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ABSTRACT 

The evolution of a system of cosmic strings is studied using an extended 

version of an analytic formalism introduced by Kibble. It is shown that, in a 

radiation dominated universe, the fate of the string system depends sensitively 

on the fate of the closed loops that are produced by the interactions of very 

long strings. The strings can be prevented from dominating the energy density 

of the universe only if there is a large probability (2 50%) that a closed loop 

will intersect itself and break up into smaller loops. A comparison with the 

numerical simulations of Albrecht and Turok indicates that the probability of 

self-intersection is indeed large enough to allow the energy density in strings to 

stabilize at a small fraction of the radiation density, but there is a potential 

problem with the gravitational radiation that is produced by the strings. If 

the string tension, ~1, is too large, then the gravitational radiation will be so 

copious that it interferes with primordial nucleosynthesis. By assuming that 

the probability of self-intersection is less than 85%, ss the comparison with the 

results of Albrecht and Turok indicates, an upper bound on the string tension is 

obtained: Gp < 5 x 10e7. (G is Newton’s constant.) This (marginally) disagrees 

with the value (2 2 x 10m6) required for the cosmic string theory of galaxy 

formation. 



1. INTRODUCTION 

Topologically stable cosmic strings appear naturally as a consequence of spon- 

taneous symmetry breaking in many grand unified theoriesfJ as well as in the 

low energy sector of superstring theories! There has recently been some interest 

in the idea that these. cosmic strings, formed at a phase transition in the early 

universe could have served as seeds for the primordial density fluctuations that 

are responsible for the large scale structure of the universe. This idea, originally 

due to Zel’dovich’ and Vilenkin: is based on the assumption that, in a radiation 

dominated universe, the strings will evolve in a scale invariant manner, so that 

at any given time, the length scale and the energy density of the string system 

will depend only on the horizon size. In this picture, the energy density of the 

string system would evolve as a small, constant fraction of the energy density in 

radiation. Many authors ‘-” have explored the details of Vilenkin’s scenario in 

which individual loops of string serve as the “seeds” for the collapse of individual 

galaxies, and loops of a much larger size may be responsible for the formation of 

clusters and superclusters. 

Very recently, many papers have appeared arguing that the cosmic string 

model for galaxy formation has many advantages not shared by other galaxy 

formation scenarios. For instance, Turok and Brandenberger have found that the 

string theory induces density fluctuation that do not conflict with the observed 

l2 microwave background radiation isotropy. They have also claimed13”4 that the 

cosmic string model accurately predicts the correlation function of Abell’s rich 

clusters of galaxies, and is the only theory of galaxy formation to do so. Similarly, 

Albrecht, Brandenberger, and Turok15 have argued that voids and superclusters, 

which seem to present a severe problem for other theories of galaxy formation, can 
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be explained by the cosmic string theory of galaxy formation. Finally, Schramm” 

has argued that the large scale structure of the universe can be described as scale 

free, and that such a scale free spectrum might be best described by the string 

scenario. 

Despite these successes, the basic premise that the string system evolves in 

a scale invariant manner has not been proven to be correct, although substantial 

progress in this direction has been made by Albrecht and Turok.‘7 In order to see 

why energy loss presents a difficult problem, let us consider a very simple string 

system: a radiation dominated universe filled with long straight strings. In this 

case, as the universe expands, the length of string in a comoving volume grows 

as R while the volume increases as R3, where R is the scale factor. Thus, the 

string density falls as 1/R2, much slower than the l/R’ falloff required for scale 

invariance. In fact, in this case, the strings will quickly come to dominate the 

universe, a cosmological disaster. Now, assume that instead of being straight, the 

strings have a Brownian configuration with some persistence length, L, which is 

much smaller than the horizon. In this case, the stretching of the strings due to 

the expansion is negligible compared to their total length. This is because for a 

Brownian string, the length of string between two points separated by a distance 

d>Lis - d2/L. So, for brownian strings, the density falls off as - 1/R3, 

which would be safe in the matter dominated epoch but disastrous in a universe 

dominated by radiation. For a consistent cosmic string scenario, it is necessary 

that there exist some energy loss mechanism for the system of strings. 

The production and decay of closed loops is the only such mechanism. A 

closed loop can be formed when two segments of string intersect. If the segments 

intercommute (change partners) when they intersect, then loops can be formed if 
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the colliding segments are part of the same string or upon two intercommutings of 

different strings. The probability of intercommuting is not known u priori, but the 

preliminary indications from a calculation by Shehard” are that the probability 

is of order one. If all closed loop trajectories intersect themselves at some point 

during their period (the trajectories are all periodic inside the horizon), then 

the loops can rapidly decay into smaller loops by successive intercommutings. 

Because the period of the loops is proportional to their size, it will only take 

about one expansion time until the loops are small enough to radiate massive 

particles like Higgs bosons or gauge bosons. For gauge strings (those formed 

as a result of a spontaneously broken gauge symmetry), this mechanism can be 

ruled out because of an important result obtained by Kibble and Turok.‘g They 

have shown that there is a large class of loop trajectories that never self-intersect, 

so that the fragmentation of the loops will be truncated when the average loop 

size is not much smaller than the horizon, much too large to decay into heavy 

particles. 

The only option then, is for the strings to radiate massless particles. For 

global strings (those formed as a result of the spontaneous breaking of a global 

symmetry), loop decay is very fast (- a few expansion times) through the ra- 

diation of goldstone bosons?’ (Global strings may also decay by successive in- 

tercommutings.) But since gauge strings couple to no massless particles except 

for graviton$ they can only radiate gravitationally. Since the strings couple 

to gravity only very weakly, they will live for many expansion times before they 

decay. It is essential to the galaxy formation scenario that this occurs because, 

in order to give rise to a significant density fluctuation, a loop must live for a 

long time. 



It is not clear that this energy loss mechanism will be efficient enough so that 

the energy density-of strings will-scale as l/R’ as is necessary for the consistency 

of the string scenario. Since a loop lives for a long time, there is a large probability 

that it will collide with and be absorbed by a long string before it can radiate away 

much of its energy. (The probability for a loop to be absorbed by a long string 

decreases considerably if there is a large probability that a loop will self-intersect 

and split up into smaller loops. This is one of the reasons that the fate of a system 

of cosmic strings depends sensitively on the probability of self-intersection.) 

Once a loop has been absorbed by a long string, any energy lost to gravi- 

tational radiation will be more than compensated for by an energy gain due to 

the stretching of the string. The numerical calculation of Albrecht and Turok is 

an important step toward confirming previous speculations that the string sce- 

nario is indeed consistent, but because of the limitations of their calculation some 

doubts still remain. Their main constraint is the finite number of points on their 

lattice. (They use an 803 cubic lattice.) Because of this limitation, they can only 

run their simulations for a factor of - 10 in time before the horizon grows as large 

as their whole lattice. As a consequence of this they can never achieve a solution 

that is scale invariant, at least on the scale of small loops. Of course, small loops 

tend to decouple, and Albrecht and Turok have checked and found that their 

results are not strongly dependent on the loop size they use as a lower cutoff. 

But, it is conceivable that their results are an artifact of their initial conditions 

which had a much smaller proportion of closed loops than their “steady state” 

(or scale invariant) solution. The relative lack of closed loops in the initial state 

means that the long or “infinite” strings can lose energy through the production 

of loops, but that they will not gain as much energy by the absorption of loops as 
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they would if more loops were present. Although it seems likely that they have 

evolved their simulations long enough to avoid this problem, it is an important 

question to check. Another possibility is that the evolution of the string system 

might differ only slightly from the l/R' falloff of a scale invariant system, chang- 

ing too slowly to be seen in the numerical simulation, but fast enough to cause a 

conflict with known cosmology. 

An alternative approach for calculating the evolution of a network of cosmic 

strings has been attempted by Kibbley2 He set up equations for the formation 

and absorption of closed loops by long strings in order to study this problem 

analytically. In this paper, an improved version of Kibble’s formalism is devel- 

oped and used to study the evolution of a system of cosmic strings and test the 

consistency of the string theory of galaxy formation. With this approach, we 

have no limit to the size of the loops that we can consider or to the length of 

time that the system can evolve. It is also easy to see the effect of varying the 

intercommuting probability. The drawback is that we must absorb many of the 

details of the string evolution into unknown parameters. Although we can ob- 

tain bounds on these parameters analytically, we can only determine their actual 

values through comparison with a calculation like that of Albrecht and Turok. 

On the other hand, these parameters are actually useful if we wish to under- 

stand which physical processes have a significant influence on the evolution of 

the string system because we are able to vary them. For instance, we find that, 

if a scale invariant solution is to exist, then there must be a high probability 

(2 0.5) that an arbitrary loop produced by the intercommutation of long strings 

will self-intersect and break up into smaller loops. 

The final advantage to this approach is that small loops can be treated al- 
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most exactly, and since the energy density of the string system is dominated by 

small loops, it is important to .what the density of small loops really is. For 

instance, in the cosmic string theory of galaxy formation, the small loops are 

responsible for density fluctuations, so if we want to know the magnitude of 

the initial fluctuations, we must know the density in small loops. Also, because 

the density of gravitational radiation is proportional to the total energy density 

in strings, we find that we’can obtain a limit on the string tension from the 

requirement that the density of gravitational radiation be small enough to sat- 

isfy primordial nucleosynthesis constraints. This constraint is much stronger, at 

present, than the constraint on the density of gravitational radiation obtained 

from the timing of the millisecond pul~ar?~‘~~ With an estimate of the probability 

of self-intersection obtained from the results of Albrecht and Turok’s simulation 

we obtain Gp < 5 x 10 -7. Such a limit is marginally in conflict with the values, 

Gp 2 2 x 10Bg, obtained from the galaxy formation calculations of Refs. 2, 7, 8, 

9, 13, and 14. Thus, primordial nucleosynthesis seems to provide an important 

constraint on the cosmic string theory of galaxy formation. 

This paper is organized as follows. Chapter 2 is devoted to a review of 

Kibble’s formalism with a few minor extensions. In the third chapter, we solve 

Kibble’s string evolution equation and show that no scale invariant solution exists 

if we neglect the self-intersection of loops. In chapter 4, we modify Kibble’s 

formalism to include several processes that Kibble neglected including the self- 

intersection of loops and gravitational radiation. We then present the solution 

of these equations. In chapter 5, we compare our results with those of Albrecht 

and Turok, and finally, in chapter 6, we discuss our conclusions. 



2. STRING EVOLUTION EQUATIONS 

We will now review the formalism for the evolution of a system of strings 

in an expanding universe as developed by Kibblef2 In the first section of this 

chapter, we will introduce the equations of motion for a non-interacting system 

of strings. Interactions between loops and long strings are added in the second 

section. 

2.1 STRING EQUATIONS OF MOTION 

In the cosmological setting that concerns us, we may neglect the thickness of 

the string and treat it as a truly one-dimensional object. With the exception of 

gravitational radiation (which will be added in a later chapter) the gravitational 

interactions of the strings will also be neglected. The justification for this is that 

the strings couple to gravity with strength Gp - 10B6 so gravity should have 

25 very little influence on the string motion. We will work in a Robertson-Walker 

space-time with the metric 

ds2 = R2(~) (dT2 - d$) . 

If we take u to be the parameter denoting position 

(2.1) 

along the string we can 

write the expression for the total string energy inside a comoving volume V as 26 

(2.2) 
V 

where 

(2.3) 

and the integration is over all string in the volume V. Implicit in these formulas 
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is the assumption that 

which can be satisfied by a proper choice of the parameter cr provided we are in 

the center of mass reference frame. 

In these coordinates the equation of motion for the string is26 

From (2.5) we can immediately derive expressions for the time derivatives of E 

andE 

,?i=E f (l-2+‘)) , 

(2.6) 

(2.7) 

where 

The dots in (2.7) d enote derivatives with respect to ordinary time, dt = Rdr. 

For very straight strings, we can neglect the term on the right-hand side of 

(2.5) and obtain a very small terminal velocity. Thus, in this limit (2.7) implies 

that the energy in a comoving volume grows as R, so the string density would 

fall as l/R2 as noted above. For very small loops or brownian strings with a 

persistence length much smaller than the horizon, we can neglect the damping 

term on the left-hand side of (2.5). It is then simple to derive the result that 

(u2) = i (( ) denotes an average over t as well as a). In this case (2.5) implies 
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that the energy is a comoving volume is constant, as we might expect. Hence, in 

the absence of intercommuting the density of string drops no faster than 1/R3. 

2.2 INTERACTIONS BETWEEN LOOPS AND LONG STRINGS 

In order to test the standard string evolution scenario, we will now set up 

rate equations for the interactions between Ynfinite” or long string and loops, 

following Kibble. We will classify as long strings all the infinite strings as well as 

all the “large” loops. (A precise definition of “large” loops will be given below.) 

The scale of the long strings, L, will be defined by 

E PV =- 
L2 ’ (2.8) 

where E is the energy in long strings contained in the volume V. If we define 

w(u) du as the probability that a given string segment has a velocity in the range 

v to u + du, then the number of string segments between u and u + du intersecting 

a surface of area A is given by 

A- w(v)du 
2L2 

. (2-g) 

The factor of d- in (2.9) comes from the fact that a string segment of energy 

& has a length equal to d-E/p, and the factor of $ is just an average of 

cos 8. 

If we ignore the correlations between different string segments, the probability 

that, in the time interval lit, a string segment of proper length 27rtl (energy 
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= 27r&) and velocity vr will collide with a long string is 

I 
IG + GI6t 2r4i7 2L2 w(vl)dvl w(v2)dvl 8ine1; de12 

9 (2.10) 

where, to obtain the last expression, we have integrated over 812 (the angle 

between G’r and $2.) In order to evaluate 
( max(vr,vz)j/XjJLZjJ, we 

would need to know the correct form for w(v), which is not easy to obtain. The 

case in which we are the most interested is when the scale size of the strings is 

slightly smaller than the horizon size, but we can only obtain a good estimate 

of ( m=(vr , v2) ~-v,z\/l--v,z) when the string scale is much smaller than 

the horizon. If we take w(v) to be the same as it is for a small circular loop 

(v = sin A), then we obtain 

8 
- = 
3764 (2.11) 

Fortunately, the results of our calculation will not be very sensitive to the exact 

value of ( max(vr , us) +$/iZj). 

An essential requirement of the standard energy loss scenario for the string 

model is that, once formed, many loops will survive without reconnection for 

a very long time in order to radiate away. Thus, it is important to know the 

probability that a loop will survive once it is formed. This depends on the 

probability, p, that two string segments will change partners when they collide. 

Although it is not really known what this probability is, it is usually assumed 

that p B 1 is required for the standard scenario to work, and there is apparently 
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l8 some indication that this is true. We will use p = 1 in all our calculations, and 

in the concluding--chapter, it will be shown how to generalize these results to 

other values of p. Before we write down the expression for the probability of loop 

survival, it is useful to introduce some new notation: let 7 = L/t be a measure of 

the ratio between the string scale and the horizon, and let L - P. (a = 1 gives 

the scale invariant evolution that is assumed in the standard scenario of string 

evolution.) From (2.10), the probability for a loop of proper radius A! formed at 

time t to survive until t = 00 is 

exp 
[ 
-(2cr - 1) 5 (max(vr , vz) 43 &$] - c-P”(lvL . (2.12) 

Thus, if 7 - 1, loops of a size much smaller than L will almost certainly survive 

while large loops will not.’ One the other hand, if 7 < 1, we can only expect 

extremely small (e < 7L) loops to survive. 

In order to discuss interactions between loops and long strings, it is convenient 

to define the number density of loops with radii between e and e + de to be 

n(e) db! = -J- E f(7, ;I f , 2lr@! v 
(2.13) 

so that the energy density in loops of size e to !J. + de is 

We can use (2.10) to write down the expression for the energy gained by long 

strings by absorption of closed loops 

&onl loops = E F 
I 

f(r,z) 2 dz 9 
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where we have defined 

and 

Similarly, the production of closed loops can be described by 

Iit0 loop = -E $ 
I 

a(s) zdx , 

(2.15) 

(2.16) 

where the loop production function, a(z), is defined by this expression. We 

should note that we have already made an implicit assumption by writing down 

(2.16). That is, we have assumed that a(z) depends only on z and not on 7, the 

ratio between L and the horizon size. It is possible that the detailed form of u(s) 

may depend on 7, but the most of the dependence on 7 has been factored out 

in (2.16). Since the fate of the string system depends sensitively on the detailed 

form of a(s) for only a small range of 7, we are probably safe in neglecting any 

residual dependence. 

Combining (2.16) and (2.14) with (2.7) we obtain an expression for the rate 

of change of the energy density in long strings, 

; = ; (I - 2 (v”)) + $ / x [f(7,z) - u(x)] ds . (2.17) 

We can write down a similar equation for the time derivative of the energy in 

closed loops, 

$ (;,,,,t-,> = E $ (545) -5f(7,4) . (2.18) 

(Note that we have neglected any stretching of the loops.) Using (2.8) to eliminate 
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E from (2.17) and (2.18), we can obtain two coupled 

the evolution of the system of loops and long strings 

equations which describe 

3k -- 
R 2 ; = f (l- 2(v2)) + $ /z[f(7,2) -u(z)] dz , (2.19) 

. . 
( > 

. 
3 $5 f(7G) - $/'(7J) +9 g f(74 

= 5 (zu(z)-Zf(7,Z)) . 

(2.20) 

(If we drop the + term and set fi = v, these are just the evolution equations 

derived by Kibble.) 

We have taken two different approaches to solve these equations. The first 

approach, discussed in the next two chapters, is motivated by the scaling solution 

discussed by Kibble. We assume specific forms for R(t), L(t), y(t), and a(z), 

which allow an exact solution of (2.19) and (2.20). this exact solution can then 

be used to calculate the deviations of R(t), L(t), and y(t) from their assumed 

forms. We use this approach for our main analysis, and it has the advantage that 

we can evolve the system for an arbitrarily long time. The second approach will 

be to integrate (2.18) and (2.20) numerically. Here, we are limited because the 

solution eventually develops numerical instabilities, but we are able to include 

arbitrary initial conditions. This approach is useful when trying to check the 

results of Albrecht and Turok.‘7 
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3. SOLUTION TO KIBBLE’S EVOLUTION EQUATIONS 

In this chapter, we solve Kibble’s evolution equations with a simple choice for 

the loop production function, u(z), and we show that, unless the self-intersection 

of loops or string correlations play an important role, a scale invariant (or scaling) 

solution cannot exist. Before we can show this, however, we must obtain some 

limits on u(z). 

3.1 LIMITS ON THE LOOP PRODUCTION FUNCTION 

Before we attempt to solve (2.19) and (2.20), we need to discuss the unknown 

loop production function, u(z). An estimate of su(z) dz can be obtained by 

considering the number of collisions between segments of long strings in a volume 

V. The probability of a collision can be obtained by multiplying the probability 

that a string segment of proper length 27r& will collide with a long string, (2.10), 

by the number of segments in the volume V. The probability of a collision in 

the time interval 6t is V6t/2r&L2. Multiplying the collision probability by p, we 

obtain the intercommuting probability, 

From (2.16), we can see that the energy converted to loops of size between ! and 

4! + de in the same time interval is 

AE to loo&) a = E & (3.2) 

Dividing (3.2) by 27r@? (the energy per loop) and setting it equal to (3.1) we 

16 



obtain 

Ft = . 
J 

u(z) dz , Fl < 1 , 

where Fl is the fraction of loop intercommutings that produce new loops. Ff < 1 

is strictly true only when the loops are produced by collisions of uncorrelated 

segments of long strings, but loops are generally produced as a result of collisions 

27 of waves on a single long string. This process clearly involves correlations 

between the different string segments. Nevertheless, it seems quite unlikely that 

loop production will occur at a higher rate than the crossing of random segments 

of long strings. 

An upper bound on s u(s) dz has been suggested by Kibblef2 He noted that, 

in a non-expanding universe (neglecting gravitational radiation), the equilibrium 

solution of (2.19) and (2.20) is 

u(z)=f(7,2) and I!=o. (3.4 

(We have implicitly assumed that u(z) does not depend on the expansion rate of 

the universe.) If the equilibrium solution resembles the random configuration in 

which the strings are formed, then only about 20% of the total length of string 

would be in the form of loops. 24 This implies that 

/ 
u(z) dz = 

length in loops 
length not in loops 

= o 25 
’ ’ (3.5) 
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3.2 SOLUTION TO THE EVOLUTION EQUATIONS NEGLECTING CORRE- 

LATIONS BETWEEN STRING SEGMENTS 

Now, let us see if either of these restrictions, (3.3) or (3.5), are consistent with 

the scaling solution that is usually assumed. We will take L - ta and R - t1/2 

(for a radiation dominated universe) so that a solution with cy: = 1 corresponds 

to the Kibble’s scaling solution. Thus, (2.19) and (2.20) become 

2(a - l)= (?P)-1+ $/x@(x)- f(7,x)) dx (3.6) , 

0 = cYxf’(7,x) - (a - 1) 7 6 f(7,4 + 3(a - f, f(795) + 5 x (44 - f(79)) * 

(3.7) 
Using Q = 1, the solution to (3.7) was found by Kibble to be 

f(74) = F /mdy (y2 p(wd/lu(y) & . 
2 

(3.8) 

Substituting this into (3.6) we obtain the condition 

whereA -1. 1 PQ 
> 

28 
2’2’ 1 is Kummer’s function. 

In order for a scaling solution to exist the integral on the right-hand wide of 

(3.9) must be large enough so that it can cancel the term (u”> - 1. It is somewhat 
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surprising, then, that the integrand in (3.9) becomes negative for @y/7 > 0.85. 

This implies that the production of large loops is not an efficient way for the 

long strings to lose energy. Because they have a high probability to reconnect, 

they are very unlikely to survive long enough to radiate away. However, we 

have not included the process in which a large loop produces smaller ones in our 

equations (2.19) and (2.20), and therefore, we are in danger of underestimating 

the energy loss through large loops. For this reason, we will always cut off the 

loop production function and include loops larger than the cutoff with the long 

strings. If some of these large loops survive long enough to shrink below the 

cutoff size, we can treat them as if they are formed when they are at the cutoff 

size. 

As a first approximation, let us ignore loop fragmentation and take 

u(x) = F&(x - x0) , 

where x0 is an unknown constant presumably of order one. Then, (3.9) becomes 

2(a- l)=(u’)-l+FLI (3.10) 

where I(z) E ze-“M (-), f, z). A graph of I(z) versus z is given in Fig. 1. 

Setting (u2) = 5 and I(pBxo/7) N 0.15 (their maximum values), and using FL, 1, 

we obtain an upper limit on cy, 

a = ; +; FL (0.15) 5 0.825 , (3.11) 

which is close to its minimum value: a! = 0.75. Note that we have chosen 

the function a(x) such that the integral in (3.9) is maximized, subject to the 
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constraint, (3.3), so no other choice for u(x) will give as large a value for cy. (If 

we had used Kibble’s constraint, (3.5), we would obtain a more stringent limit: 

(Y 5 0.769, and if we had used the loop production function that Kibble suggested, 

u(x) = 0.4/x3, we would get an even smaller result.) Thus, the scaling solution, 

CY = 1, cannot be satisfied. This means that the density in strings will decrease 

more slowly than that in radiation, and the strings will soon come to dominate 

the universe. Therefore, an additional energy loss mechanism is required for the 

string theory of galaxy formation to be consistent. 

4. CORRECTIONS AND SOLUTIONS 

TO THE EVOLUTION EQUATIONS 

The purpose of this chapter is to extend Kibble’s formalism to include some 

of the effects of correlations between different string segments, and to solve the 

resulting evolution equations. 

4.1 THE SELF-INTERSECTION OF LOOPS 

The mechanism that we have ignored is the self-intersection and fragmenta- 

tion of loops. In showing the failure of the scaling solution we considered the 

production and reabsorption of loops by long strings but we ignored all loop- 

loop interactions. In principle, we should include both the process in which two 

loops intersect and form a larger loop and the inverse process in which a loop 

self-intersects and splits up into a number of smaller loops. This second process 

is particularly important because self-intersection is likely to be quite common, 

and because the smaller loops are less likely to recombine with the long strings. 

Kibble and Turok lgP8 have shown that there is a large class of loops that never 
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self-intersect which are, in fact, essential for the galaxy formation scenario. How- 

ever, it is unknown what fraction of the loops formed by the long strings will 

self-intersect. It seems likely, however, from the work of Turok and Kibble, that 

this fraction is neither very close to zero nor to one. We will account for the 

self-intersection process by an appropriate modification of the loop production 

function, u(x). The other process in which two loops combine to form a larger 

loop is likely to have a much smaller influence on the overall evolution of the 

string system, and we can include it as a minor correction to the self-intersection 

probability. 

We can model this behavior very simply if we assume that there is a proba- 

bility ps, that a loop will break up into two equal sized pieces. Then the ratio 

of the energy in loops of proper radius between 0 and $ to the energy in loops 

of size between f and L is p,,/(l - ps,). W e can then define an effective loop 

production function, u,~(x) to have the form 

1 0 n+2 

U&(X) =Anx”O(c-x) , e- 1 Psx = ii (4-l) 

which has the correct behavior for all x less than [. (Recall that xa(x) is pro- 

portional to the energy produced in loops of size x.) We have implicitly assumed 

that the process of successive self-intersections actually takes place rather rapidly 

and this is indeed the case. Because the loop oscillations are periodic with a pe- 

riod proportional the proper length of the loop, daughter loops will self-intersect 

in roughly half the time it took their parent to split up, so the loop fragmenta- 

tion process should complete itself in roughly one oscillation time. If p < 1, the 

fragmentation process should take roughly - l/p oscillation times. 
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The correct value for c is given by our assumption that the scale of curvature 

on a string is roughly the same as the average distance between strings. (An 

argument justifying this assumption is given in the final chapter.) If we take 

6 = 1.5, as we have done in most of our calculations, then the average parent 

loop has a radius of = 0.8L (assuming its average velocity is vnm8 = l/d), while 

from (2.9), the average distance between neighboring segments of long strings is 

B 1.7L. Thus, e = 1.5 implies that the diameter of the average parent loop is 

roughly the same as the average distance between the long strings. 

Another way to check that we have picked an appropriate value for e is to 

recall that our justification for cutting off the loop production function at x = [ 

was that loops of size larger than t would not survive long before being reabsorbed 

by the network of long strings. When ps, is large, it is particularly important to 

check whether a large parent loop will survive long enough to intersect itself. If 

e > 2/r, a loop of proper radius [ will be stretched by the expansion and will 

not self-intersect until the horizon has grown much larger, but in the mean time, 

it will probably be reconnect to a long string. Thus, e < 2/r should be an upper 

limit on t. For 7 < 1 (which holds in all the cases of interest), this constraint is 

easily satisfied for 6 = 1.5. 

We must also check that loops of size 2 [ have only a small probability 

(psur) to survive long enough to self-intersect before they intercommute with a 

long string. By integrating (2.10), we can obtain the probability that, in a time 

interval, 6t = ze/2, a loop of proper radius &it not will collide with a long 

string. (This value of 6t is just the time it takes for a loop initially at rest to 

self-intersect.) Using (2.11), we obtain 

pEur = e 
-4(“/3 . (44 

_ .- 
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For e = 1.5, this probability is just 5%. 

In order to relate u,g(x) to FL, we will take 

(4.3) 

to be the “primordial”- loop production function which is reduced to u,f(x) by the 

self-intersection process. ((4.3) is normalized according to (3.3).) Since energy is 

conserved during these self-intersections, we require that 

00 Co 

J 
xup(x)dx = 

J 
X ueff (2) dx 9 

0 0 

or 

n + 2 An = - -n-l 
2Ln 2 e FL . (4.4 

We should note that there are two effects that may tend to interfere with 

the relation between the probability of self-intersection, ps,, and n. First, we 

have assumed that the loop fragmentation process takes place instantaneously 

and neglected the possibility that a loop may reattach itself to a long string 

before it can break up into smaher loops. A loop of radius e that is formed 

almost at rest will first intersect itself (if it is of the self-intersecting variety) at 

time - 7re/2, so the probability that the loop will split into two before it can 

recombine is - e-Puz”, where x = l/L. Unless x < 1, the probability that the 

loop will recombine before it splits up is not negligible, so our assumption that 

the loops instantaneously fragment may be faulty. On the other hand, although 

one part of the loop may recombine with a long string, the rest of the loop will 

not “know” that it has recombined until enough time has elapsed for a wave to 
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travel half way around the loop. In the mean time, the rest of the loop will 

continue to fragment; hence, the final spectrum of daughter loops may be almost 

the same as if the parent loop finished fragmenting before the collision with the 

long string. Our other assumption in making the identification, (4.1), was that 

the probability of self-intersection is independent of loop size. In fact, this is 

unlikely to be the case. The periodic non-self-intersecting solutions of Turok and 

Kibble only exist when the loops are much smaller than the horizon; larger loops 

are not periodic and are therefore more likely to self-intersect. Since the larger 

loops are also the most likely to be absorbed by the long strings, the errors from 

these two assumptions tend to cancel, and it seems likely that our identification, 

PSI = (1/2)n+2 is probably reasonable. 

4.2 OTHER CORRECTIONS TO THE STRING EVOLUTION EQUATIONS 

Before we attempt to solve (2.19) and (2.20), we must introduce a further cor- 

rection factor to account for the fact that we have overestimated the probability 

of loop reconnection for small loops. In our original treatment, we treated all the 

string segments ‘as if they were uncorrelated; this assumption is particularly bad 

-in the case of small loops. If p = 1, a long string can only intercommute when it 

strikes the near side of the loop. Thus, a small loop has an effective length equal 

to - i of its true length. For a loop of size z - 1, however, the effective length 

is much closer to its true length. Similarly, when a loop intersects a long string 

and is absorbed, the inertia of the original loop may cause the trailing edge of 

the loop to intersect the long string again, producing a new loop. We can take 

both processes into account by adding a correction factor, 6 < 1, in front of the 

T xf(7,x) terms in (2.19) and (2.20), implying that the energy returned to the 

24 



long strings by the reconnection of loops is only a fraction, 6, of the energy that 

would be returned from a network of straight segments of equal total length. 

Presumably, these processes together should contribute a factor of - 0.5 to 6. In 

our calculations, we will take 6 M 0.5 to be the most likely value and 6 2 0.3 aa 

a lower limit on 6. 

Another effect that we can incorporate into the correction factor, 6, is the 

redshifting of loops. So far we have implicitly assumed that loops are formed at 

rest. Since the rms velocity of the strings is - l/a, we might expect that the 

loops formed will have a non-negligible velocity. If so, the loops could lose a large 

fraction of their energy by redshifting as the universe expands. It seems likely, 

however, that the rms velocity of the loops produced will be considerably smaller 

than l/a. This means that the loops can lose some fraction < 30% of their 

energy by redshifting if they survive for a time of the order of one expansion time. 

The simulations of Albrecht and Turok indicate that the kinetic energy of the 

loops is indeed much smaller than this!’ the averagevelocity of the daughter loops 

in their simulation is only - 0.1. (This is quite fortunate for the galaxy formation 
29 . scenario because, as Vachaspati and Vilenkin have shown, if the initial velocity 

of a loop is 2 0.1, it can gain enough momentum by gravitational radiation so 

that it never slows down enough to induce a density fluctuation.) Thus, we can 

expect that the loops will lose < 3% of their energy by redshifting. Loops formed 

as a result of very many self-intersections may gain kinetic energy at each self- 

intersection, and so they may have a higher velocity than this. (These loops 

would be smaller than the cutoff in Albrecht and Turok’s simulations, so they 

would not see them.) Fortunately, only a small portion of the total loop energy 

is likely to be carried by these very small loops so we will need only a small 
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correction to account for them. 

The final correction to the string evolution equations that we must include 

is the loop shrinkage and energy loss due to gravitational radiation. The total 

power radiated by an oscillating is proportional to Gp2, so it is convenient to 

write it as P = XGp2 where X is a dimensionless constant. This implies that 

A!! = &Gp independent of the size of the loop. Because our ultimate limit on the 

string tension will be proportional to A, it is important that we use an accurate 

value for A. 

Vachaspati and Vilenkin2’ have calculated X for several different loop tra- 

jectories, and they have found that X is usually about 50, but some of their 

loop trajectories had X values greater than 100. The appropriate choice for the 

purposes of our calculation would be an average over the non-self-intersecting 

loops that would be produced by the long strings by the processes that we have 

described. The X values for the few non-self-intersecting loop trajectories cal- 

culated by Vachaspati and Vilenkin were all around 50. Furthermore, the loop 

trajectories that yielded much larger values of X seemed to be rather degenerate 

cases that would be unlikely to be produced by long strings or by the fragmenta- 

tion of parent loops; they either had very large angular momentum, resembling 

a rapidly rotating double line, or were almost circular with very little angular 

momentum such that the whole loop passes through a short line during each 

oscillation. (These are the type that may form black holes.) Hence, a X value 

not much larger than 50 is probably appropriate for our calculation. We will use 

X = 207r, so that 

i = -1OGp. 
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Thus, (2.18) becomes 

f (5(7,$)) =i f (x4x) - xf(7,x)) - 2d4) 9 (44 

and our final string evolution equations, the analogs to (2.19) and (2.20), are 

(I- 2 (uy, + $ J x p f(7,x) - u(x)] dx , (4.7) 

3 (g-3 f(7,x)+(;-;x)f~(7,x)++&f(7,x) 

(4.8) 

4.3 SOLUTION TO THE STRING EVOLUTION EQUATIONS 

Now, after discussing all our assumptions and parameters, we are ready to 

solve (4.7) and (4.8). We will write the time dependence of R, L, and 7 as 

R- tN L- ta 7” ta-l, (4.9) 

and we will neglect all terms proportional to k or &. (Our calculations show 

that this assumption is self-consistent in the cases of interest.) Inserting (4.5) 

and (4.9) into (4.7) and (4.8), we obtain 

2cY = 2(Iv+ (v”)) + y J[ x f+ 07 I] ,x dx, (4.10) 

and 

P@b x 
7 ( f (7,x) - y> = (ax+y) f’(r,x)+(l-a)7& f(7,x) 

+ 3(a - N) f(7, x) - Yf(7.x) - 

(4.11) 
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If we take u(x) to have the form given by (4.1) and (4.4), we can find an exact 

solution 30 of (4.19: 

B rdu s (z) q+Bs eB@-“)du 
2 

(4.12) 

where 

B26E z=x/L 
10Gp 

7 2a-1' c= (2a-1)7( ' 

CX-N 
q=3- 8Ja! l+l-a, (z* + c) zg(l-a)-l = z + c . - 

To obtain (4.12) we have used the boundary condition that f(7,x/E) vanishes 

when x = e. Th’ b IS oundary condition holds for a: 5 1, which will be true if we 

choose a sufficiently large initial value for 7. When we substitute (4.12) back into 

(4.10) it becomes 

2a=2(N+(v2))+(2a-1) z +jd. 
0 

x z”+’ -B du j zg (~)q+BEeB(u-*) , 

SO 1 
(4.13) 

where ZCJ = max 0, (z + E)z~/(~-~)-~ - c 
> 

. 

Before we can evaluate (4.13) to obtain the time evolution of the string sys- 

tem, we need two additional ingredients: an expression for (u2), and an equation 

for N(t) (i. e. R(t)). A s we saw in the previous chapter, (u2) is a function of 

the curvature scale of the long strings, which we have assumed to be 7. (The 

possibility that the scale of curvature of the strings is different from the mean 
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distance between the strings will be discussed in the last chapter.) In chapter 2, 

we saw that when 7 < 1, (u2),= l/2, and when 7 > 1, (v2) N 0. Numerical 

simulations by Turok and Bhattacharjee 26 seem to indicate that the transition 

between these two regions is rather abrupt. In our calculations, we used 

2, (4.14) 

with k being varied from 0 to l/2. It should be noted that, although we have 

merely guessed a form for (u2), an error here will not have a great influence on 

our results because scaling solutions tend to occur only for fairly small values of 

7. (Unless we take Fl > 1.) In fact, our main conclusions will be valid even if 

( ) V2 = t for all values of 7. 

The last ingredient we need before we can solve for the time evolution of the 

string system is Einstein’s equation to determine how N evolves. It is 

Ii N -=-= 
R t 

(4.15) 

where pr, ps and pgr are the densities of ordinary radiation (or relativistic matter), 

strings, and gravitational radiation respectively. pr is calculated from 

3 
“= 32rGt; 

The expression for ps can be found from (2.8) and (2.13) to be 

Ps = jp p (1, Jwm) , 

(4.16) 

and the energy transferred from loops to gravitational radiation is given by the 
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last term of (4.6). With (4.5), this gives 

dPor(x) d, = E 
dt V 

f(x) d 
2 (4.18) 

for the rate that the density of gravitational radiation increases. Initially, we set 

par = 0, and then we use (4.18) to calculate the density of gravitational radiation 

produced by the strings in a given time interval. After it is produced the density 

of the gravitational radiation scales as l/R’. 

Now, we can use (4.13), (4.14), (4.15), (4.16), (4.17), and (4.18) to calculate 

evolution of the string system in the early universe. We start at time 31 

m3 
to = P 

Cc2 
= 7 x 19-32sec (lo16pyv)4 , (4.19) 

when the string damping becomes negligible. Our initial condition for 7 is to 

set 7(to) = 1, and it is implicitly assumed that at t = to we already have an 

“equilibrium” configuration of small loops so that equations (4.7) and (4.8) can 

be used to describe the subsequent evolution of the system. Presumably, it would 

probably take some time (until t .H to/l0 GJ.J) before the very small loops could 

be formed, but thereafter, we should expect that (4.7) and (4.8) will describe the 

evolution of the string system accurately. We start our calculation by choosing 

a value for a and evaluating (4.13) several times until a self-consistent solution 

for a! is found. Once we find CY, we evolve 

7-t a-l and Pr, Pgr H t-4N (4.20) 

from to until tl (usually tn = lot,-1). Then we calculate (Y from (4.13), ps from 
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(4.17) and 

Aper - 32~Gp 10Gp Ln tn HJ f (4 dx 
PO 3r2 7 h-1 X 

(4.21) 

for the change in Apgr/po in the interval tn-1 to tn (po = 3/32mGt2 is the energy 

density of a radiation dominated universe). We can continue this procedure until 

t kc 2 x 1012 set M 1O43 to when baryons ordinarily become important. 

4.4 COSMOLOGICAL CONSTRAINTS ON ps AND pgr 

In order for the string scenario to be consistent with known cosmology, we 

must require that the strings do not come to dominate before the universe be- 

comes matter dominated at t fi: 2 x 1012 sec. If the strings should come to domi- 

nate much before this time, then the microwave background radiation will reach 

2.7 K long before the age of the universe is 4 x 10’ yrs. (the age of the earth). 

Actually, the situation is not quite so simple. It is possible that, if the strings do 

not dominate over the radiation by a large amount, the universe could pass from 

the string dominated phase to a baryon dominated phase at roughly the usual 

time, so that the string dominated phase would have little influence on the cur- 

rent relationship between the age of the universe and the microwave background 

temperature. 

A more stringent constraint on the string scenario can be obtained by con- 

sidering primordial helium synthesis. (This constraint was found independently 

by DavisB2 ) 0 ur constraint is essentially the same as the familiar bound on the 

number of light neutrinos, except that our bound will be on the maximum den- 

sity allowed in strings and gravitational radiation. (We can treat gravitational 

radiation and strings, like neutrinos, because like neutrinos they have decoupled 
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from ordinary matter.) This constraint arises from the time delay between the 

time (T H 1 MeV,. t = 1 eec) when neutrons and protons drop out of equilibrium 

and the time (T N 0.1 MeV, t # 100 set) when the protons are too cold to 

photo-dissociate deuterons and nucleosynthesis commences. If the density of the 

universe is too large when TL, - 1 MeV, then the universe will expand too fast 

and too few neutrons will decay before they can be combined into He4 nuclei, 

resulting in a He’ abundance that is larger than what is observed. The constraint 

given by Boesgaard and SteigmanSS is 

Pe+Pgr <o17 . . 
Pr 

It turns out that this constraint is difficult for the string scenario to satisfy. 

This can be seen quite easily by considering a system of strings satisfying a scaling 

solution with the density of strings of some fraction q e ps/pr of the radiation 

density. If it were not for gravitational radiation, the string density would scale 

as l/R3 - t’i2 pr. Thus, without gravitational radiation the string density would 

grow to 

ps= 1’2 
Pr 

, 

or 

(4.23) 

in a time interval dt. In order for the scaling solution to hold, most of this energy 

must be lost through gravitational radiation. This implies that 

dpgr -=&(1-r), 
PT 

(4.24) 

where we have defined r as the fraction of loop energy in the form of kinetic energy 
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of small loops. Since this energy can be redshifted away as the universe expands, 

it need not be radiated gravitationally. As noted previously, the simulations of 

Albrecht and Turok indicate that r is very small (r < 0.03). 

Since nucleosynthesis occurs at t N 1031to, we should integrate (4.24) for a 

factor of - 103’ x 1OGp N 1O20 in time, where the factor 1OGp is just the time 

it takes for the’smallest loops (those formed at to) to decay by gravitational 

radiation. Then, the constraint (4.22) becomes 

v(l - r) 4 Ln 102’ < 0.08 

or 

q( 1 - r) < 0.0027 . (4.25) 

So, if t is as large as 0.1, then we must require that q < 0.0030 in order to satisfy 

the nucleosynthesis constraint. This constraint, (4.25), is modified somewhat in 

our numerical calculations by two factors. First, the universe expands slightly 

faster than a purely radiation dominated universe so pr decreases somewhat. (For 

the choice of parameters that seem to be in the best agreement with Albrecht 

and Turok, we obtain N w 0.5007,) Second, during the time it takes for the first 

loops formed to decay by gravitational radiation, N lOG@o, some gravitational 

radiation is produced, but we have neglected it. Our calculations show that these 

corrections are small (2 15%), h owever, so the helium synthesis constraint can 

be checked just by calculating q = pa/p, once a steady scaling solution has been 

reached. 

The results of our numerical calculations are summarized in Fig. 2 and Fig. 

3. In Fig. 2 pa, pr and par are plotted as a function of time for selected values 
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of the parameters, and Fig. 3 consists of four constraint diagrams indicating the 

behavior of the string system as a function of Fl and p,, with k (from (4.14)) and 

6 taking the values k = l/16, l/2 and 6 = 0.3, 0.5. For both of these figures, we 

have set E = 1.5, p = 1 and r = 0.1. 

Our constraint diagrams (Fig. 3) require some explanation. They display the 

constraints on G,x as a function of four parameters. The axes of Fig. 3 are the 

probability of self-intersection, p,, , and the loop production amplitude, Fe, while 

the different graphs correspond to different values of the correction factor, 6, and 

the velocity parameter, k. The solid lines labeled with different values of Gp 

indicate the constraint on Gp as a function of the parameters: p,,, Fl, 6 and k. 

The region above and to the right of each curve is the region of parameter space 

for which the given value of Gp is consistent with standard nucleosynthesis. The 

regions of parameter space below the dotted lines are the regions for which no 

scaling solutions exist. The shaded lines in Fig. 3 indicate the constraints on p,, 

and Fe that we have obtained from a comparison with the numerical results of 

Albrecht and Turok (as well as the requirement that Fe < 1 ). The shaded line 

at the top of each diagram implies that we expect that Fe < 1, while the other 

shaded lines indicate the region of parameter space suggested by a fit with the 

numerical simulations of Albrecht and Turok. (This fit will be discussed in the 

next chapter.) Finally, the crosses in Fig. 3 represent the points in parameter 

space corresponding to the graphs in Fig. 2. 

The shaded regions, labeled “Kibbley on the left side of each diagram indicate 

the region of parameter space considered by Kibble2’ (and implicitly by Vilenkin2 

and Davis 32 ). Note that th ese regions fall almost entirely underneath the dotted 

lines. This means that, if the p,, were small as was assumed by Kibble, then a 
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scaling solution would almost certainly not exist. In fact, if 6 2 0.5, then it is 

necessary that p,, 2 0.5 for a scaling solution to exist. Hence, the self-intersection 

process is critically important for the consistency of the string model. 

We also find that the question as to whether the strings come to dominate 

depends only on FL/~ and p,,, and is essentially independent of p, the probability 

of intercommuting (assuming p $ 0). Th is can be understood if we examine 

(4.13). For some value of B oc p/r the integral on the right-hand side of (4.13) 

has its maximum value, but if this maximum value is not large enough to obtain 

(Y = 1, then there is no scaling solution and the strings will come to dominate. 

Therefore, our results will only be sensitive to p in those cases when a scaling 

solution exists. In that case p determines the scale of the string system, (7), at 

the scaling solution. 

The main conclusion to be drawn from Fig. 3 is that a string tension of 

Gp 2 2 x low6 can be consistent with helium synthesis constraints only for large 

values of Fe and very large values of p,. . Of course, it is possible that the correct 

values of these parameters are really quite large, so we must make some attempt 

to determine what these parameters really are. 

5. COMPARISON WITH ALBRECHT AND TUROK 

5.1 CONSTRAINTS ON p,,, FL AND pS 

Although we have obtained stringent restrictions on the parameters describ- 

ing the string scenario, we can only make definite predictions if we have some 

idea what the correct values of the parameters might be. The best way to obtain 

these parameters is to compare our results with those of Albrecht and Turok. It 
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is of particular importance to determine the probability of self-intersection, p,,, 

both because our results are the most sensitive to this parameter, and because 

there seems to be no other way to obtain an estimate of it. 

Unfortunately, it is not completely straight forward to determine p,, from 

the simulations of Albrecht and Turok. According to Turokf3 their simulations 

indicate that the “average” loop splits up into about 10 daughter loops. The 

question is: How do we relate this to p,, ? Clearly, if we calculate average number 

of loops produced by parent loops with p SI > l/2, we get a divergent result. If 

we take into account the fact that the simulations use a finite lattice size, we 

can introduce an upper cutoff for the number of self-intersections to make this 

number finite. If we allow the parent loops to self-intersect a maximum number 

of times, m, then we obtain, 

&u3 = 1+ 2 2k-lpk . 
k=l 

Evaluating this for m = 4, 5, and 6, gives 

~loops(m = .4) = 10 for p,, = 0.85 , 

Nloops(m = 5) = 10 for p,, = 0.74 , 

~loops(m = 6) = 10 for p,, = 0.66 , 

(5.1) 

(5.2) 

Perhaps a better way to estimate p,, would be to take the median daughter 

loop to be one tenth the size of the parent loop. This would imply that 

n + 2 = loglo 2 , 
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or 

P SI .= 2-l”glo2 = 0.81 . 

A third estimate of p,, can be made if we assume that the average parent 

loop undergoes log2 10 = 3.32 self-intersections. This identification yields 

P 
1 --T%, 

= log2 10 , and p,, = 0.77 , (5.4 

in rough agreement with (5.2) and (5.3). 

Combining these estimates, we see that p,, = 0.80 f 0.05 should result in 

the production of roughly 10 daughter loops from each parent loop that Albrecht 

and Turok see in their simulations. From Fig. 3, we can see that this choice for 

p,, almost certainly implies that a scaling solution exists, but that the energy 

density in strings depends strongly on the string production amplitude, Fe. If, 

as we expect, Fe < 1, it will be difficult to satisfy the nucleosynthesis constraint 

for G,u 2 10M6. 

We can obtain a more definite result if we fit our calculations with another 

result of the numerical simulations of Albrecht and Turok. In order to demon- 

strate that they have reached a scaling solution, they plot the evolution of the 

energy density in strings as a function of time, but because their initial state 

has no small loops they cannot hope to obtain as many small loops as a real 

scaling solution would have. Since small loops tend to decouple this omission 

will probably not have a great influence on the evolution of larger loops, but it 

does mean that they will find that the energy density in small loops will always 

be increasing. Therefore, in order to test to see whether a scaling solution has 

been reached, they consider only the energy density (pc) in loops of radius larger 
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than a cutoff, rC = 0.2t. (It should be mentioned that rC refers to the real radius 

of the loop, not the proper radius, L’ that we have used in most of our discussions. 

The relationship between & and rC is: .fZ, = fir,.) From Fig. 2 of Ref. 17, we 

can estimate the value of pc at the scaling solution to be pct2/p = 3.0 ‘i-i. 

We can use this number to fix our parameter, FL, and the results of this 

fit (for 6 = 0.5) are given in Fig. 3. Thus, if we are given psi, we can use our 

calculation of pct2/p = 3.0 “hai to bound FL, which according to (4.13) determines 

the “equilibrium” density of the string network, ps. This procedure gives the 

shaded curves in Fig. 3. It turns out, however, that the ratio of pc to p8 depends 

mainly on p,, and only very weakly on Fc and 6, so by fitting our results for 

pc to those of Albrecht and Turok, we can obtain ps as a function of only p,,, 

as shown in Fig. 4. Figs. 4(a) and 4(b) correspond to different values of the 

(u2) parameter, k. The error bars come from matching our value of pet2/p to 

the value, 3.0 :A*:, obtained from Albrecht and Turok’s results. Since k = l/16, 

probably gives an underestimate of ( v2), we can use Fig. 4(a) to obtain a bound 

on Gp as a function of p,,. (Actually, the difference between k = l/16 and k = 0 

is negligible when 7 it: 0.6 as is necessary to obtain the correct value for pc.) 

_ The constraints on Gp implied by matching our value of pe with that of 

Albrecht and Turok are: 

p,, <0.87 =+ G/L < 5 x lo-’ , 

p,, <0.91 =+ G/L < lO-‘j , 

(5.5) 
p,, <0.93 + G/A < 2 x 1O-6 , 

p,, <0.97 =s- G/L < 5 x 1O-6 . 
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Thus, if p,, < 0.85 as the simulations of Albrecht and Turok seem to indicate, we 

must require Gp < 5 x 10m7 for the string model to be consistent with primordial 

nucleosynthesis. 

5.2 CHECKING THE NUMERICAL SIMULATION 

In addition to using the work of Albrecht and Turok to fix some of our 

parameters, we can also use our results to check those of Albrecht and Turok. 

As we have noted in the introduction, their most serious limitation is the limited 

amount of time that they can run their simulation. In view of this limitation 

and the fact that their initial state has many fewer small loops than are present 

- in the final scale invariant configuration, it is worthwhile to check to see if we 

can find any transient behavior that might influence their results. Already, we 

have found some support for their conclusions because, if p,, M 0.8 as their work 

seems to indicate, then our calculations show that a scaling solution does exist. 

But, if the probability of self-intersection should be slightly smaller, p,, 5 0.7, 

then it is possible that a scale invariant solution may not exist. 

In order to test whether this might be a problem, we have solved (4.6) and 

(4.8) by direct numerical integration to allow the use of arbitrary initial condi- 

tions. Unfortunately, with this approach, we were unable to use the form for a,~ 

given in (4.1) b ecause it is not continuous, and it gives rise to large instabilities 

in the numerical integration. Instead, we used 

a,R = A,J?~-~~ , (5.6) 

which gave results quite similar to those obtained by solving (4.10) and (4.11) 

using (4.1). Th e initial condition used was simply, f(z) = 0. Since the initial 
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state used by Albrecht and Turok had about 20% of the string density in loops, we 

would expect that any transient that appeared in Albrecht and Turok’s simulation 

would be slightly exaggerated in our analysis. 

In general, for most choices of p,, , Fe, and the initial energy density in strings, 

we found that the cutoff string density, pc, fell initially because of the lack of loops 

in the initial state, but this transient behavior usually disappeared by the time 

the horizon doubled in size. Because Albrecht and Turok can easily run their 

simulations for a longer time than this, it seems unlikely that they have been 

fooled by a transient. On the other hand, it is conceivable that their apparent 

observation of a scaling solution is merely an artifact of their initial conditions 

if P,, and Fl happen to lie close to a boundary separating regions where scaling 

solutions do and do not exist. Of course, this would require that p,, be far from 

the value that we have estimated above. An example of such behavior is plotted 

in Fig. 5(a), which is a plot of the evolution of pct2/p as a function of t1i2. The 

different curves in Fig. 5(a) correspond to different initial string energy densities. 

The relative lack of small loops in Albrecht and Turok’s initial data is more 

likely to cause problems if we wish to determine the total energy density of strings 

once the scaling solution has been reached. In addition to the fact that they 

cannot run their simulations long enough to get an accurate picture of the density 

of small loops, it is also possible that their value for pc may be an underestimate. 

An example of such behavior is plotted in Fig. 5(b) for three different initial string 

energy densities with p,, = 0.81 and Fl M 0.5. An initial condition with few loops 

ensures that pe will tend to drop bellow its scaling solution value initially. Once 

enough small loops have been created so that they are in “equilibrium” with 

the long strings, pc will begin to rise, but only very slowly. As we can see from 
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Fig. 5(b), for each of the three initial states the cutoff string density seems to 

approach some equilibrium state for a short while, but then the curves seem to 

flatten out. What may not be apparent from Fig. 5(b), but is apparent from 

the our calculations, is that, in all three cases, pc is slowly increasing at the end 

of each curve. (pc - t0*065, t0-040 and t0Goo6 respectively) This means that the 

equilibrium value of pc is greater than the values at all three endpoints. Thus, 

if we saw this graph with the resolution of the numerical simulations, we would 

probably conclude that the correct value of pc at the “steady state” configuration 

is pct2/p = 2.8, when the actual value is pct2/p > 3.4. Thus, it is possible that 

our fit with the results of Albrecht and Turok gives an underestimate of the 

energy density in strings at the scaling solution. If so, the upper bound on Gp 

could be as much as a factor of two lower, corresponding to the upper curves in 

Fig. 5 rather than the lower ones. 

Despite these possible discrepancies, our calculations generally confirm the 

main conclusion of Albrecht and Turok: that cosmic strings do indeed evolve in 

a scale invariant fashion. If we assume that the correct value for p,, is in the 

range suggested by their simulations, then we find that a scaling solution does 

exist. For a reasonable choice of our parameters, we can obtain the same energy 

density in large loops and long strings. 

The situation is quite different, however, when we consider their conclusions 

regarding the energy density in small loops. This result is important because the 

galaxy formation calculations,2”4 the microwave background calculations11’12 , 

and the nucleosynthesis constraint all depend on the density in small loops. Using 

the range for p,, that seems to correspond the numerical simulations, we find 

that the density in small loops is greater than that obtained from the numerical 
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simulations by a factor of 4.5 & 1.5. In order to obtain the same value as Albrecht 

and Turok, we must set p,, B 0.97. In Albrecht and Turok’s simulations such 

a high probability for self-intersection would probably be indistinguishable from 

P SI = 1, which they have ruled out. 

It is not surprising that Albrecht and Turok’s result for the density in small 

loops may be too low because they have obtained it after running their simulation 

for roughly a factor of three in time34 starting from an initial condition that 

had very few small loops. Actually, for 0.75 < p,, < 0.85, at the loop size 

corresponding to the smallest loops in Albrecht and Turok’s simulation, we obtain 

a loop density that is not much different from that of Albrecht and Turok, but the 

difference occurs when we extrapolate to smaller loops. With p,, so large, we find 

that many daughter loops are still being produced at a loop size smaller than this, 

so an extrapolation to smaller loops assuming negligible self-intersection would 

lead to an underestimate of the energy density in small loops. It would seem 

that, while the parameters for our calculation must be fixed by comparison to 

the numerical simulation, a more accurate determination of the density in small 

loops can be obtained from our calculation than from the simulation of Albrecht 

and Turok. 
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6. DISCUSSION AND CONCLUSIONS 

As we have shown in the previous two chapters, our analysis seems to lead 

to some important constraints on the properties of cosmic strings. We should, 

therefore, understand how our results depend the assumptions we have made and 

how our conclusions might change if we vary some of our parameters. 

6.1 DISCUSSION OF OUR ASSUMPTIONS AND APPROXIMATIONS 

One of our most fundamental assumptions is that the network of long strings 

can be described by one scale, L. As originally defined in (2.8), L defined the 

distance scale of the separations between long strings, but we subsequently used 

it in several slightly different contexts. In the expression, (2.16), for the energy 

loss from long strings to loops, we assumed that the loop production function, 

a(z), depends only on x = l/L, so that the distance scale between the strings 

determines the average size of the loops that are produced. Similarly, the expres- 

sion we used for estimating (u2), (4.14), d p e en d s only on the ratio, 7, between 

L and the horizon. Essentially, we have assumed that the scale of curvature of a 

string is the same as the scale of distance between the strings. This seems to be 

a natural assumption when the intercommuting probability is of order one, but 

what if it is wrong? 

Suppose, for instance, that the average radius of curvature of the string is 

smaller than L. Then, the stretching of strings would be less important, and 

(v2) would take a larger value, but our bound on G/.L was obtained in the case 

were string stretching was already negligible, so the absence of stretching would 

not change our results. A very bumpy string would also produce loops and lose 

energy at a higher rate than the ones we have considered. (Recall that loops are 
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generally produced as a result of collisions of waves on a single string.) Since the 

separation between loops is large, they would not be likely to be absorbed by 

another string, so highly curved strings would lose energy faster than the strings 

we have considered. Thus, the scale of their curvature would increase faster than 

the separation between strings, so apparently, a system of highly curved strings 

will evolve into the type of string system that we have considered where the 

curvature has the same scale as the separation between the strings. 

In the opposite case of very straight strings, we expect that curvature on the 

scale of L would be restored by intercommuting between different strings. If this 

is not the case, then the stretching of strings would be more important than we 

have assumed while loop production would be very much suppressed. Thus, in 

this case, the energy density in strings would grow faster than our calculations 

show, and a more stringent bound on Gp would be appropriate. 

It is also of interest to see how our results vary under changes of [, p, or 

corrections to our expressions for B, (2.15) and (2.11). If we set (v”) = l/2 

and take cr = 1 (since we are concerned with scaling solutions), we can derive a 

simple scaling law for these variations. When (v2) = l/2, the evolution equation, 

(4.13), depends on p, U, t, and 7- only through the combinations B = p&t/7 

and E = 10 Gp/7(, but since the evolution equation is almost independent of E, 

we can neglect it. (This just means that the smallest loops have decoupled, so 

they can’t influence the evolution of the long strings.) Thus, if we know a scaling 

solution exists for one set of the variables, p, B, e, and 7, then we can find a 

solution for different values of p, V, and 6 by choosing 7 such that B remains 

unchanged. The new value of ps is then obtained from (4.12) and (4.17). When 

we do the integral, (4.17), we see that the explicit factor of e in (4.12) drops out, 
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but that we can no longer ignore E because the dominant contribution to ps is 

from the smallest loops. In fact., we find that 

when B and Fe are held fixed. (6.1) implies that, if we change the product 

p@ keeping all other variables fixed, then 7 will scale as PO, and ps - (p~)~/~. 

Similarly, if we vary only 6, we obtain 7 - 6 and ps - l/r. We can apply these 

formulas to see how our constraint diagrams in Fig. 3 change under variation of 

P, fh or E. 

We should note that the scaling law given above, (6.1), does not apply to 

the constraints (given in (5.5) and Fig. 5) that we derived from comparison with 

Albrecht and Turok, so if it turns out that there is an error in our estimate of 

V, it would not be correct to use (6.1) to calculate the corrections to ps and 

the constraint, (5.5). This is because the comparison with Albrecht and Turok’s 

results involved matching our value of the cutoff string density, pc, with their 

value. For large values of p,, (p,, 2 0.75), more than 85% of the contribution to 

pe comes from the long strings, and this contribution is just 1/r2. Thus, when 

we constrain pe to be the value given by Albrecht and Turok, we are essentially 

fixing 7, not Fe and B, so (6.1) d oes not apply. Instead, we find that in most 

cases, we can vary p, 8, or 6 by a factor of 2, and our constraints on G,u, as shown 

in Fig. 4, will change by less than 5%. This rough rule only breaks down when 

p,, < 0.7, and our constraint on G/J becomes very stringent. 

Our constraint is not quite so insensitive to the parameter, I, which is a 

measure of the initial size of the parent loops. This can be understood by noticing 

that a change in E has the same effect as changing p and c by the same factor. By 
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the arguments given above, the change in p will have no effect on our constraint. 

The change in c affects ps - t1i2 but not 1/r2, which is the main contribution 

top,. ealsodt e ermines the fraction of the loops that will contribute to pc. 

These two effects tend to cancel and the result is, very roughly, that for fixed 

PC, Ps - t”e3. Thus, since our constraint on G/J will have some sensitivity to 6 

(Gp - to*“), it is important to know the uncertainty in our value for t. From 

the arguments given in chapter 4, it seems likely that c = 1.5 is a reasonable 

choice, but it may be wise to allow for some uncertainty. Actually, if we set 

c = 0.75 as would be necessary in order to weaken our constraint on Gp by a 

factor of - 1.5, then, from (4.2), we find that a loop with a slightly larger radius 

- than [ has a probability of 47% to survive long enough to fragment into smaller 

loops. So, it seems that even decreasing e by a factor of two is unreasonable, 

but we should recall that, although well motivated, our expression for the loop 

production function is actually a fairly crude approximation. Thus, the factor of 

two or so might more properly reflect our uncertainty about a,B rather than c. 

As we have seen in the previous section, our constraint on Gp is independent 

of almost all the parameters that we have had to introduce to describe the string 

system. This is because by fixing our parameters so that our value of pc corre- 

sponds to that obtained from the numerical simulations of Albrecht and Turok, 

we are in effect just calculating the ratio of ps to pc, and the majority of unknown 

parameters simply cancel out of this ratio. This leads to the somewhat remark- 

able result that if we ignore the possible weak dependence on I, our bound on Gp 

depends only on the probability of self-intersection, psr. Apparently then, it is 

quite important to obtain a better determination of this parameter. Presumably, 

this can be accomplished by a closer comparison between our analytic approach 
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and the numerical simulations of Albrecht and Turok. 

6.2 IMPLICATIONS FOR GALAXY FORMATION 

We should make some comments about the implications of our constraint 

(G/J < 5 x 10m7) for the string theory of galaxy formation. Since the disagreement 

between our constraint and the lowest estim.ate of Gp from galaxy and cluster 

formation considerations is only a factor of four, our constraint is certainly not 

very severe by cosmological standards. However, there is some reason to believe 

that this disagreement will become somewhat more severe as the physics of cosmic 

strings becomes better understood. First, it should be emphasized that we have 

consistently chosen our parameters so as to underestimate the number density 

of small loops (ne) and hence the total energy density in strings. Thus, it seems 

likely that our bound would become more stringent if we had a better idea of 

what values these parameters should really take. For instance, if we take X = 50, 

r = 0.03, and N = 0.5007 (which seem likely to be the correct values) instead 

of the more conservative values that we have used, then we obtain a bound on 

Gp that is a factor of two stronger. Similarly, we can gain addition factors if it 

turns out that the stretching of strings provides an important contribution to the 

evolution of the string system, or if the appropriate value of p,, is smaller than 

85%. These corrections are, of course, in addition to the factor that we may gain 

if Albrecht and Turok did indeed underestimate pe as we suggested in the last 

chapter. 

On the other hand, the determination of Gp from galaxy and cluster forma- 

tion scenarios is also sensitive to the exact value of the energy density in small 

loops which we have calculated here. For instance, in Ref. 14, the value of Gp 
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is calculated using a value for the density of small loops that is obtained by an 

extrapolation from the numerical simulation of Albrecht and Turok. However, as 

we have mentioned in the last chapter, their simulation is not particularly well 

suited for this task, and in fact our results imply a substantially larger value. So, 

if our results are used instead of those of Albrecht and Turok, then the estimate 

of Gp obtained in Ref. 14 would decrease by a factor of two or so to Gp = 10e6. 

However, if we are able to increase our estimate of the number density of small 

loops, then the discrepancy between the nucleosynthesis bound and Turok and 

Brandenberger’s value for Gp will increase because the upper bound on G/J from 

nucleosynthesis scales as - nr2 while Turok and Brandenberger’s result scales 

as G,u - nL -2’3 If, for example, we . let q take the maximum value that seems 

to be consistent with our results, (rather than the minimum value that we have 

used for our constraint) the discrepancy between the nucleosynthesis bound and 

the galaxy formation bound will increase from a factor of two to a factor of ten. 

However, considering the uncertainties in the galaxy formation calculations, it is 

probably more appropriate to consider our constraint on G/.L to be a restriction 

on the string theory of galaxy formation rather than a serious conflict with it. 

6.3 CONCLUSIONS 

We have calculated the evolution of cosmic strings analytically, and our re- 

sults confirm the main conclusions reached by Albrecht and Turok with their 

numerical simulations. The analytic approach is particularly helpful when try- 

ing to understand the specific physical processes that determine the behavior of 

the string system. It is also useful for calculating the energy density in small 

loops which is important for the galaxy formation scenario, but is difficult to do 
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numerically. We have found that the fate of a system of cosmic strings depends 

sensitively on the probability that the closed loops produced from long strings -. 

self-intersect and break up into smaller loops. If this probability is low than 

many of the closed loops intersect and recombine with the long strings before 

they can radiate away a significant portion of their energy. This means that the 

energy density of the string system will fall slower than that of radiation, and the 

universe will quickly become string dominated. However, if the probability of self- 

intersection is large, then the string system evolves in a scale invariant manner 

so that the energy density in strings is always proportional to that of radiation. 

Since a large value for the probability of self-intersection (psl = 0.80 f 0.05) is 

- indicated by the numerical simulation of Albrecht and Turok, we conclude that 

the scale invariant evolution is probably correct. 

However, if this estimate of p,, is correct, then we can obtain a bound on 

the string tension (Gp < 5 x 10m7) from the requirement that the gravitational 

radiation produced by the strings not be so copious as to interfere with primor- 

dial nucleosynthesis. Agreement with the galaxy formation scenario can only be 

obtained if p,, M 0.95 which seems unreasonably large. This constraint is in- 

dependent of most of our assumptmions and approximations (except our estimate 

for ps,), so it seems to be reasonably firm. The constraint is only marginally 

in conflict with the value has been calculated for the galaxy formation scenarios 

(G,u 2 2 x 10m6), but since this conflict may become more serious when the evo- 

lution of the string system becomes better understood, it may eventually force 

a serious revision in the string theory of galaxy formation. This constraint does, 

however, rely on the correctness of the standard nucleosynthesis calculations, and 

35 it may be that nucleosynthesis is not as well understood as we expect. 
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FIGURE CAPTIONS 

1. I(z) = ze -“-M (-f, ;, 2) vs. 2 

2. The evolution of pr, ps, and psr as a function of time for Gp = 10m6, 

k = 1 and r = 0.1: in (a), p,, = 0.25, Fe = 0.6, and 6 = 0.3, in (b), 

P SI = 0.5, Fe = 0.8, and 6 = 0.5, in (c), p,, = 0.62, Ft = 0.55, and 

6 = 0.5, and in (d), p,, = 0.76, Fe = 0.35, and 6 = 0.5. 

3. Constraints on Gp for various values of our parameters: in (a), k = l/16, 

and S = 0.5, in (b), k = l/16, and S = 0.3, in (c), k = l/2, and 6 = 0.5, 

and in (d), k = l/2, and 6 = 0.3. 

4. Constraints on 7 (G~/10-~)‘/~ and Gp,rit = 10m6 (.003/~$)~ from compar- 

ison to the simulations of Albrecht and Turok. k = l/16 in (a), and k = l/2 

in (b). 

5. pct2/p vs. t1j2 with 6 = 0.5 for (a) p,, = 0.62, FL N 0.5, and (b) p,, = 0.81, 

Fe - 0.4 
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The bound on the density in strings and in gravitational radiation given by 

equation (4.22) should be 

ps + Pgr < 0 17 . . 
Pr 

The value given in the paper was incorrectly quoted from A. M. Boesgaard and 

G. Steigman in Ann. Rev. Astron. Astr. 23, 319 (1985). The correct bound on 

the product of the string tension and Newton’s constant is should be a factor of 

4 weaker: Gp < lo- 6. This is consistent with the lowest values that have been 

predicted for the cosmic string theory of galaxy formation. I would like to thank 

Gary Steigman and Mike Turner for calling this error to my attention. 
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