A8) 

Acting from the left with A(+) and A(-), Eq. (AS) separates into a set of two coupled equations 

a-@-) = k -y’m#+) and (A$ 

1:_. a+l+d+) = k 7°m$A-), W) 

where $(+I E A(+)$ , V/J(-) E A(-)rl, , a+ = a/&r+, and a- E a/&-. Suppose, one has arbitrarily 
fixed both the fermion component $J(+) and the boson field (o at some particular light cone time 
z* = z$ on the interval z- E (-L, L). Then, one can integrate Eq. (AQ), 

+L 

p(2-,20+) i 0 = F(z$) + 47 J dy-r(z- - u-I+-, zz)d+-)(y’, z+) 0 9 (All) 
-L 

with c being the antisymmetric step function; i.e. c’(z) = -26(z). The function F depends only 

on z$, but is otherwise arbitrary. A consistent boundary condition is’ 

F($) = 0. W) 

Inserting Eqs. (All) and (A12) into the second couple, Eq. (AlO), one obtains the time derivative 
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as a functional of $(+I alone, i.e. 

+L 

a++(+) (z-, z+) = im(z-, z+) 
/ 

dy-r(z- - u-)m(v-, z+)d+)(y-,z+). W) 
-L 

A similar analysis can be given for the boson field. With p and (I(+) being tied, and therefore 
also p = &!J, the equation of motion (A4), i.e. cLa+&p + Xp + rnicp = 0, can be integrated 

+t 

i3+&-,z+) = -; / dy-c(y- - z-)(W-,z+) + m&+-,2+)). bw 
-L 

In other words, only $J(+) and cp are independent variables. Neither +(-I or its derivatives nor 
the light cone time derivatives a+$~(+) or a+(~ are independent; they must satisfy Eqs. (A13) and 
(A14) everywhere. ThEe>onstraints are a consequence of first order partial differential equations, - - 
in sharp contrast with the second order equation in the usual space-time parameterization. 

The dependent components having been found, one can determine the canonical commutation 
relations. By means of Schwinger’s action principle, 13 one obtains’ 

i[p(z-,z+), p(z-‘, %+)I = $(z- - z-‘), and (A15)’ 

{d+‘(z- J+),!$ (+)+(z-I,,+)} = A$+- - z-‘) . bw 
-*c- 

All other (anti-) commutators vanish. A more thorough discussion can be found in the literature.g 
As an alternative, one can proceed canonically.10*14’15 Taking z+ as the time-like coordinate, one 
defines the momentum conjugate to the field (o as II+ E &$ = a+~.= 2&p . The canonical 
procedure at equal time-like coordinate gives thus 

[a-p(z-,2+)&-‘,=+)I = &z- - z-‘), 

which is identical to the space derivative of Eq. (A15). The fermion fields behave in the same 

manner. 



Al THE FREE FIELD SOLUTIONS AND THE FOCK SPACE 

At some initial time z+ = 2: = 0, the independent fields $(+I and y3 can be chosen arbitrarily, 
as long as they satisfy the commutation relations and Lorentz covariance. The former is easy to 

arrange, and the latter is enforced by letting them be solutions of the equations of motion with 

vanishing coupling constant, i.e. 

$(+)(z-,O) = tll+d(z-,o) and ~(2’,O) = wee(f,O) (A 17) 

The free fields can be constructed easily, and in turn define the Hilbert space in which $(+I and 
cp act as operators, the so-called Fock space. 

The free fields obey 

-L- 
is a real scalar&d $J(+) ’ - Although Pfree free a complex spmor, they obey the same equation. A 

particular solution to the latter is $J(+) N c~~*~“, provided one satisfies 

- k,kp - m$,B = 0 or k+k- = mi,B. W) 

The relation between (k+,k-) and (k”, k’) is the same as for the covariant coordinates, and 
displayed in the Fig. 17. Because of the rotation, the usual meaning of energy and momentum 
gets lost, but it is justified to speak of a single particle light cone homentum k’ c k” + k’ and 
a single particle light cone energy k’ z k” - k’. But there is a distinct difference. For a fixed 
momentum k’ one has both a particle-state with energy (k”)p = +dv and a hole-state 
with energy (k”)h = -dw. But in light cone parametrization, one has only one value 
of the single particle energy, i.e. 

4 k- = F @W 

for a fixed single particle momentum. Moreover, particles have only positive and holes only 
negative values of k+ and k-. In line with field theoretic conventions,” one counts energies and 
momenta relative to a reference state, the Fock space vacuum. After a renormalization, particles 
and antiparticles have both positive momenta and energies. The positive-definite momenta are 
responsible for the great simplicity of the present approach. 

The single particle energy, Eq. (A20), seems to have a singularity at k+ = 0. But a free 
massive particle will actually never have a vanishing light cone momentum. Its (space-time) 

energy can become arbitrarily close, but is never identical, to its (space-time) momentum, no 
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Fig. 17. Particle and hole energies in space-time 
(left) and in light-cone (right) representation. 

matter how large its momentum is, simply because (k”)2 - (k1)2 = m2 # 0 [see also Fig. 17 for 
an illustration of this fact]. The construction 

- 

2n k+-,kz=-n, 
L n = 1,2,3 ,..., A, W) 

-&- - - - 

accounts for this aspect. For the lowest possible value n = 1, L regulates the vicinity of k+ = 0, 

while A determines the highest possible value of k+ for each fixed L. A glance at Fig. 17 reveals, 
that the left running states (k’ < 0, k+ small) h ave a different cut-off in space-time momentum 
than the right runners, as opposed to space-time where they are treated symmetrically.‘2 

In their most general form the free field solutions can hence be written as 

pfree(z-,z+) = -& 2 -& (a,,~-~~t”‘~’ + c~t,e+~~fi”) , and 

n=l 
bw 

The spinor u is normalized to unity, u = $5 (:>* and is independent of the momenta. Fermions 

and antifermions are created by the operators b?, and dt n, respectively, subject to the anti- 
commutators 

{bn, bk} = &,m and {dn,&} = &,m - (A24 

The boson creation and destruction operators obey the commutator 

Boson and fermion operators commute. The quantization rules , Eq. (A16) and (A15), are 
. 
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satisfied by means of the completeness relation for Fourier series, i.e. 

1 A 

*$m, 
1- 

& + &C (,if(z-e')+eif(z'-z) )I =6(2-z’). 
n=l 

@W 

Choosing the fields according to Eq. (A17), i.e. 

W) 

one can express the fields in terms of the scalar and dimensionless operator functions 

-4.. - 

S’(t) = e bn e-int + d;c+‘“c , 

F  .  

and 
n=l 

- 
@p(C) = k cn e-inC + CL e+y with c 

n=l 

(A28) 

I.-% - 

Because of the discretized momenta, Eq. (A21), the operators !P and @ , and therefore also the 
fields ~,4 and 9 are periodic functions with period 2L in the light cone position z-. We define 
them on the interval z- E (-L, +L). On this interval, the plane wave states are orthonormal 

and complete, and the series, Eq. (A27) and (A28) can be understood as the special case of an 

expansion into a denumerable and complete set (z[n). 

The operator part of this expansion, the creation and destruction operators act in Fock space, 
i.e. in the representation which diagonalizes simultaneously the number operators &on, b;bn and 
did,. Since one has to specify exactly which momentum states are occupied and which are empty 
(c.f. also Refs. 2 and 16), d enumerability seems compulsory, rather than only a formal trick. 

All these advantages have the price of introducing into the formalism two at first non-physical, 
mathematical parameters, the cut-of A and the length L. Since they are redundant, one must be 

able to show at the end that the physical results do not depend on either of them. 

A2 THE CONSTANTS OF MOTION 

The Lagrangian, Eq. (Al), has two kinds of conserved currents, a,,jp = 0 and a,Jp“ = 0. 

The first arises since L1 does not depend explictly on the phase of $ and is j” = &V. The 
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second, the energy momentum stress tensor, is a consequence of coordinate invariance and has 
the form 

Integrating the currents over a closed hypersurface s do,, conjugate to the time-like coordinate 
za, i.e. dr = dz’dba, one generates conserved charges 

Q=/duaja and P’=/&aJ’. (A 30) 

They are independent of 2’. In a quantized theory, the total charge Q and the components of the 
energy-momentum vector P* are operators, as well as the contraction of the latter, the Lorentz 
scalar M2 = P,Pp. Xn space-time quantization, P’ is the operator for the total momentum, P” 
for the total energy , and M2 is the operator for the square of the invariant mass, i.e. M2 = 
(Po)2 - (P1)2. They mutually commute.‘0 In light cone quantization, P+ is the operator for the 
total light cone momentum, P- for the totaJ light cone energy, and M2 again the operator for the 

-L- -. - . 
invariant mass squared, 

W) 

- 

‘.-- - 

The notation implies that M2 is a positive operator, i.e. one which has only positive eigenvalues. 
We shall come back to this question below. Chang et al.g have shown that Q, P+ and P- mutually’ 
commute if the fields satisfy the commutation relations, Eqs. (A15) and (A16) . Thus, they can 
be diagonalized simultaneously, for example in Fock space representation, which is equivalent to 

10 solving the equations of motion. 

Written out in light cone metric, the operators are 

+L 

Q=;J dz--2[$(+)]+ti(+), 
-L 

(A321 

+t 
p+ = ; 

/ [ 
dz- 48-9-p + Z([$(+)]+a-$ (+I - [a-Jl’+‘]t+t+‘)] , 

-L 
(A 33) 

+L 
p- = f 

/ 1 
dz- m&p +2i([d+)]ta+tr, (+I - [a+$(+)]+$(+))] . 

-L 
W) 

The factor 4 arises from the Jacobian dzOdzl = )dz+dz-. The momentum P+ and the charge Q 
are independent of the coupling constant X E g&, but P- depends on X through a+@+). By 
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means of the dimensionless operators as defined above, one can extract the dependence on the 

box size L, 

P+ =%K and P-=$H. 

: After some algebraic manipulations, one obtains with ( = % 

The modified momentum operator K is dimensionless, while the modified energy operator H 
carries the dimension of a mass squared, 

--I -r 4r 

-L- - r 

i-r +r 
+iy J J dE dt’4t - (‘1 Q+WW)W’) -1 -r bw 

- 2 +n +r 
+i& J J de dC’c(C - C’) ~+(~)WW’)@(~‘). --II -w 

The appearance of a term quadratic in the coupling constant reflects the instantaneous, Coulomb- 
like interaction, which is not propagated by the exchange of bosons.2 

The integrals over ( can be carried out in closed form. With the identity & s-‘,” de eimt = 6m,o, 
the normal ordered operators Q  and K become 

Q = C Qbn - d!dn ad K = C n(aLa, + bLbn + didn) . (A331 n n 

Some of the most important conclusions can be drawn even without knowing the Fock space 
structure of H, the retider not interested in these details may skip the. remainder. The terms 
quadratic in g with an even number’of creation operators become most directly 
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g2 c [ bLc!dkc], {+k + II -t m  + n} + bfrfb,c, {+k + II - m  - n} 
f,l,m ,n 

+ blcldkcn (3-k - Jl + m  - n) + bielbmc! {+k - Jj - m  + n} 
Wg) 

+ dkcfdkcn {-k + 2) + m  - n} + dkcfb,cL {-k 4 JI - m  + n) 

+ dkcrd?,,c?, {-k - Jl + m  + n} + dkqbmcn (-k - Jl - m  - n}] . 

The matrix elements 
. +r +r 

cw = ; J J dc d($(( - (‘) &C+mC’) --lr -w 
take upon calculation the values 

bw 

uw 

-*.  - r - 

With the symmetry properties {nlm} = - {mln) = (-ml - n} = -j-n\ - m) , the normal 
ordered product can be cast into the eeagull part Hs of the Hamiltonian 

Hs=g2 C blbmcfcn [{k-nil-m}+(k+JI-m-n}] 
W,m,n 

+didmcfcn 1 {k - nlJ - m) + {k + JI - m  -n}] (A-Q) 

+(dkbmCfC!, + bkdXcnci) (J - kin - m} . 

The nomenclature2 has its origin in the structure of the graphs of Fig. 18. The terms correspond- 
ing to a simultaneous creation of bosons and fermion-antifermion pairs do not contribute. They 
are kinematically suppressed in light cone quantization,2 because {+k.+ 11 + m  + n} vanishes 

for positive values of the momenta. However, the time and the normal ordered product, Eqs. 
(A39) and (A42), respectively, are not the same! Consider for example the fourth term in Eq. 

(A3g)t i-e* Ck,l,m,n k 1 m  n b+cb c+(+k-I(- m  + n}. Using the commutation relations to generate the 

normal ordered product bLbm&cl, leaves one with Cm,n ibkb, (+m - n] - m  + n}. Contrary to 

a c-number,this operator can not be omitted. It represents instantaneous, self-induced incrtias, 

which so far have apparently not been mentioned in the literature. These inertias are naturally 

combined with the mass terms of Eq. (A37) to yield the maesivc part HM of the Hamiltionian, 

i.e. 

. 
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H&f = c ; [dun (d + ff2%) + b!,h (m; + g2Pn) + did, (m; + g2m) 1, 
n 

( w 

with the coefficients a,/? and 7 given by 

A 
a, = cc n-mlm-n}-{fl+ml-m-n), 

m=l 

and m= 2 ~{n+rr+m-n}. 
m=l 

(A4 

- 
(0) (b) 

< h! 

Fig. 18. Diagrams: (a) Vertices, (b) Seagulls and, (c) Forks. 

The terms quadratic in g with an odd number of creation operators are computed in the same 
manner. The normal ordering does nol induce new terms and one can cast them into the fork 

part HF of the Hamiltonian, i.e. 

HF = g2 c (b~bmc~c!, + bkbkcncl) {k + ljn - m} 
W,m,n 

+(dLdmcfe!, + dkdkcnel) {k + Iln - m.} 

+bldkc!cn [{k -nlm+I}+{k+ljm-n}] 
NJ) 

+&b&l [(k-njm+l}+{k+~lm-n)], 

Graphical representations of HF and Hv are given in Fig. 18. The vertcz part Hv of the Hamil- 



I 

A 

tonian includes all terms linear in the coupling constant, i.e. 

Hv = gmF c (bfbmcf + &hcr) [{k + 11 - m} + {kl + I- m}] 
W,m 

+ (d:dmcf + dkdkcl) [{k + ll - m) + (kj + I- m}] ( A461 

+ .(hdmcf + dkblcl) [{k - 11 + m} + {kl - I + m} ] . 

For the same reason M above, the tev with only creation or only destruction operators vanish 
by the selection rules of the matrix elements. Collecting all terms, the Hamiltonian H = 

HM+Hv+Hs+HF is the sum of four parts defined above. 

The self-induced inertias are the only parts of the Hamiltonian, which depend on the cut-off A 
[see Eq. (A44)). Approximating sums by integrals, this dependence can be worked out explicitly.r6 

_ For vanishing l/A, the fermion and the antifermion inertias become independent of the cut-off, 
while the boson inert& diverge logarithmically; however, such that the divergence cancels in the 
differences on - am. In this limit, the eigenvalues and eigenfunctions of the Hamiltonian become - 
strictly independent of ChTcut-off in the limit of vanishing l/A, as can be shown numerically, and 
for some of the cases, even analytically. 

A 3 CONCLUSIONS: FINITE DIMENSIONAL REPRESENTATIONS, LABELLED BY THE 
- 

HARMONIC RESOLUTION 

The discretization of the momentum eigenvalues k+ allows one to denumerate the momentum 
eigenstates. The price one has to pay is the appearance of two additional, formal parameters in 
the theory, the length L and the cut-off A. One must be able to show that the physical results 
do not depend on either of the these, at least not in the limit L + oo and A + 00. 

In light cone quantization, discretization has rather unexpected consequences, which seem 
not to have been noticed so far. 

First, and perhaps most remarkably, the length cancels in the only Lorentz scalar of the theory, 
the invariant mass squared, i.e. M2 = P+P- = KH. The eigenvalues of I are independent of L 

for any value of L. 

The eigenvalues and eigenfunctions of the Hamiltonian H, or of the invariant mass squared 

M2, are also independent of the cut-off A and positive definite. This is shown in an accompanying 
paper in the context of mass renormalization. For sufficiently simple cases, i.e. for small g2 or for 
K = 1 and K = 2, it can be done analytically. 

Second, the number operators of Fock space representation are diagonal and have positive 
or zero eigenvalues. Therefore, both the operators for charge and momentum are diagonal, with 
eigenvalues Q and K. The single particle momenta are positive by definition, and consequently 

. 
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K has only positive or zero eigenvalues. But, by the zame reason, only a finite number of Fock 
states can have the zame eigenvalue K. Since Q, K and H commute, the latter can be arranged 
in block diagonal form. Each block is labelled by the eigenvalues K and Q and has a finite 

dimension: Since diagonalization is a closed operation, the cigenvalue problem on the light cone 
can be Golved czactly in 1+1 dime&on. This aspect of light cone quantization is profoundly 
different from space-time quantization. There, too, charge and total momentum are diagonal, 
but the momentum operator has infinite degeneracy. The energy matrix must be truncated by 
brute force,12 in order to become numerically tractable. 

Third, K ia a dynamical quantum number. Its value characterizes a wave function as much as 
the charge (2. What is its physical meaning? Suppose one has diagonalized H for some charge, 
for a given value of K, and for zome value of the coupling constant A, the bare fermion mass 
mF and the bare boson mass mg. Suppose, the lowest eigenvalue KH is identical with M2, : 
the invariant mass squared of a physical particle. Can one go back to space-time representation 
and calculate the momentum P and the energy E of thii particle? In a way one can, since 
E = i(P+ + P-) an&P = +(P’ - P-) . But actually one has to know the length L, since 

However, one can fix L by the requirement of vanishing center of mass momentum, P = 0, which 
implies P+ = P-. This in turn requires 

2rKIL = M2 L/(SrK) , 

or upon restoring the correct units 

K 
L 2nti =- 

xc 
with Xc = -. 

MC 

Thus in the rest frame the dynamical quantum number, the ‘harmonic resolution’ K becomes 
the ratio of the length L to the Compton wavelength of the particle. The larger one chooses the 
period of the wavefunction in phase space, the larger K becomes and therefore the dimension 
of the Hamiltonian matrix. Thus, K plays the role of a resolving power. Increasing K allows 
the observation of a more detailed and more complex structure of the eigenfunction in terms of 

Fock states. One must conclude that the wavefunction of a particle in one space and one time 
dimension depends on the resolution, on the accuracy one imposes by the choice of L or, more 
precisely, by the value of the harmonic resolution K. 

The length L thus has apparently two aspects. On the one hand, for a particle a rest, it has 
to be a multiple of the Compton wave length. On the other hand, for a particle in motion, it can 
take any value required for the continuum limit K + co and L + co. 
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Last but not least, these conclusions do not depend on the detailed structure of the Hamilto- 
nian. They hold as well for other field theories. 
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APPENDIX B 

LIGHT CONE QUANTIZATION AND PERTURBATION THEORY 

In this Appendix, we outline the canonical quantization of QCD in A+ = 0 gauge.’ This 
proceeds in several steps. First we identify the independent dynamical degrees of freedom in 
the Lagrangian. The theory is quantized by defining commutation relations for these dynamical 
fields at a given light-cone time r = t + t (we choose r = 0). These commutation relations lead 
immediately to the definition of the Fock state basis. Expressing dependent fields in terms of the 
independent fields, we then derive a light-cone Hamiltonian, which determines the evolution of 
the state space with changing r. Finally we derive the rules for r-ordered perturbation theory. 

The major purpose of this exercise is to illustrate the origins and nature of the Fock state 
expansion, and of light-cone perturbation theory. We will ignore subtleties due to the large scale . 
structure of non-Abel&r gauge fields (e.g. ‘instantons’), chiral symmetry breaking, and the like; 
Although these have a profound effect on the structure of the vacuum, the theory can still be 
described with a Fock T&e basis and some sort of effective Hamilton& Furthermore, the short 
distance interactions of the theory are unaffected by this structure, or at least this is the central 
ansatz of perturbative QCD. 

- Quantization 

The Lagrangian (density) for QCD can be written 

L =-~Tr(FBY~~")+~(iB-m)~ 

where Fp” = PA”-BYAfi+ig[Ap,Av] and iDp = iP- gAp. Here the guage field A” is a traceleas 
3 x 3 color matrix (Ap s C,, AapT*, Tr(TaTb) = 1/2P*, [T’,T*] = icabCTc,. . .), and the quark 
field $J is a color triplet spinor (for simplicity, we include onlly one flavor). At a given light-cone 
time, say r = 0, the independent dynamical fields are $J& E A*$ and Ai with conjugate fields i$i 

and @Ai, where Ai = 7’7*/2 are projection operators (A+A- = 0, A$ = AA, A+ + A- = 1) 
and a* = a0 f as. Using the equations of motion, the remaining fields in L3 can be expressed in 
terms of $+, A’,: 
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A+=O, 

A- ia+A’ A’ 
I* I ] +&V+T”) 

with p = 7O and Zl = 7”q. 

;&A’ A’ 
1, I ] +&‘V+T’) , 

w 

To quantize, we expand the fields at r = 0 in terms of creation and annihilation operators, 

+ dt (k, A) v+(k, A) eik"} , r=z = + 0 w 

- A;(z) = 
J 

dk+ dzk, 
c {a&, A) cl(X) e-it.2 + e*e*} , k+ 16~3 ~ 

7 = z+ = 0 , 
k+>O 

with commutation relations (k = (k+, zl)): 

{b(k,X), b+(pJ)} = {d&,X), d+(g,X’)} 

= [a, Ys a+@, XI,] 
= 167r’ k+ 6’(k - p) bAx, , 

w 

{b,b} = {d,d} = . . . =0, 

where X is the quark or gluon helicity. These definitions imply canonical commutation relations 
for the fields with their conjugates (7 = z+ = y+ = 0,~ = (z-, z~), . . .): 

[A’(z), a+Ai(g)] = i@b’(z - g) . 

AS described in the third section, the creation and annihilation operators define the Fock state 
basis for the theory at r = 0, with a vacuum IO) defined such’ that b IO) = d IO) = a IO) = 0. The 
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evolution of these states with T is governed by the light-cone Hamiltonian, HE = P-, conjugate 
to r. Combining Eqs. (Bl) and (B2), the Hamiltonian is readily expressed in terms of $+ and 

&.c=~~+v, u36) 

where 

dk+ d2kL = CJ a+(&, A) a&, A) k: 
A 16x3 k+ k+ + b+&, A) b(k, A) 

color* 

x k;+m2 
k+ + d+(&,X) b&,X) kt;+m2 

> 
+ constant 

WI 

is the free Hamiltonianand V the interaction: r - 

(B8) 

with&=&+$+ (*$asg-+O) andx“=(O,i-,Ai) (-‘Afiasg+,O). TheFockstatesare 
obviously eigenstates of Ho with 

Ho In : ki+, kli) = c ( kil+m2) In : kz, kli) . 
i i 

( w 

It is equally obvious that they are not eigenstates of V, though any matrix element of V between 
Fock states is trivially evaluated. The first three terms in V correspond to the familiar three and 
four gluon vertices, and the &on-quark vertex [Fig. 19(a)]. The remaning terms result from 

substitutions (B2), and represent new four-quanta interactions containing instantaneous’ fermion 
and gluon propagators [Fig. 19(b)]. All terms conserve total three-momentum & = (k+, kl), 

because of the integral over g in V. Furthermore, all Fock states other than the vacuum have 
total k+ > 0, since each individual bare quantum has k+ > 0 [Eq. (B3)). Consequently the 
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(b) , 

XIII 
3-63 4507A26 

Fig. 19. (a) B asic interaction vertices in QCD. 
(b) “Instanteous” contributions. 

Fock state vacuum must be an eigenstate of V and therefore an eigenstate of the full light-cone 
Hamiltonian. 

Light-Cone Perturbation Theory 

We define light-cont!green’afunctions to be the probability amplitudes that a state starting - . 
in Fock state Ii) ends up in Fock state If) a (light-cone) time r later 

(iii) G(f,i;r) E (fjc-iHLCT/21i) 

- 
=a ‘J 2 e-irr/2 G(f,i;c) (fli) , 

where Fourier transform G(f, i; c) can be written 

I.-% - (II’) G(f’i; ~> = (f 1~ _ Ham + iO+ ( i, 

= (I f ’ c - Hu: + iO+ +t-H:+iO ‘t-H:+iO+ + 

VW 

(B11) 

1 
+ 

c- Ho+iO+ 
v l v l + *. 

c-Ho+iO+ c-Ho+iO+ ‘*’ ’ I) 

The rules for r-ordered perturbation theory follow immediately from the expansion in (B9) when 

(c - Ho)-’ is replaced by its spectral decomposition in terms of Fock states: 

In : k&i, Xi) (n : &i, Ail 
c - C(k2 + m2)i/k’ + iO+ (W 

i 

where in (B9) the sum becomes a sum over all states n intermediate between two interactions. 

To calculate G(f, i; c) perturbatively then, all r-ordered diagrams must be considered, the con- 
tribution from each graph computed according to the following rules: 

. 
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1. Assign a momentum kp to each line such that the total k+, kl are conserved at each vertex, 
and such that k2 = m2, i.e., k’ = (k2 + m2)/k+. With fermions associate an on-shell spinor 
[from Eq. (B2)) 

or 

U(k,~)=L(k+-pm+~L.~L fi ){ 
x(l) x =t 
x(t) x =l 

where x(t) = l/fi(l,O, 1,0) and x(l) = l/d (0, l,O, -I)=. For gluon lines, assign a 
polarization vector c“ = (0, 21-, . g,/k+, fl) where t(t) = -l/&(l,i) and Z’(J) = 
l/d (1, -i). 

2. Include a factor 8(k+)/k+ for each internal line. 

3. For each vertex include factors as illustrated in Fig. 20. To convert incoming into outgoing 

lines or vice versa_r*lace- 

in any of these vertices. 

- 4. For each intermediate state there is a factor 

where c is the incident P-, and the sum is over all particles in the intermediate state. 

5. Integrate s dk+fdzkL/16r3 over each independent k, and sum over internal helicities and 
colors. 

6. Include a factor -1 for each closed fermion loop., for each fermion line that both begins 
and ends in the initial state (i.e. v.. . u), and for each diagram in which fermion lines are 
interchanged in either of the initial or final states. 

As an illustration, we give a’ representative contribution 

g2 F n(b) c* (ko - kbv A) uk.4 n(d) /(k, - kb, A) u(C) 

X 

i 

(times a color factor) to the qq -+ qq Green’s function. (The vertices for quarks and gluons of 
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;r’ G’ih’a-Pb)‘@a”b 

+ cyclic permutations} 

ipbc 

;pbe icede 

Tb Td 

icabe iccde 

. 

T= Te 

- )+x+x+x 
3-83 4507A25 

F ig. 20. Graphical rules for QCD in l ight-cone perturbation theory. 

1.1-- definite helicity have very simple expressions in terms of the momenta of the particles.) These 

same rules apply for scattering amp litudes, but with propagators om itted for external lines, and  
with c = P- of the initial (and final) states. 

F inally, notice that this quantization procedure and perturbation theory (graph by graph) 
are man ifestly invariant under  a  large class of Lorentz transformations: 

1. boosts along the 3-direction - i.e. p+ + Kp+, p- * K-‘p-, pi + pi for each momen-  
tum; 

2. transverse boosts - i.e. p+ + p’, p- --) p- + 2~1. Q l+ p+Qi, pL  -+ pl + p+QL for each 

momentum (Ql, like K, is dimensionless); 

3. rotations about the S-direction. 

It is these invariances which lead to the frame independence of the Fock state wave functions. 
A comparison between r-ordered and time-ordered perturbation theory is given in Table I. 
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Table I. Comparison Between Time-Ordered and T-Ordered Perturbation Theory 

Equalr=t+z 

k” = dm (particle mass shell) 

c k’ conserved 

Mob = Vob + c voC C 
1 

k”-x k” + ir V ae c . D 

n! time-ordered contributions 

Fock states.&(&) --- - 

2 &$=o 
i=l 

& = PO - 5 k; 
i=l 

=M-cdw 
i=l 

k- = v (particle mass shell) 

C z~, k’ conserved 

M ob = Vob + ~ v,, c, k--~~ k- + in vcb 

k+ > 0 only 

Fockstates $n(ZliGi) 

==$I, eZi=l, eZ*i=O 
i=l i=l 

(0 < Zi < 1) 

,f = p+ p- - 2 k,: 
i=l > 

=M2- 
i 
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APPENDIXC 

FACTORIZATIONPROPERTIESOFTHEDEUTERON FORMFACTOR 

From the standpoint of quantum chromodynamics the deuteron is a complex dynamical sys- 
tern. At large distances the deuteron is evidently well described as a J = 1, I = 0, Q  = 1 com- 
posite of two nucleon clusters with binding energy - 2.2 MeV; together with small admixtures 
of AA and virtual meson components. However, at short distances, in the region where all six 
quarks overlap within a distance R = l/Q * 0, one can show rigorously that the deuteron state 
in QCD necessarily has “fractional parentage” (l/Q) np, (4/45) AA, and (4/5) “hidden color” 
(nonnuclear) components. lS2 In fact, at any momentum scale the deuteron cannot be described 
solely in terms of standard nuclear physics degrees of freedom, and in principle, any physical or 
dynamical property of the deuteron is modified by the presence of such non-Abelian components. : 
In particular, the standard Ympulse approximatioxP form for the deuteron form factor 

-6. F7s(Q2) = Fpdy(Q2) FN(g2) , _ 

- 

1.1% - 

where F,, is the on-shell nucleon form factor, cannot be precisely valid at any momentum transfer 
scale Q2 = -q2 # 0 because of hidden color components. More important, even if only the 
nucleon-nucleon component were important, Eq. (Cl) cannot be reliable for composite nucleons 
since the struck nucleon is necessarily off-shell’ in the nuclear wave function: Ik” - k21 - ;Q” (see 

Fig. 14). Thus in general one requires knowledge of the nucleon form factors FN(q2, k2, k”) for 
the case in which one or both nucleon legs are off-shell. In QCD such amplitudes have completely 
different dynamical dependence compared to the on-shell form factors. 

Although Eq. (Cl) h as b een used extensively in nuclear physics as a starting point for the 
analysis of nuclear form factors,’ its range of validity has never been seriously questioned. Cer- 
tainly in the non-relativistic domain where target recoil and off-shell effects can be neglected, 
the charge form factor of a composite system can be computed from the convolution of charge 

distributions. However, in the general situation, the struck nucleon must transfer a large fraction 
of its momentum to the spectator system, rendering the nucleon state off-shell. As we shall show 
here, the region of validity of Eq. (Cl) for the deuteron is very small: 

i.e., Q s 100 MeV. However, in this region the nucleon form factor does not deviate significantly 
from unity, so Eq. (Cl) is of doubtful utility. 

The form factor &(Q2) is, by definition, the probability amplitude for the deuteron to stay 
intact after absorbing momentum transfer Q. If the deuteron’is taken as a lightly-bound cluster 

85 



of two nucleons, then the form factor contains the probability amplitudes for each nucleon to 

remain intact after absorbing momentum transfer H #‘/2. Thus, it is natural to factorize Fd in 
the form’ 

, Fd(@) = fd(02) J’:(Q’/4) 9 w 
which defines the %educed” form factor fd(Q2). As h s own in Chapter 3, QCD predicts Q2 fd(g2) Z 
const [module logarithmic modifications due to the running coupling constant anomalous di- 

mensions of the nuclear wave function], which is in excellent agreement’with experiment for 
1 < Q2 5 4 GeV2 ( see Fig. 11). Thus it is interesting to understand the origin of the reduced 

form factor factorization, Eq. (C2), from a fundamental point of view and to verify for which 

regime, if any, the standard impulse approximation form, Eq. (Cl), is valid or useful. 

To study these questions, we will construct a simple covariant and gauge-invariant dynamical 
model of the deuteron which allows an analysis of the effects of nucleon compositeness in the 

nuclear wave function: 
-)- - - . 

LI = g dd 4N 4N + h fijk #N 4' 8 qk (9 

Here g and h are the coupling constants of a deuteron to two nucleons and a nucleon to three 

quarks, respectively, and Lijk represents the SU(3) color singlet coupling. The quarks carry the 
electromagnetic current. This model gives an effective deuteron wavefunction with a factorized 

two-nucleon structure (see Sec. 2.1), 

body 
ed = tid x tiN x +N . w 

Within the framework of this simple model, which neglects hidden color components, we derive 
the cluster decomposition’ property of the deuteron wave function and identify a transition region 

between forms (Cl) and (C2). 

In QCD the deuteron is a color-singlet composite of six quarks. Using light-cone quantization, 

one can define a consistent Fock state basis at equal r = t + z/c which defines the deuteron in 

terms of 16d9 ISa + o>, IQ + ob components. Only one of the five ISq) color singlet configurations 
corresponds to the usual INN) nucleon-nucleon clustering. However, since the binding energy of 

the deuteron is very small, we shall assume that the ]Sg) = INN) configuration is by far dominant 
in the natural kinematic domain of the wavefunction. This structure is represented in its simplest 
form by the lagrangian of Eq. (C3). The resulting deuteron wavefunction is illustrated in Fig. 21. 
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Fig. 21. The diagrammatic kernel equation of the relativistic deuteron wave 
function on the light-cone frame. The effective &type interaction [see Eq. 
(C3)] provides the clustering of two separate nucleons. 

In terms of the light-conwariables - 

(kO+k’)i 6 6 ‘. 
Xi = po+p 9 z xi=1* pi=0 

the wave function has the form of a convolution:’ 

M2- 
6 Zii + rnf 

c ed(zi, ZLi) = 
B 1 1. 

i=l zi M2-(;+M$ i 
Y(l - Y) 

x h2 

cc51 

where M, MN and mi are the masses of the deuteron, the nucleon, and the quarks, respectively, 

and the momentum~onserving delta function fixes y = & Zi and fl = ~~=, $Li. If we define 

the function c(y, zL), 

r(y,&) = M2 - 
c++$ 
YO-I4 ’ 

w 

then r(~,f~) measures the deuteron off-shell light-cone energy c = p+ - C&, k;. The zero 
. binding energy limit implies E(V, i’,) -I 0. In the r(y, A?*) + 0 limit, y --) l/2 and fl + 0 since 

M2 + 4M& Thus we obtain approximate delta function behavior of c-l (y, zL) near the zero 
. 
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binding energy limit: 

62 (&) . P) 

In this limit, the factor inside the parenthesis of the right hand side of Eq. (2.1) is given by 

The numerator of the right hand side of Eq. (2.4) is cancelled by the factor on the left hand 
side of Eq. (2.1) so that in c(v,f~) + 0 limit ed(ni, ZAi) is given by 

1 h 
-&- x- 

1-Y ,,-E+Mh 
Y 

If we change to the variables: 

then for c + 0 Eq. (2.5) is reduced to 

(I’= 4,5,6) , 

(CQ) 

Pa 

This is the expected factorized form of the deuteron wave function since the last two terms of the 
right hand side of Eq. (2.8) are the nucleon wave functions $N(%, zi) and $'N(%j, zi). The light- 
cone variables q and sii are the light-one momentum fractions and the transverse momenta in 
the hadron relative to the struck nucleon. The first term of the right hand side of Eq. (2.8) is the 

“body” wave function $pdy (y, f~). This p roves the factorization of the deuteron wave function 

in the zero binding energy limit: 

The form factor of the deuteron is given exactly in terms of the light-cone Fock state expansion 
by the Drell-Yan formula, Eq. (2.2).’ In the last section we demonstrated the factorization of 
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Qd(z;,iAi) for small t(y,zl). If ]@“I is the order of IiLl or IcLiJ, then $* (zi,gLi + (Si, - zi) <‘) 

is factorized in the same way as +(Zi, GLi) since r(y, il+ (1 - y)e) is almost the same as r(y, iL). 

Thus for small q2 the factorization of 5 U; (zi,gli + (& - Zi) &) is given by 
a=1 

-2 ( Q; Zi, iii’ +(&a - Zi) ffl) = $!I: body 
a=1 

(A + (1 - Y)L) 

This result becomes invalid when I#“[ is much larger than IiLl since c(v,& + (1 - y)&) is then 
non-negligible. Thus Eq. (2.10) becomes 

’ e4 J J ldzlj ld2zi]j $b (zj,zij + (6jo - %j) $1) $‘N(Zj,Zij) 1 

where the body form factor FpdY(c) is defined by 

~~~~~~~~~ = ] y(:T y) J $$ tiibody (y.L; + (I- Y)@ t@+(d) . d (W 

0 

Equation (2.15) is the same form as Eq. (Cl). This proves the impulse approximation at small 

I’ll. 
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When I<‘;1 becomes large, 1<~.1 > Iill or IZLil, the impulse approximation breaks down since 
1 c (y,(; + (I- y)f”) 1 becomes large and Qi (zi,ZAi + (&a - zi) Q1L) cannot be factorized in 
the same way as $(Zi,ZLi). The quarks of the deuteron must interact BO that a huge fraction of 
4~ can be transferred from the quark which absorbs <’ to a quark of the‘other nucleon. Since 

the exchanged gluon is a coloroctet, quarks must be interchanged between the nucleons in order 
to satisfy the color selection rules. 

Taking a and b as the indices of two interchanged quarks, we obtain for large 97: 

6 
zi,zLi + (&a - 

a=1 

X iv (zi, (ha - ML; zjs {&a + (1 - L’)ajb - Zj) & ) 

W) 

where the kernel V can be obtained by calculating the diagrams shown in Fig. 22. The weak 
binding of the deuteron forces y - ). On the average we expect the struck and interchanged 
quark to have roughly the same z. With this approximation we obtain the factorization of the 
form factor from Eq. (2.10): 

F(q’:) = g I&2&3 I2 

= fd(& FL& (p/4) , 

where the reduced form factor fd(qT) ia defined by 

W) 

W) 

and C is determined by value of the kernel V. More generally, we iterate the wavefunction 
wherever large momentum transfer is required and in this way build up the entire TH contribution 
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-- 
Xb&, + ( I-Y-xb) 61 

-’ -- 

Fig. 22. The lowest order diagrams of the quark interchange model. By the constraint for 
the deuteron to be loosely bounded after absorbing <‘, the momenta of each constituent 
are fixed. 

to the form factor, as in Eq. (C6). Equation (2.2) is thus the same form as Eq. (C2). This 
proves the transition of the form factor at large I<‘[ (l&l > $11 or Iclil) from the impulse 
approximation form to the reduced form. 

In the full QCD analyses, the iteration of the gluon exchange kernel leads to a logarithmically- 
evoluting distribution amplitude which replaces (I, kR(@. At large Q2 the gluon exchange kernel 
generates other color singlet configuration of six quarks, so that the approximation that the 

deuteron only consists of a nucleon pair breaks down. The complete calculation of the deuteron 
form factor thus requires the inclusion of these other components. The reduced form factor 

prediction is useful for incorporating non-leading power law corrections, but it does not include 

the hidden color contributions of the deuteron wavefunction (see Fig. 23). 

The factorization of light-cone wavefunctions leads, as we have shown, to various forms of 

factorization .for the nuclear form factor. At low Q2 C 2Mdcd, the usual impulse approximation 

result is valid. The region of validity of this form though is lim ited to momentum transfers smaller 
than the inverse size of the nucleus. In this case, the struck nucleon can remain nearly on-shell 

by virtue of the nuclear Fermi motion. For larger Q2, the kinematics the struck nucleon is forced 

off-shell and the traditional form of factorization becomes use&s. Fortunately, in this domain the 
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(I-y)p (I-w)(p+q) 
7-65 4647A5 

Fig. 23. QCD analysis of the reduced 
form factor. The gluon exchange contri- 
butions to the deuteron wave function lead 
to hidden color components and are not 
included. 

reduced form factor res$ibecomes valid, replacing the impulse approximation as a valid starting - - 
point for QCD phenomenology. 
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