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1. Introduction 

One of the central questions of high-energy physics is that of determining 

what theory underlies the standard weak-interaction model of Glashow, Salam, 

and Weinberg (GSW) at distances much shorter than those we currently explore. 

The standard model has had dramatic success in predicting the features of the 

weak neutral current and in locating the masses of the W  and 2 bosons. But 

it is a theory which leaves undetermined a very large number of fundamental 

parameters, including a dimensionful parameter, the mass of the Higgs boson. If 

these parameters are truly determined by theory and not just put in ad hoc, then 

we must find a still more fundamental theory which reduces to the standard model 

at ordinary energies. Where do we look for signs that the standard model requires 

correction in this way ? In many specific schemes which have been explored, the 

first sign of the presence of a new level of physics beyond the standard model is 

the appearance of novel particles associated with excitations in the new sector. 

Because of this, the search for novel particles has been a major preoccupation 

of physicists working at the highest-energy e+-e- and pp colliders. In the late 

1980’s, SLC, LEP, and the HERA and Tevatron colliders will explore for new 

states in the mass region up to about 100 GeV.l Further direct exploration will 

need to wait for the large hadron-hadron colliders planned for the 1990’s. 

One might well hope to evade the requirement of attaining increasingly higher 

center-of-mass energies by searching for indirect effects of the new sector. The 

most sensitive such searches, however, have required that the new states make 

themselves visible through couplings which change quark or lepton flavor. Such 

indirect searches have had far less power when the new states couple to ordinary 

matter in a way that does not depend on flavor, as, for example, if they couple 
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to ordinary matter only via the weak gauge bosons. 

This situation will change, however, when the Z” resonance is produced in e+- 

e- collisions at SLC and LEP, and when W bosons are produced in quantity at the 

Tevatron and at LEP2. The W and 2 couple directly to all particles, familiar or 

novel, which have weak interactions. Even those particles which are too heavy to 

be pair-produced at the Z” will affect the properties of these resonances through 

their virtual effects in loop diagrams. These loop effects are, in general, quite 

small, correcting the mass of the 2’ by amounts of relative size CX/K - 10m3. But 

the 2 and W are elementary, weakly-interacting objects whose properties can be 

computed precisely by Feynman diagrams; they are also prominent resonances, 

with certain specific properties which allow precision experiments. We judge that 

the available technology, both experimental and theoretical, is sufficient that such 

tiny effects can be unambiguously observed. ’ 

There is one conceptual problem in isolating these loop effects which we 

should now discuss. Since these effects are typically of order 0.1% in size, their 

identification requires determining the parameters of the standard model to an 

accuracy of 0.1% or better. The standard model contains three parameters to 

which the properties of the Z” are directly sensitive: the two gauge coupling 

constants g and g’ and the Higgs vacuum expectation value v (or, alternatively, 

the fine structure constant (Y, the W mass, and the Z” mass). These are of special 

importance because they enter the tree-level expressions for leptonic processes. 

To define these parameters, we will recast them as the combinations: 

cy, Mz, and G,. 

Mz is conventionally defined as the position of the pole in the 2 propagator; this 
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mass can be straightforwardly extracted from the shape of the Z” resonance. a! 

is given by the electron charge from Thomson scattering measured at q2 = 0. G, 

is conventionally defined from the muon lifetime rcc by extracting specific purely 

electromagnetic radiative corrections: 

-1 _ G:f$ 
7/J - [1+;(+2) (1+gy$] - 1927rs 

x [l+$] [l-8$. 

P-2) 

A recent CERN experiment by G. Bardin et. aL2 gives 

G, = (1.16637 f 0.00002) x 10m5 GeVm2. (1.3) 

G, and cy are the best known electroweak constants of Nature. LEP and 

SLC will soon measure Mz to 4 significant figures, an accuracy adequate for our 

purposes. 

To completely specify the GSW model, one must also provide values for the 

Higgs boson self-coupling X (or, alternatively, the Higgs boson mass mu), the 

fermion masses mf, and the quark mixing angles t3i. The expressions we will 

eventually derive will depend weakly on mH and on mt, the top quark mass. For 

these parameters, we will simply choose standard values-100 GeV for mH and 

30 GeV for mt-and use these, except where we state otherwise, in all of our 

calculations. We will, of course, display separately the dependence of our results 

on ?i%H and mt. 

To test the standard model, and to find new contributions which go beyond it, 

one needs an additional experiment which can provide the same level of accuracy. 
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One such experiment, which is difficult but conceptually quite familiar, is the 

accurate determination of the W boson mass. In this paper, we would like to 

emphasize a second set of experiments at LEP/SLC; the various asymmetries in 

e+e- -+ p+p-,r+r-. W e will show that these asymmetries, measured on Z” 

resonance where statistics are expected to be good, will test the GSW model at 

the one-loop level and possibly reveal the existence of particles beyond GSW. We 

will further show that the ability to observe longitudinal polarization, either in 

initial-state electron beams or in final state r- polarization, is especially useful 

for probing radiative corrections. 

An auxiliary quantity which will enter our analysis is sin2 8,. It is not a free 

parameter but rather only a bookkeeping device to be defined in terms of the 

set (1.1) and mH,mt. Sirlin has introduced the convention of defining sin2 8, in 

terms of the measured W and 2 boson masses.’ This definition is a very sensible 

one for SU(2) x U(1) (but 1 ess clear for other gauge groups) because it is in 

principle unambiguous. It is also a very convenient definition for the following 

reason: One part of the l-loop correction to any weak process for q2 - -Mi 

arises from the renormalization of cy from q2 = 0 to q2 = -Mi due to QED 

vacuum polarization diagrams like those in Fig. 1. This correction is universal 

(g and g’ are renormalized the same way by the large logs from photon vacuum 

polarization fermion loops) and is present in any theory which unifies weak and 

electromagnetic interactions. Marciano has pointed out this correction makes 

an unusually large contribution to the W boson mass. It is also the largest 

correction to the lepton pair production polarization asymmetry.5 (Observation 

of the shift in the-longitudinal polarization asymmetry or some other weak process 

due these QED corrections would indicate that CY~ = g2/4r is renormalized the 
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same way by the large logs from the diagrams in Fig. 1 as is Q: and that therefore 

some sort of unification of weak and electromagnetic interactions is correct.) 

Including the QED renormalization effect in the definition of sin2 8,, then, greatly 

reduces the size of all standard model weak radiative corrections. We would 

prefer, however, to define sin2 eIuso that it can be determined simply from the 

measurement of CY, G,, and Mz. We therefore chose to define 8, by the formula:6 

47ro! > 112 
sin28, - 

fi~,M; - (I - ark) ’ (l-4 

where 

Are = 0.06 . (l-5) 

This factor corrects the zeroth-order Born formulae to include the effect of the 

renormalization of cu; our precise choice is made to establish a convention. A more 

precise evaluation of the QED renormalization factor3’7’8 for q2 > rn; reduces to 

A,.f3$ze&fields _ Cx 
37r (1.6) 

for light quarks and leptons when strong interactions are neglected. Here & = 

3(l) is the number of colors for quarks(leptons) and cJ~ is the fermion electric 

charge; Qe = -1 for electrons. To compute AYQED properly, one includes the 

effects of strong interactions; hadronization of the light quarks, u,d,c,s is taken 

into account via a dispersion relation in e+e- + hadrons while the t and b 

quarks and e, JL and 7 are treated as free particles. An accurate evaluation of this 
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correction, for q2 = -(94 GeV)2, and mT = 30 GeV, gives’ 

A~QED = 0.0597fO.0013. P-7) 

We have displayed an uncertainty due to strong interaction effects and note that it 

makes its way into one loop radiative corrections even in purely leptonic processes 

via the renormalization of ~1. Marciano and Sirlin8 have shown that placing the 

factor (1 - AT-QED) in analogy with putting (1 - At-o) in the denominator of (1.4) 

sums all of the leading QED infrared logarithms. This definition of sin2 8, agrees 

with that of Sirlin at tree level but differs by O(o) corrections. 

We should warn the reader that the analysis presented here ignores QED 

radiative corrections associated with radiation of real or virtual photons from 

external legs, since these corrections depend on details of the particular exper- 

imental arrangement. They have been adequately considered by others.g Thus, 

the graphs of Fig. 2 and all permutations are specifically excluded from our 

analysis of all four-lepton processes in either t or s channels. We do, however, 

include the QED vacuum polarization graphs of Fig. 1, as we have discussed. 

Our analysis will proceed as follows. In Section 2 we will outline a formalism 

for the calculation of all one-loop radiative correction effects in four-lepton pro- 

cesses and -will derive there effective matrix elements for charged and neutral cur- 

rent processes which include all one-loop corrections in SU2 x Ul broken primarily 

by Higgs doublets.6 It will be convenient then to divide one-loop corrections 

into two groups: oblique corrections affecting only gauge-boson vacuum polariza- 

tion amplitudes and direct corrections involving 1PI vertex, fermion self-energy 

and box corrections. The first class, oblique, includes all of those corrections 

which do not involve the external particles. Examples are vector-ghost graphs, 
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i extra quarks and leptons, squarks, technicolor, and small effects due to v.e.v.‘s 

of scalars transforming in SU2 representations different from doublets. The sec- 

ond class include all those corrections involving the external particles; examples 

are many supersymmetric particles-winos, neutralinos, the first two generations 

of sleptons-and some extended technicolor models which are expected to give 

masses to the light leptons. For oblique couplings all one-loop radiative correc- 

tions can be absorbed into four functions; this is a great help in classifying the 

effects of new particles. In Section 3 we will define some physical quantities: the 

initial state longitudinal polarization, forward-backward, transverse polarization 

and final-state r- polarization asymmetries in e+e- + p+p-,r+r-, the ratio 

of Bhabha scattering to ~1 pair production and the Z” width (all measurable at 

LEPl/SLC) the IV* mass and width (measurable at LEP2 and the Tevatron) 

and various ratios of neutrino scattering on electrons at low q2 (to be measured 

by the CHARM II collaborationl’ ). We give the one-loop GSW prediction for 

these quantities and show the sensitivity to high Higgs’ and top-quark masses. In 

Section 4, we give the response of the various asymmetries in e+e- + p+p- and 

r+r-, Bhabha scattering and IV* mass to one-loop effects due to new physics; 

notably extra generations of quarks and leptons, SUSY and Technicolor. In Sec- 

tion 5 we give some conclusions. 

Throughout this paper we will use the Euclidean metric, so that on 2’ res- 

2 onance q2 = ? - qg = -Mz. All work on one-loop radiative corrections in the 

standard GSW model is from the work of Lynn and Stuart.5’11 All work on the 

contributions to radiative corrections from beyond the standard model is from 

the work of Lynn15 and Lynn and Peskin. We apologize for any references 

omitted. 
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2. General Scheme for SUZ x Ul Radiative Corrections’ 

To study weak radiative corrections as a function of the kinematic variables 

associated with a given reaction, it is useful to construct an effective 4-fermion 

vertex for neutral current processes which includes all of the possible l-loop 

subgraphs. We will approach this object in stages. Let us first note that, if the 

external particles in a process are e, ~1, and r, then at Z” energies we may ignore 

the masses of these particles. That in turn implies that helicity is conserved at 

each gauge boson vertex. Thus, if we define the polarization of one initial- and 

one final-state fermion, the process contains only one invariant amplitude. For 

example, the cross-section for the reaction e+e- + p+j~- takes the form: 

g (e-(P)e+ 
4rrrcY2 

+ p-(P’) p+> = y-- *k&r * ppp+-S)la, (2-l) 

where P and P’ denote longitud-inal polarizations L or R. kip, is a kinematic 

factor from the Dirac algebra, equal to (u/s)~ for L + L and R + R and to (t/.~)~ 

for L ---) R and vice versa. Mppt is the invariant amplitude which contains all the 

nontrivial information about the coupling; it is defined in such a way that Mpp~ 

equals 1, independently of P and P’, for the simple s-channel photon exchange 

diagram of lowest-order QED for electrons. In the GSW theory, at leading order, 

but generalizing to arbitrary fermions in the initial and final states, M is given 

by: 



h’P’(q2) = & $ Q’ 

(2.2) 

x 13’ - Q/sin’ 0, 
cos 8, sin 8, > 

where we have inserted the tree level Z” width (imaginary part of the one-loop 

2’ self energy) so that this expression remains finite on resonance. In the case 

in which only light quarks and leptons can be produced at s = Mi we have 12 

= CXMi 
c 3 sin2 6, cos2 8, fermiona [( Ii Y-QsinzO,)l (I+2 2) 

with fermion masses 2mf < Mz and left-handed isospin component Ii. The 

last factor gives the QCD corrections to the lowest order width; CQCD is 3 . (1 + 

a,trOng(-M~)/~) for quarks and 1 for leptons. 

It is straightforward to add to the above expression for M the effects for all 

possible l-loop subdiagrams. At the same time, one must correct the factors of 

a and G, and Mz in the tree level expression from their bare to their physical 

values. For simplicity, let us first carry out the analysis only for oblique cor- 

rections. Oblique corrections are all of those corrections which a#ect only vector 

particle vacuum polarization amplitudes. These explicitly include the standard 
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QED corrections of Fig. 1. A typical 1PI vector self energy, a formally infi- 

nite object containing no counterterms, is defined in Fig. 3. The calculation 

of I-I+ i, j = Z”, IV*, A (photon) or i, j = SUz currents 1, 2, 3 and electro- 

magentic current Q is clearly just a matter of counting the representations of 

SU2 x Ur particles in the theory and being careful about mass diagonalization 

and Clebsch-Gordon coefficients. 

Including only these oblique corrections, M takes the form (with the abbre- 

viation sin2 8, = s,“) 

M=Q ' 
1 - Aa(q2) 

2 
Q! + '3 - Q($ + Ap(q2) - isecelrnIIhA(q2)) 

SllCll 

X 
(q2 + Mi) (1 - Ap(q2) - 0.06)~ImIIh~“P(q2) (I - CrAp(q2)) 

x 1; - Q’(si + Ap(q2) - iseceImllh,(q2)) 

SBC6 

where 

Ap(q2) = A,(+;) 

- 4xrcrRe 
( 

n33(-M,fj) - sin2 &&Q(-M~) + &3(q2) - sin2 8,,,I13s(q2) 

Mi !12 > 
(2.5) 

A,(q2) = 440) 

n=‘(-M;) - ~ZZ(o) + b3+2) - Qz(-M;) 
> 

* P-6) 

Mii q2+M; 

A,(q2) = F =w (q2) - q21-L& (0) > 
(2.7) 
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and Ap(0), A,(-Mg) are given by 

440) = 
4z1ra 

Mg COST dw sin2 8, 
(n,,(O) - nil(o)) (2.8) 

Ap(-MS) = 
sin2 8, ~05~ 8, 

cos 28, 
- Re A&(-M;) - Ap(0) - 0.06 

47rr(z: - 
sin2 8, ~052 8, 

(n33(-M;) - us,(O) - lla~(-M;)) 
> 

. 

This expression makes obvious the constraint on M which follows from the 

renormalizability of the electroweak interactions; it must be free of one-loop 

divergences. One can see that the various vacuum polarization amplitudes in 

(2.4) are assembled into combinations whose divergences cancel explicitly. We 

have replaced the vacuum polarization amplitudes of vector bosons W, 2 and 

A(photon) with vacuum polarization amplitudes of the weak isospin and elec- 

tromagnetic currents. Denoting the weak isospin currents by 1, 2, 3 and the 

electromagnetic current by Q, we have 

IIAA = e211gq, IIZA = 
e2 

cos 8, sin ew 
(2.10) 

e2 e2 
I-IWW = - 

sin2 8, 
n11 ,~zz = 

sin2 8, ~082 8, 
(II33 - 2 sin2 e,n3g + sin4 e,rr,,) . 

The combination Aa (q2) is simply the properly subtracted photon vacuum po- 

larization. The combination A,(q2) is also independently observable, giving at 

q2 = 0 the one-loop oblique particle correction to the p parameter 
13 which mea- 
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sures the relative strength of charged and neutral weak currents: 

p - 1 = Ap(0) . (2.11) 

The quantity Ap(q2) is also free of ultraviolet divergences: I&g vanishes at q2 = 0. 

It may have a divergent slope at that point, but the relation Q = I3 + $ implies 

that II33 has an identical (and, thus, cancelling) divergence. 

It is easy to see that only three independent combinations of vacuum polar- 

ization amplitudes can appear in the most general neutral current matrix element 

for oblique corrections due to any representations of SUz x Ul; there are only 

three neutral vector self energies: 2 - 2, 2 - A and A - A. The fourth possible 

vector self energy, the W - W, will result in a fourth (and last) independent com- 

bination which will of course enter into the effective matrix element governing 

charged-current processes at the one loop-level. It is also easy to see why these 

particular combinations arise: since we have used Q, G, and Mz as renormalized 

input data, the shift in these quantities from their bare to renormalized values 

(2.12) 

&G, -=- nww (8 = 0) 
GP MiJ 

(2.13) 

Re b’Z(q2 = -M;) 

Mi 
(2.14) 

will enter our expressions. Also, the quantities IIAA(q2), nzz(q2) and nZA(q2) 

enter neutral current processes directly. There are also factors of IIzA(O) (when 

this does not automatically vanish) coming from the Ward identity governing the 
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SU2 vector boson wavefunction renormalization but we will drop these through- 

out this paper. Note the inclusion in (2.4) of the appropriate O(cr2) contributions 

to the imaginary part of the Z” inverse propagator. This is necessary in order 

that we may examine the corrections to cross sections to the 0.1 percent level on 

the Z” resonance; it is not necessary off resonance or for the discussion of asym- 

metries because it cancels out in ratios of cross sections at this level of accuracy. 

We will discuss the constant Cr and why Ap(q2) alone occurs in the shift in the 

imaginary part of the Z” inverse propagator later. 

Equation (2.4) is the main result of this section. It makes explicit (at least 

for the case of oblique corrections) the reduction of the variety of weak radiative 

corrections to a few (for oblique corrections there are four) basic quantities which 

determine the experimentally accessible parameters. In particular, it should be 

noted that for e+e- + ff with f $ e, u, on the 2’ resonance where only 

the 2 propagator term is important, all of the various possible asymmetries 

and cross sections in fermion pair production are determined entirely by the 

relative coefficients of I3 and Q in the fermion-fermion-Z0 vertex. Thus, all 

of the asymmetries in e+e- + p+p- measure the same quantity, Ap(-Mi) 

and corrections to, say, the charge asymmetry are proportional to those of the 

polarization asymmetry with the constant of proportionality a function only of 

sin2 8,. 

We now turn to the direct coupling corrections: 1PI vertex, fermion self 

energy parts and box diagrams. The box diagrams form a gauge invariant set 

and so are finite to one-loop. Combinations of 1PI vertex parts and external 

fermion line self-energies are also finite as we will explain now. 

The Ward identities of SU2 x Ul govern the relationship between the vector 
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boson wavefunction renormalizations Zw (for weak isospin) and 2~ (weak hy- 

percharge) and their respective bare couplings go, go’ and the renormalized finite 

couplings g, g ‘. In analogy with QED we have (sine, - so) 

(2.15) 

(2.16) 

Since exactly the combination Zi’2go’ and Zy/2go occur in the bare Lagrangian, 

the fermion wavefunction renormalization must also properly subtract the fer- 

mion-vector boson vertices. Note that we will drop all factors of llz~(O)/~g~gM~ 

which is a non-zero constant for internal gauge boson lines. Consequently, if 

we divide the 1PI fermion self-energy and fermion-boson vertex parts into left- 

handed and right-handed parts as in Figs. 4 and 5 with 7* = f(1 f 75) the left- 

and right-handed spin projection operators, the combinations 

I’~‘=f$fz+ Az+2mz -& we - 411 (2.17) 
pa=-m2 

will be finite. All other fermion-vector boson couplings are treated in a completely 

analogous way. 

We close this section with a discussion of the effective matrix element to one 

loop for charged current scattering and its relation to the shift in the W mass. At 

tree level the W couples only left-handedly and it is easy to see that, neglecting 

the masses of external particles, any 4-fermion charged current process may be 

written in terms of the effective vertex 

&cc- ’ -s 1 - 
2sint9, ’ 

.- 
42 + ~052 e,M; - iImll~$?oP (q2) sin 0, 

(2.18) 

We have inserted the tree level W width so that this expression remains finite on 
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W resonance. In the case in which only light quarks and leptons can be produced 

there we have12 

ImlT~$op (-CAM;) = I’bMz cos 8, 

= c 
fermions 

y$” luff ,I2 [l - + (6f + 6f 1) + ; (bf - 6f t)“] 
e 

pairs f,f ’ 

(2.19) 

X [l - 2(6f + bff) + (61 - s/l)“] 1’2 - CQCD 

where 6f F rny/ciMi, mf + mft < Mw and Ufft is a Kobayashi-Maskawaquark 

mixing matrix element. Using the methods of this section it is easy to show that 

the l-loop oblique corrections to (2.18) are 

MC’ (q2) = 2si;2 e (-1 
W 

x (1 - 0.06) [(q2 + cos2 OwM;) (1 - Aw (0)) (2.20) 

+ cos2 e,Mi - Aw (q2)] - iIml$$0P(q2) ] -’ 

where Aw ( q2) is obviously finite: 

Aw(q2) = Aw(-M&)- + Re Qvw C-M&> - nww (q2) 
Ml& > 

(2.21) 

with 

Aw(-M&) =- ' -A,(-@) + Re Aa(-Mi) - 0.06 - 
47ra 

sin2 8, sin2 8, ~0~2 ew 

x s l&1(-M&) - l-h@) - cos2 t9wl13Q(-M;) 
> 

. 

(2.22) 

This is the fourth and last function needed to discuss the effects of oblique cor- 

rections; it corresponds to the fourth possible vector self energy correction, the 
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W-W. It is clear from (2.20) that there are no oblique corrections to charged 

current processes at q 2 = 0 because we have used such a process, muon decay, 

to define one of the input parameters in our renormalization scheme. The posi- 

tion of the pole of the effective charged current vertex gives the W mass and we 

recover the result for oblique corrections 

M$ = M;c; (1+ Aw(-M&j) . (2.23) 

The formula for the W* mass shift was first written for GSW by Sirlin3”’ and 

later by others.14 Again, it is simple to include direct corrections of vertices, 

fermion self-energies and boxes in charge current processes. We have, in analogy 

with (2.17), the finite quantity 

eucW _ -eu,W r+ -r+ + f AT(O) (2.24) 
pa=-mz 

where the 1PI charged vertex part is defined in Fig. 6. The effective charged 

current matrix element is defined so that it requires no radiative corrections, 

either oblique or direct, at q2 = 0 since we use muon decay as an input parameter. 

Care has to be taken to transmit the direct corrections of muon decay into the 

neutral current and charged current matrix elements Mpp: and MC’. We call 

the reader’s attention to the one-loop box diagrams contributing to muon decay 

depicted in Fig. 7 and the definition of the form factor Vp+peve. These are UV 

jjl In GSW A,(-M$,) is related to Sirlin’s Ar for the W* mass shift by 

A,(-M$) = -d- (Ar.,ae.pol - 0.06) 
COB 28, 
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finite and will contribute to both the shift in the W* mass and to the various 

asymmetries in e+e- -+ p+p-, r+r-. Also, we have to be very careful to include 

those QED corrections which are traditional in the definition of G, from ‘;;l in 

Eq. (1.2) throughout. 

Thus, all one-loop corrections to neutral and charged current processes in 

SU2 x 271 can be boiled down to the calculation of the following combinations of 

1PI parts 

1. oblique corrections: 

Aw, Ap, Aa, A, are combinations of vacuum polarization amplitudes. 

2. direct corrections: 

(a) box diagrams are UV finite 

(b) vertex parts IifZ, I’ffA, I’cf ‘w are combinations of 1PI vertex parts 

and self energies of fermions f, f ‘. 

These are inserted into effective matrix elements for neutral Mppt and charged 

Mcc current processes. All cross section to one loop are just functions of MC’ 

and Mppt apart from kinematics. 

In the next section we will define some physically measurable quantities, 

mostly on Z” resonance q2 = -n/ii, and display the GSW one-loop corrections 

to them. In Section 4 we will give the response of these quantities to new physics, 

mostly obliquely coupled; e.g. extra quarks and leptons, SUSY, technicolor, etc. 
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3. Measurables: Response to One-loop in GSW 

In the last section we saw that all one-loop corrections in SU2 x VI could 

be incorporated into effective matrix elements for neutral current Mpp~ and 

charged-current M cc four-fermion processes if the masses of external fermions 

were small. In this section we will define a number of physical measurables and 

give the response of these to one-loop corrections in the standard GSW model 

with three generations of quarks and leptons. All of the results of this section 

are from the work of Lynn and Stuart5’l’ whose computer program calculates 

all four-fermion processes to one-loop in GSW excluding the graphs of Fig. 2. 

Let us start with the various asymmetries in e+e- + pL+pL- or r+-7-. These 

are obviously given by various combinations of the cross sections (2.1). We first 

discuss the calculation of the initial state longitudinal polarization asymmetry in 

lepton pair production. This quantity is defined as: 

A 
a(e-(L)e+ t t-C+) - a(e-(R)e+ + Cl!+) 

LR = a(e-(L)e+ + l-l+) + a(e-(R)e+ + L-l?+) ’ (34 

We begin by examining the longitudinal polarization asymmetry, ALR, be- 

cause it will be shown that of the available asymmetries in e+e- + ,u+P- on 

Z” resonance it is the most sensitive to radiative corrections. The shifts in the 

forward-backward asymmetry, AFB, and transverse polarization asymmetry Al 

due to higher order corrections can be expressed in terms of the shift in ALR. 

Hence no new information is available from them. It should be borne in mind 

that initial state longitudinal polarization will not be available in the early stages 

of LEP. However the observed sensitivity is presented as a strong argument for 

its eventual inclusion. Also, a careful mesurement of the r- final state longitudi- 
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nal polarization asymmetry (defined below) is equally sensitive to the effects of 

radiative corrections and should be a higher priority at LEP. 

Unless otherwise stated we will assume, because we are primarily interested 

in LEP/SLC physics, that the energy of the reaction e+e- --) /.J+P-, r+r- is 

tuned precisely to the Z” resonance; then the 2 propagator is purely imaginary, 

so that not only does the diagram with a Z” in the s-channel dominate, but 

(modulo the imaginary parts of 1PI vertex and self-energy parts) there are also 

no interference terms with the photon exchange diagram. The contribution of 

the photon exchange diagram to the cross section is - 10B2 times that of the Z” 

exchange diagram and so we will concentrate primarily on corrections to the Z” 

pole part. 

At leading order in perturbation theory, ALR on resonance is given precisely 

by the asymmetry in the couplings of e(L) and e(R) to the 2’: 

-2q 
= 1+?$’ 

where ve = (4 sin2 8, - 1). Let us now define: 

~ALR= ALR-ALRIO, (3.3) 

where ALRIO is to be evaluated using (1.4). 6A LR is directly measurable, in the 

sense that it may be computed directly from the physical quantities cr, G,, Mz, 

and AL-R. We have argued above that the indicated difference can eventually 

be measured to a few tenths of a percent by precision experiments’ at the 2’. 
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Our main focus, then, will be on assessing the size of the difference ~ALR to be 

expected in a variety of models of physics. -. 

To clarify the situation, let us for the moment consider only oblique correc- 

tions (gauge boson vacuum polarization amplitudes) and, of these, only those 

entering the Z” exchange part of MPPI. Then we find that6S11’15 

&$y = -8. ‘-‘i .A@@) (1+ up 
- 2 

= 64 (;‘: f;; 
Re 

- 47ra E [ -ndo) +&d-M;) - l-&(-M;) 

+ cos2 8, sin2 8, IIQQ(-Mi) M.i + M~IIQQ ‘(0) + 0.06 - II 47ra * 

Thus, ALR is only sensitive on 2’ resonance to the quantity AP(-Mi) for oblique 

corrections. In adding direct corrections, we must be careful about two sources. 

Those from muon decay used to define our input parameter G, will just be 

added on to A,(-Mi) since they effectively only change the value of sin2 8, 

when included. 3 Direct correction to the electron-Z0 vertex will appear, since 

this is a left-right asymmetry, in the combination ryz - l?Ez. We have excluded 

the QED detector dependent graphs9 of Fig. 2, the neutral current boxes do 

not have the correct 2’ pole structure to contribute heavily and I’2 drops out in 

the ratio of cross sections. Thus, including only the Z” pole terms we have15 
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CSALR 1 - v2 = -8 2 
1+ 21; 

A,(-M;) 64 sB”ce” - 
(1+ v;)” 

x (rY(-M;) - Iy(-M;)) + vp+=(o) 
I 

where the I’s are effective vertex parts depicted in Figs. 4, 5 and 6 and Eqs. 

(2.17) and (2.24) and V$pe”(0) are the box diagrams from muon decay depicted 

in Fig. 7 evaluated with zero external momenta.n2 AZ2 of the one-loop GSW 

corrections to ALR except those of Fig. 2 have been calculated by Lynn and 

Stuart (and later by Hollik16 ), including corrections to photon exchange, boxes 

and a careful treatment of the various imaginary parts of one-loop vertex and 

self-energies. The results are given in Table I and, indeed, the above corrections 

are dominant. Notice the dramatic dependence of ALR on the precise values of 

Mz relative to Gi’ as well as a large Higgs and top quark masses. In order 

to make a sensible (to us at least) statement about the size of the GSW weak 

corrections due to internal gauge bosons, etc., which are not taken into account 

by the QED renormalization of CY from q2 = 0 to -Mi we display the quantity 

GA$$w(mt = 30, mH = 100) = ALR(mt = 30, r?ZH = 100) - ALRIO 

=-( i!!ifi} for Mz= ($i) GeV. 

(3.6) 

Here, all masses are in GeV. Thus, GSW weak corrections are measurable in the 

fl2 In (3.5) we have not displayed the QED corrections traditional in the definition (1.2) of G,. 
They are, of course, included in our numerical evaluations throughout this section. 



initial state longitudinal polarization asymmetry.l Further, we see the variation 

with large top quark mass and Higgs’ mass 

6AEiW (mt = 180, mH = 100,Mz = 94) = -0.0242+0.0294 (3.7) 

6AziW(mt = 30, m H = lOOO,Mz =94) = -0.0242-0.009. (34 

The next quantity to be examined is the forward-backward asymmetry, which 

for 2 particle final states is the same as the charge asymmetry: 

A 
s d4 [s; - Cl] d cos 8 $ (e+e- + ffl 

FB = Sd4 [s,’ +s:,] dcos 8 s (e+e- --$ ff) ’ 
(3-g) 

For a fermion of charge Q and left-handed isospin Is, the zeroth-order formula 

for the this asymmetry on 2’ resonance is: 

where 

af = Ii - 2Q sin2 8, 

(3.10) 

(3.11) 

with left-handed weak isospin component 12 for the fermion. The forward- 

backward asymmetry in GSW including all one-loop corrections except those 

of Fig. 2 is given in Table II from the work of Lynn and Stuart. It has also 

been calculated in GSW by many others.16 We note that it is dramatically 

dependent on the precise value of Mz. This is easy to understand since at tree 

level AFB I! 3~; on 2’ resonance and small shifts in si away from l/4 give large 
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shifts in ve = 4 sin2 6, - 1. If we define the shifts from the calculated value in 

analogy with (3.6) 

c5AFgw = Aggw - A do (3.12) 

then the GSW weak corrections are 

(3.13) 

and the response to heavy top quarks and Higgs’ are 

6Agiw(rnt = 180, m H = lOo,kfz = 94) = -0.0076+0.0075 (3.14) 

c5A~~w(mt = 30, m H = lOOO,hfz = 94) = -0.0076-0.0038. (3.15) 

The charge asymmetry is less sensitive to the effects of radiative corrections 

than is the left-right longitudinal polarization asymmetry. This is easily under- 

stood from (2.4) as follows. On Z” resonance the shift due to oblique corrections 

in the charge asymmetry or any other asymmetry or cross section in e+e- + ff 

3 with f $ e, V, a light fermion depends only on I3 , Q and the particular combi- 

nation Ap(-Mi); this is essentially only a statement about the dominance of the 

2’ exchange graph for neutral current processes on resonance. Using the meth- 

ods of the last section, one may easily show that the shifts in this asymmetry is 

for final state fermions f 

6A;, N_ 312 
2((132 + a;) * 

(3.16) 

in the case in which the Z” pole terms only are included. Since a,, = v,3/2 both 

terms on the right-hand side are suppressed by vg for the charge asymmetry in 
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e+e- --) j.4+~-. In fact, since at tree level on 2’ resonance 

A&I, = ; (AL&Y 

we have 

(3.17) 

(3.18) 

including both oblique and direct corrections if p- e universality is assumed. 

This suppression (especially for small Mz) by a factor of vo of the contri- 

bution of new heavy oblique particles is true for any asymmetry formed from 

e+e- + p+p- , T+T- on Z” resonance in which the longitudinal polarization of 

incoming or outgoing particles is unobserved. Thus the capacity for longitudinal 

polarization measurement in leptonic processes on Z” resonance is crucial for the 

observation of small eflects due to radiative corrections in GSW. 

Anticipating the possibility of obtaining transverse polarization on both the 

e+(Pz) and e-(Py) b earns at LEP, we may define the transverse or azimuthal 

(4) asymmetry Al on Z” resonance 

4 
Al = - 

Jdblcos2qS g (e+e- + p+p-) 

p_Lp; JdCl g (e+e- + ,Q+P-) ’ 
(3.19) 

The GSW one-loop calculations of Lynn and Stuart for this quantity excluding 

the graphs of Fig. 2 are given in Table III. From the lowest order 2’ resonance 

formula 

(3.20) 

we may display the shifts due to the one-loop weak corrections in analogy with 
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L GA(fSW(mt = 30,mH = lOO)= (1;;;:: } for Mz = (%% } GeV (3.21) 00043 

As well as large top and Higgs’ masses 

GAySW(mt = 180, mH = 100,Mz = 94) = 0.0043+0.0036 (3.22) 

GA~SW(mt=30, mH = 1000,Mz = 94) = 0.0043-0.0026. (3.23) 

Note that the response of Al to radiative corrections is also a lot smaller than 

that of ALR. In fact we may easily show from examination of the tree-level 

formula and the methods of the previous section that 

(3.24) 

when only 2” pole terms are taken into account for both direct and oblique 

corrections. 

We now indicate why this suppression by ~0 = 4s; - 1 occurs for radiative 

corrections on Z” pole for any asymmetry in e+e- + p+p-, T+T- in which the 

longitudinal polarization is not observed. Such an asymmetry, at tree level, must 

be only a function of the quantity 

( e+ vector coupling to Z” 2 
= e+ axial vector couplings to Z” > 

vg2 . (3.25) 

From (2.4) and (3.5) we can see that the effect of radiative corrections on Z” 



pole exchange diagrams is to displace 

2 
ryw(o) + ryw(0) + (rfz(-@) - rE;ea(-M;)) + V’“(o) 

(3.26) . 

if /I - e - r universality is obeyed. Thus, the shift in any asymmetry A without 

longitudinal polarization in e+e- --) p+p-, r+r- is 

6A = (const)vg 6vg = (const ‘)vg ~?ALR . (3.27) 

This suppression by a factor vg is especially disastrous for small Mz and makes 

the observation of small effects due to radiative corrections extremely difficult in 

asymmetries formed without the observation of longitudinal polarization. Asym- 

metries with longitudinal polarization on Z” resonance escape this argument be- 

cause they are, at tree level, functions only of vg rather than vi. Thus, the shifts 

due to radiative corrections in asymmetries with the observation of longitudinal 

polarization - 6vg and so avoid the suppression factor. 

One asymmetry whose response to radiative corrections is therefore not sup- 

pressed by the factor vg is the r- polarization asymmetry on Z” resonance. 

A 
o(c+c- + 7+7-L) - o(c+e- 4 7+7-R) 

TPOl = o(c+c- + 7+7-L) - o(e+e- + 7+7-R) ’ 
(3.28) 

On Z” resonance in SU2 x Ur (leaving aside the question of hadronization of the 

r- decay products and the graphs of Fig. 2) we have 

A Tp0l =ALR (3.29) 

so that this too can be read off from Table II. The r- polarization asymmetry 
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would in principle provide a good test of the one-loop radiative corrections and 

should be a high priority at LEP/SLC. 

For completeness, we display AFB and ALR as functions of the center-of-mass 

energies fi in Figs. 8 and 9. The dashed lines include no radiative corrections, 

not even the 0.06 QED correction inserted in our Born terms si in Eq. (1.4). 

The solid lines include all GSW corrections except those of Fig. 2 for mt = 30 

and mH = 100. The dotted line in Fig. 9 includes the 0.06 from the “trivial” 

QED correction in the definition of sin2 8, given in Eq. (1.4) and shows that the 

bulk of the shift is indeed due to this. Remember though that the observation 

of this shift would indicated that some sort of unification picture of weak and 

electromagnetic interactions is correct but it would not indicate which particular 

gauge group is demanded. 

Let us now make use of our complete expression for M to analyze Bhabha 

scattering. In terms of the functions introduced in (2.4), the Bhabha scattering 

cross-section, including l-loop corrections, is given by 

$(e-(L)e+ + e+e-) = e{ lJd~~(-s) + MLL(-t)121& s 

+ IMLR(-s)I’& + IJdLR(-t)12} 
(3.30) 

g(e-(R)e+ --) e+e-) = ,,,a{ IhtRR(-s) + MRR(-t)12k~R 
S 

(3.31) 

+ IMRL(-s)12&L+ lhRL(-t)12} 

At the Z” resonance, the cross-section is dominated over the whole range of t 

by the contributions of the 2 in the s-channel and the photon in the t-channel. 
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The relative size of these two contributions is a strong function of t: The photon 

term dominates near zero angle 8 (the angle between incoming and outgoing 

electrons) the 2 at 90’. The two terms are roughly equal for case s! 0.8 . If, 

then, we consider the polarization asymmetry in Bhabha scattering near 90°, 

we are measuring exactly the same correction that we have found already in 

the ~1 and r polarization or charge asymmetries. We should investigate whether 

Bhabha scattering can also give new, independent information on weak radiative 

corrections. 

New information about one-loop radiative corrections might come from the 

first term in (2.4) in the t-channel in forward or near forward directions. However, 

because we used a(q2 = 0) as an input parameter, the renormalization will 

engineer itself so that radiative corrections will disappear at t = 0, the far forward 

direction, in the photon exchange graph. Our only hope, then, to see effects of 

radiative corrections in Bhabha scattering not already contained in e+e- + /J+P- 

is in the endcup region case - 0.8 when G - 30 GeV. Thus, one might 

hope to observe new effects in Bhabha scattering in the near-forward direction. 

GSW radiative corrections to Bhabha scattering have been calculated by many 

authors. l7 There is one subtlety in the measurement however because Bhabha 

scattering is used in the forward direction to calibrate the luminosity in the first 

place. The luminosity (which usually suffers a rather large systematic error -5% 

for our purposes) is only necessary for the measurement of an absolute cross 

section so that we should study a ratio of cross sections in order to see small 

effects clearly. Let us define the quantity: 

$(e+e- -+ e+e-) 
k(e+e- -+ p+p-) 

-1 
> 

. (l- cose)2. (3.32) 
a=Ma Z 
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This and all other four lepton processes have been calculated to one-loop in GSW 

by Lynn and Stuart excluding the graphs of Fig. 2. Their results are displayed 

as a function of cos 8 in Table IV. The large shift in X as the top quark mass 

changes from 30 to 180 GeV is primarily due to the diminishment of the Z” 

width (X is proportional to I’;) as the top becomes too heavy to produce on Z” 

resonance. Radiative corrections to X in the near-forward and forward direction 

are small because radiative corrections to the 2’ width tend to be small as we 

shall see below. 

Off Z” resonance we may hope to exploit the 2 - A interference terms in 

the endcap region in Bhabha scattering or by studying p pair production to get 

information about the new quantity A,,. This new information would also be in 

the shape of the cross sections in e+e- + p+p- with or without polarization 

as one scans across the Z” resonance. Let us examine the corrections to the Z” 

width I’z. To relative O(o) the definition of the width is subtle because it is 

extracted experimentally by studying the shape of the resonance; we define it by 

writing the one-loop Z” propagator near the Z” pole as 

GZ -+ zz 
q2 + M; - iI’zMz - in 

(3.33) 

so that including oblique corrections 

rz = r; - (1 - C&(-M;) + AP(-M;) + 0.06) . (3.34) 

Note that,as expected, the Z” width involves the first derivative of the Z” self 

energy on resonance through the parameter AP. Oblique corrections to the imag- 

inary part of the Z” inverse propagator are due to the shifts in the coupling 



constants and the appropriate part of the 2 - A mixing !I3 ; the same sources of 

shift as in the polarization asymmetry. Therefore the 2’ width is corrected by 

the same function Ap(-Mi) as is the polarization asymmetry. The constant Cr 

is easily calculated from these considerations: 

(3.35) 

In the case in which only light fermions can be created on 2’ resonance, 

c fermion Q(Ii - 29 sin2 ew) (1+ 3) (l- gi)1'2cocD 

Q sin2 8 w)2(l+~)+(~)2(l-~)](1-~)1'2CpcD 

(3.36) 

where CQCD = 1 for leptons and 3 - 1 + artrong( 
( -% > 

) for quarks. For 3 light A 

rn; << Mi generations of quarks and leptons, Cr + 1 as si ---+ l/4. Also 

A,(-M$) is small in GSW so that including oblique corrections 

rz = r; 1 
!+g 6A,, oblique + 0.06 . (3.37) 

Thus shifts in the 2’ width from radiative corrections tend to be small. The 

Z” width has been calculated by Lynn and Stuart including all GSW corrections 

to one loop, with the proviso that fermion masses are small in 1PI one-loop 

vertex parts only (helicity conserving vertices). In particular, the top quark mass 

and associated Higgs’ exchange graphs have been neglected within one-loop 1PI 

fl3 In the case of direct-coupling theories we need to include the imaginary part of the 2-100~ 
Z” self energy. 
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fermion self-energies and vertex parts but have been included in vector boson 

self-energies and in (2.3). This may be a bad idea for heavy t quarks and a more 

complete calculation should be done. Also, all strong interaction corrections are 

neglected. These results, displayed in Table V, show that I’z is a strong function 

of the precise Z” mass I’z - G,Ms and of whether the top quark is light enough 

to be produced on resonance. All GSW effects in I’z, especially the creation 

of b and t quarks (which involves Higgs’ exchange in internal loops because for 

large top mass the Yukawa couplings are large) and toponium (if recent CERN 

reports on the t quark mass are vindicated) must be clearly understood before this 

quantity is used to count neutrino species. We note that this requires knowledge 

of the strong interactions. 

Next, let us examine the GSW radiative corrections to the precise W* mass. l4 

This was of course first calculated to one-loop by Sirlin3n4 and later by Consoli 

et. al.. l4 An independent check was then done by Lynn and Stuart whose results 

appear in Table VI. We note the strong dependence on 2, top and Higgs’ masses. 

To see the effects of weak GSW corrections clearly we form the quantity 

6Mw = Mw - CeMz (3.38) 

fl4 Besides the QED corrections traditional in the definition (1.2) for G,, Sirlin’s formula for 
the GSW shift reads in our notation 

Ar - 0.06 = I’ye”‘(0) + l??“‘(O) + Vp+peve(0) _ !?? 0 
6 

A,(--&) 1 GSW 

+ QED corrections . 
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GMgSW(mt = 30, mH = 100) = - 180 

170 

MeV for Mz = GeV . 

(3.39) 

To see the effects of heavy top and Higgs’ masses we display the shifts 

GMgSW(mt = 180,mH = 100, Mz = 94) = (-180+ 780) MeV (3.40) 

6Mgsw(mt = 30, mH = 1000, Mz = 94) = (-180- 160) MeV . (3.41) 

A precise determination of the IV* mass must be a high priority at LEP2 which 

will have enough energy to produce W’s in pairs via e+e- -+ W+W-. 

In analogy to the 2’ width (3.33) we define the IV* width by writing the 

propagator near the IV* pole as 

Gw + 
ZW 

q2+M&- il?wMw -iE 
(3.42) 

so that including only oblique corrections 

We do not display the one-loop GSW results for I’w here11’14 but note only that 

it also is a strong function (I’w - G,M$) of Mz. 

Finally, we should compare the information from high energy LEP/SLC 

experiments on radiative corrections to that from low energy data, say, ucre 

scattering” from the CHARM II collaboration. It is easy to write down the cross 

sections-all in the t channel-for the three processes ucle + VLce, ppe + ppe and 
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vPe + u,p in terms of the effective matrix elements Mppt and Mcc. Again, 

because we worry about the neutrino beam luminosity, we will form only ratios 

of cross sections: 

R _ = 4w + w) IMvLeL(-t)12 + 5 IMvmt(-t)12 
YY a(P,e --+ Fpe) = i IMuLeL(-t)12 + lMvuR(-t)12 

(3.44) 

R NC,CC = 
a(upe --+ upe) 
a(upe --) Ue/L) = 

IMuLeL(-t)12 + 5 IMaeR(-t)12 . 

IMCC(-t)12. (I- &)2 

c3 45) 

’ 

In (3.44) and (3.45) we have assumed t small enough so as to neglect the cos 8 

dependence in the 2, W propagators. We have also neglected a slight case 

dependence in the box and vertex diagrams and have written RNC;CC in the 

target electron rest frame. The largest part of the effects of radiative corrections 

can be read off from (2.4) by considering only the oblique corrections 

RVTT” (l-$)/(1+&) (3.46) 

RNC;CC = 
1 - $0 + i$ 

12 
(1 - A,(-t))-2 (l- 2;i.)2 (3.47) 

Go = 4(s; + Ap(-t)) - 1 (3.48) 

so that R,F(t = 0) depends on the combination Ap(0) while RNc;cc(t = 0) 

depends on A,(O) as well as Ap(t = 0). This confirms that these quantities mea- 

sure radiative corrections which are different than those measured in experiments 

on 2’ and W* resonance which access primarily AP( -Mi) and Aw (-M$). A 

complete calculation of all GSW radiative corrections (except the QED diagrams 

of Fig. 2) was done by Lynn and Stuart with no assumptions about cos 8 depen- 

dence. Their results are given in Tables VII and VIII. Note again the dependence 
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on the precise value of Mz, nt, w&H. Thus R,F and RNC;CC can be used to elim- 

inate a large fraction of the parameter space of the Tables. Then the various -. . . 

asymmetries in e+e- + j.4+j.4-, 7+7- and the IV* mass can be used to give a 

clear test of GSW at the one-loop level. 

We have now examined the results of one-loop radiative corrections due to 

the GSW theory. In the next section we will examine the response of various 

experimentally measurable quantities to corrections due to representations of 

new particles in SU2 x Ur beyond GSW. 

4. New Physics 

In this section we examine the corrections to the various asymmetries in 

e+e- -+ p+p- and r+r- on Z” resonance and to the IV* mass from new physics; 

that physics designed to “explain” the constant parameters in GSW. We will 

examine extra generations of quarks and leptons, SUSY and technicolor (not 

extended) contributions to one-loop. All of the results of this section are taken 

from the work of Lynn15 and Lynn and Peskin.’ 

For the asymmetries, we have shown that this can be reduced to the calcu- 

lation of only ~ALR on Z” resonance with the others related by 

6A$, s! - -3ve ~ALR 
1 -I- v; 

GALR for Mz = 

35 

90 

94 

98 1 GeV 

(4.1) 



(j& N -2ve 
1 - v; ~ALR 

=(19} 6ALR*forMz={!!} GeV 

V-2) 

Up,, = ~ALR . (4.3) 

Note the numerical suppression of the longitudinally unpolarized asymmetries 

relative to those with longitudinal polarization, especially for low 2’ masses. If 

Mz turned out to be small (- 90 GeV), we would have little hope of seeing 

the effects of one-loop radiative corrections in 2’ resonance lepton asymmetries 

in which the longitudinal polarization of an initial or final state charged lepton 

were unobserved. Thus the capacity for observation of longitudinal polarization 

is crucial for the observations of small eflects on Z” resonance which could betray 

the existence of new particles. 

The astute reader will notice that these relations are not quite satisfied in 

the Tables I and II. This is due to the inclusion of certain two-loop effects in 

the numerical evaluations of ALR and AFB. We thus estimate that two-loop 

effects contribute to AFB and ALR at the-level of about - fO.OO1 and - 350.002 

respectively. These should be understood (with a lot of further work) before 

comparison with LEP/SLC data is to be made. Further, we note that the effects 

of hard and soft bremmstrahlung may have to be understood to 0(04) in the 

cross sections as well although most of these effects are expected to cancel in ALR 

and Al (but not in APB) as shown by Bohm and Hollik.g 

If the standard model is modified in the region of a few hundred GeV, we 

must add to the contributions of GSW the contributions from new physics. To 

” 



facilitate this analysis, let us divide models of this new physics into two classes: 

those with direct and oblique couplings. The second class contains those models 

with no vertices linking the new particles present in the model with the three 

light families of quarks and leptons The new particles then influence leptonic 

processes only indirectly, by means of their influence on the electroweak gauge 

bosons. Models with additional heavy quarks and leptons, and models, such 

as technicolor, which mainly modify the Higgs sector, have only these oblique 

couplings. Supersymmetric models, which postulate bosonic partners of the light 

fermions, and models with right-handed leptonic currents are directly coupled. 

However, even in these models, the partners of any quarks and new heavy leptons 

have only oblique couplings. As we have seen in the previous two sections, oblique 

theories are much easier to analyze, because they contribute to the basic process 

e+e- -+ p+p- only through vacuum polarization diagrams. Thus we have only 

to calculate 

6A;?$que = -64cos2 ew sin4 ‘, Re cos 28, ~ZA( -M;) 
(1 + $2 cos 8, sin 8, Ml 

- UAA ‘(0) 

+ ~ww(O) _ nzz(-M;) 
Mii Mi 1 

for the various new representations of particles. We will now present a number 

of such calculations. We will find that new particles in the few hundred GeV 

mass range give contributions to ~ALR which are typically of order 0.01. This 

is a small correction on an absolute scale but, as we have already noted, quite 

sizeable compared with the expected accuracy’ of experiments at the Z”. Let 

us now calculate these contributions for heavy fermions and bosons with definite 

SU(2) x U(1) q- uantum numbers, and also for the pseudo-Goldstone bosons of 

technicolor models. 
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Let us first compute the shift 6A LR associated with a pair of heavy fermions 

which couple to the weak interactions as a conventional left-handed doublet. Let 

the masses of the two members of a weak doublet to be ??ZT, W&g. If the fermions 

have color, we must include a factor .MC for the color multiplicity. 

Some typical values of the contribution to the longitudinal polarization asym- 

metry from quark and lepton doublets are shown in Fig. 10 and 11. Note 

that, for a doublet with large isospin splitting, ~ALR increase proportional to 

cm+ - m&)/M;. For WZT >> Mz,mg, we find: 

(4.5) 

A similar effect has been noted some time ago in the analogous calculation for 

the p parameter l3 and has been used there to put a bound of a few hundred 

GeV on the isospin splittings of quark doublets. Experiments on the polarization 

asymmetry will clearly place a much stronger bound. A more interesting aspect of 

our result is that, even in the case of exact isospin degeneracy, a single additional 

generation of fermions produces an observable effect which is almost independent 

of mass. For TTZT = mg >> Mz, one finds that certain of the Ai tend to zero: 

Aa(q2) + 0 

A,(O) + 0 

(4.6) 

P-7) 

so that there is decoupling of a heavy degenerate doublet for the p parameter or 



in the renormalization of CL However, in contrast to the p parameter, we find 

~ALR + - 
8 sin2 8, 

ENC 
(1 + v,“,” 37r 

-0.0040 for one quark doublet 
N 

-0.0013 for one lepton doublet ’ 

(44 

Numerically, this result is already correct to better than 5% for W&T = WZg > 100 

GeV. It is a bit surprising at first sight that isospin-degenerate heavy fermions do 

not decouple. It has been known for some time, though, that heavy fermions need 

not decouple from low-energy processes in models with axial-current couplings; 19 

the contributions of heavy fermions to the axion mass2’ and to the mass of the 

j/p 14 provide other examples of this phenomenon. This result that ~ALR is 

independent of the fermion mass presumably breaks down when the fermions 

become strongly coupled to the Higgs sector; this requires ?nT F=: 500 GeV.21 

Nevertheless, this result, depicted graphically in Fig. 12 shows that, in principle, 

sufficiently accurate determinations of the longitudinal polarization asymmetries, 

and to a lesser extent the charge and transverse polarization asymmetries, are 

capable of “counting” heavy generations of quarks and leptons with non-zero 

asial vector couplings to gauge particles. 

The corresponding calculations for a weak doublet of scalars are also quite 

straightforward. As examples, we display in Figs. 13 and 14 the oblique con- 

tributions to ~ALR from the scalars which are the supersymmetric partners of, 

respectively, a quark and a lepton doublet. For simplicity we examine the case in 

which “left” and “right” squarks (a;ld sleptons) & and &, the SUSY partners of 

left and right handed quarks qL and QR (and leptons), are good mass eigenstates. 

The more general case with left-right squark mixing has also been examined6’15 
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and has been included in the supergravity-motivated SUSY models discussed 

later. Note that the divergence which we saw above in the case of large isospin 

splittings for fermions is still present for bosons; for rnF >> rng, Mz Eq. (4.5) is 

replaced by: 

However, the contribution of the bosons to 6A LR does tend to zero in the limit of 

large but isospin-degenerate boson masses. In this case, the Appelquist-Carazone 

decoupling theorem22 does apply. 

These considerations apply only to those bosons which form multiplets un- 

der the weak-interaction symmetry. This will not generally be true for bosons 

which arise from the Higgs sector. In that case, the new bosons will have definite 

electric charge and perhaps also definite quantum numbers under a custodial 

isospin symmetry, but they should not have definite SU(2) x U(1) quantum 

numbers if they are formed in the symmetry-breaking process. In one class of 

models, however, a fairly general analysis can still be made: In technicolor mod- 

els, in which new bosons appear as pseudo-Goldstone bosons associated with the 

symmetry-breaking, one can use an effective-Lagrangian description of the inter- 

actions of these Goldstone bosons to compute their influence on weak-interaction 

processes. 23 The various vacuum polarization amplitudes depend on the value of 

an explicit cutoff, hT, which should be taken to be the mass scale of the new 

hadrons of the technicolor theory. Since the Goldstone bosons are described only 

by an effective Lagrangian, valid for energies well below AT, it is unreasonable to 

expect that their- contribution will be cutoff-independent and unambiguous. The 

effective theory of technicolor bosons is not then renormalizable from the point 
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of view of SU2 x Ur (although of course the gauge theory of technifermions is) 

and this will induce large radiative corrections - .&z(A$/Mi). Further, there are -. 
usually a huge number of such Goldstone bosons and their mass matrix breaks 

global SU2 quite badly since some are very heavy while others are constrained to 

be the longitudinal components of the I+‘* and Z”. Thus, technicolor (and most 

composite) models give very large radiative corrections to low energy processes 

and will affect ALR and Mw dramatically. 

The contribution to ~ALR from pseudo-Goldstone bosons is easily assembled 

from (4.4). In Fig. 15, we display this contribution for two typical multiplets, 

a set of states with the quantum numbers of LQ (and their antiparticles) and a 

set of color-octet states with the quantum numbers of QQ, where, in each case, 

L and Q represent, respectively, a lepton and a quark doublet. The particles 

within each multiplet are taken to have almost exactly equal masses; that is the 

expected situation. 24 We note that the corrections are huge for technicolor and 

should be observable at SLC/LEP. 

We next move on to direct corrections from SUSY. As shown in the previous 

section, these also can be interpreted as effective additions to sin2 8, on Z” 

resonance and so Eqs. (4.1) and (4.2) still apply for AFB and Al but we must 

now use (3.5) (dropping of course the 0.06 in Ap since this was included in the 

GSW prediction) for ~ALR. We show in Figs. 16 and 17 the shifts ~ALR due to 

a generic class of SUSY theories (including both oblique and direct-corrections) 

in which the SUSY breaking scale is motivated by supergravity (SUGRA). These 

models give mass spectra which depend on the gravitino mass m3i2. In particular, 

as m3/2 gets large the squarks in an isospin doublet become degenerate and 

heavy and thus decouple (as in Figs. 13 and 14) from the rest of the model 
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at the one-loop level. In some models (the renormalization group or “no-scale” 

models), a very large top quark mass is used to break the internal symmetry 

su2 x Ul --) ?ipEb after inclusion of radiative corrections and this effect can be 

seen in the figures. The dependence on the specific Majorana SUSY-breaking 

“gaugino” masses M2 (for SU2) and Ml (for VI) is slight. 

We now go on to discuss radiative corrections in Bhabha scattering. Unless 

the new particles are light enough to be produced on Z” resonance there will be no 

interference between the Z” and photon exchange diagrams in p-pair production 

or Bhabha scattering. Then from (2.4) we can see that on resonance the only 

new information in Bhabha scattering not suppressed kinematically is in the 

quantity Aa in the t-channel photon exchange for COSB >> 0 with 8 the angle 

between incoming and outgoing electrons. Let us study the response of the ratio 

X defined in (3.32) to new physics at one loop. Neglecting direct corrections, s- 

channel photon exchange, t-channel Z” exchange and interference terms between 

s-channel Z” and t-channel photon exchange we have on Z” resonance 

x = (8(1 + COSe)2 + 32) 
I’$+;(1 - CrAp(-Mi)) 2 

Mz(l - A&t)) 1 
X [Cd + Ap(-Mi))4 + (-i + S; + A~(-M;))~] (1 + cose)2 (4.10) 

1 
-1 

+ 2(4 + A,(-Mi))2 (-; + S$ + A,(-M;))~ (I - cose)2 . 

Note however that A,(COS 8 = 1) = 0 so that forward Bhabha scattering again 

contains information only about A,(-M‘j,). 0 ur only hope then is in the endcup 

region cos 8 - 0..7 to 0.9 where G - 40 to 20 GeV. We would comment though 

that for many oblique corrections A, is disappointingly small in this region. 
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For example in theories with extra quarks and leptons whose mass matrices 

break badly a global SU(2) isospin symmetry, the p pair longitudinal polarization _ 

asymmetry blows up quadratically with large splitting within the doublet. In Aa 

evaluated in the endcap region such a doublet would decouple completely and 

there would be no contribution if the lightest member had mass much larger than 

40 GeV. 

We now discuss the shifts in the precise value of the W* mass due to new 

physics; 6J4’15 we have only to examine the quantity 

(4.11) 

+r yew (0) + ryw (0) + v-““(o) 
I 

for the various new representations of particles where I’yW, I’yw and V.+peve 

came from muon decay (see Figs. 4,5,6,7 and Eqs. (2.17) and (2.24)). Some 

interesting results are 

_ (1) for an extra doublet with large isospin breaking 

matrix 

6Mw CY NC 1 rn$ -+-- 
Mw r 32 s; (1 - 2s;) M; 

in the ??ZT >> mg mass 

(4.12) 

(2) for an extra quark or lepton doublet with large degenerate mass 

6Mw-,- a& .Mwc-- 
-14 MeV for leptons 

.24?r(l - 2s;) -42 MeV for quarks ’ 
(4.13) 

The shifts 6Mw are plotted against those of ~ALR for an extra quark and lepton 
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doublet in Figs. 18 and 19. 

(3) the shift d -ue to a squark or slepton doublet with large isospin splitting 

in the mass matrix is rn? >> rng 

SMw a NC 1 5 
Mw ---) ; 32 s;(l - 2s;) M; 

(4.14) 

(4) the shift due to a heavy degenerate squark or slepton doublet is 

6Mw+0 (4.15) 

(5) Technicolor models can change the value of the IV* mass considerably. 

The shift SMw is plotted against GALR in Fig. 20. 

(6) We give the complete shifts 6Mw from two classes or SUGRA models 

including all oblique and direct couplings; boxes, vertices and fermion and vector 

boson self-energies in Figs. 21 and 22. These are from the work of Lynn” and 

Lynn and Peskin.’ 

Finally, we would like to add a comment on anomalous vacuum expectation 

values (v.e.v.‘s). All of the previous work in this paper was based on the assump- 

tion that the symmetry breaking SUr x Ur ---) UFED was done by Higgs’ doublets. 

Let us imagine that some representation of scalars which is not a doublet (say, 

a Higgs’ triplet) acquired a small v.e.v.: There would be two effects of such a 

representation on various experimentally measurable quantities; 

a) the new representation of scalars would enter into one-loop diagrams such 

as in Figs. 3,4,5,6,7 and contribute to radiative corrections as previously 

discussed. 
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b) The Higgs’ v.e.v.‘s would affect tree level formulae. We will now discuss 

this latter contribution. The W* - Z” mass relation would be changed to 

M$ _ g2 
M; - g2 + 9’2 

p=l+6p (4.16) 

where Xi, Ii, Yi are the v.e.v., weak isospin and hypercharge of the ith scalar 

representation; for neutral particles Iai = -7. If we assume 6p < 1 and 

throw away terms Ok and 0(&p) in keeping with the experimental 

value p N 1, the formulae (2.4) and (2.20) will still be correct provided we 

make the displacements. 25 

(4.17) 

Aw-+A,+ 4 
1 - 2s; 6P - 

This would cause the shifts in the physical quantities listed in Table IX. These 

have been evaluated for Mz = 94 GeV and 6p = 0.01 in order to see the generic 

magnitude of the effect. Note that, contrary to popular belief, RNC;CC is not the 

best place to look for the effects of anomalous v.e.v.‘s; Mw and ALR are. 
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5. Conclusions 

Radiative corrections can affect the values of the various asymmetries in 

e+e- -b p+p-, 7+7- as well as the W* mass in measurable ways. Our most 

important conclusion is that all radiative corrections to four-lepton processes 

can be reduced to a few functions. The fact that precision probes of the weak 

interactions involve only a few specific quantities is a great aid in evaluating and 

comparing experiments on weak radiative corrections. Especially exciting is the 

possibility of seeing the effects of new particles from beyond the standard model, 

even if they are too heavy to be produced directly at LEP/SLC, via radiative 

corrections. We present a summary list of generic values of shifts to various 

physical quantities due to radiative corrections from various sources in Table X. 

Also present there is an estimate of the theoretical uncertainty7 due to strong 

interactions and light hadrons from the QED vacuum polarization diagrams of 

Fig. 1 entering as in Eq. (1.7). Lepton asymmetries on 2’ resonance are more 

sensitive to the effects of radiative corrections with the observation of longitudinal 

polarization than without. 
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I. 

II. 

III. 

IV. 

V. 

VI. 

VII. 

VIII. 

TABLE CAPTIONS 

Initial state longitudinal polarization asymmetry ALR on 2’ resonance in 

e+e- + p+p- for various Mz, mH, mt to one-loop in GS W. All masses 

are in GeV. 

Forward-backwardor charge asymmetry AFB on 2’ resonance in e+e- + 

p+p- for various Mz, mH, mt to one-loop in GSW. All masses are in GeV. 

Transverse polarization asymmetry Al on Z” resonance for e+e- + /J+,Q- 

for various Mz, mH, mt to one-loop in GSW. All masses are in GeV. 

The ratio of Bhabha scattering to p pair production on Z” resonance 

x= 
g (e+e- + e+e-) _ 1 
2 (e+e- + p+p-) 1 (1 - cos q2 

s=M2 2 

for various cos 8, Mz, mH, mt to one-loop in GS W. All masses are in GeV. 

The 2’ decay width I’z to one-loop in GSW for various Mz, mt, mH. 

Fermion masses have been neglected in 1PI vertex and fermion self energy 

parts but included in 1PI vector boson self-energies. Strong interactions 

have been neglected. All masses are in GeV. 

The W* mass Mw to one-loop in GSW for various Mz, mt, mH. All masses 

are in GeV. 

RvF ratio of neutral current muon neutrino to muon antineutrino-electron 

scattering to leptons for incoming neutrino energy Ey = 70 in electron rest 

frame for various Mz, W&H, mt. All masses are in GeV. 

RNC;CC ratio of neutral to charged current muon neutrino electron scatter- 

ing to leptons for incoming neutrino energy E, = 70 in electron rest frame 

for various Mz, W&H, mt. All masses are in GeV. 
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IX. Shifts of various quantities due to v.e.v.‘s of scalars not in doublet repre- 

sentations. 

X. Responses at one-loop of various asymmetries on Z” resonance and the W* 

mass to new one-loop physics. Numbers are generic, calculated using Mz = 

94 GeV. 
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Table I 

Initial state longitudinal polarization asymmetry ALR on 2’ resonance in 

e+e- + p+p- ‘for VariOUS it&-, T-r&H, ?nt t0 

L one-loop in GS W. All masses are in GeV. 

Am(42 = -M;) 

Mz mH=lo mH = 100 mH = 1000 

mt=30 

mt=60 

mt = 90 

mt = 130 

mt = 180 

90 .0613 .0536 .0423 
92 .1762 .1691 .1590 
94 .2756 .2692 .2602 
96 .3615 .3557 .3475 
98 .4354 .4302 .4229 

90 .0640 .0563 .0451 
92 .1786 .1716 .1615 
94 .2777 .2714 .2624 
96 .3633 .3575 .3495 
98 .4370 .4318 .4246 

90 .0703 .0626 .0513 
92 .1844 .1773 .1672 
94 .2830 .2767 .2676 
96 .3681 .3624 .3543 
98 .4414 .4362 .4290 

90 .0805 .0728 .0616 
92 ,1936 .1866 .1765 
94 .2914 .2851 .2760 
96 .3757 .3699 .3619 
98 .4482 .4430 .4358 

90 .0975 .0898 .0786 
92 .2087 .2018 .1918 
94 .3048 .2986 .2897 
96 .3876 .3819 .3741 
98 .4589 .4537 .4467 
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Table II 

Forward-backward or charge asymmetry AFB 

on Z” resonance in e+e- -+ p+p- for various Mz, 

mH,‘mt to one-loop in GSW. All masses are in GeV. 

&v&l2 = -M;) 

Mz mH=lo mH = 100 mH = 1000 

mt = 30 

mt =60 

mt = 90 

mt = 130 

mt = 180 

90 .0046 .0039 .0028 
92 .0255 .0236 .0209 
94 .0596 .0570 .0532 
96 .lOll .0979 .0934 
98 .1457 .1422 .1374 

90 .0044 .0037 .0025 
92 .0256 .0237 .0208 
94 .0599 .0572 .0533 
96 .1014 .0982 .0936 
98 .1460 .1425 .1375 

90 .0047 .0041 .0033 
92 .0269 .0251 .0226 
94 .0619 .0593 .0558 
96 .1039 .1008 .0965 
98 .1487 .1454 .1407 

90 .0046 .0040 .0036 
92 .0282 .0265 .0245 
94 .0643 .0618 .0587 
96 .1069 .1039 .lOOl 
98 .1522 .1489 .1447 

90 .0032 .0028 .0030 
92 .0292 .0276 .0263 
94 .0668 .0645 .0620 
96 .1105 .1077 .1045 
98 .1564 .1533 .1498 
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Table III 

Transverse polarization asymmetry Al on Z” 

reSOnanCe for e+f.?.- + p+j.L- for VariOUS Mz, W&H, 

mt to one-loop in GS W. All masses are in GeV. 

4 (q2 = -M;) 

mH = 100 mH = 1000 

90 -0.9865 -0.9871 
mt = 30 94 -0.9507 -0.9533 

98 -0.8904 -0.8939 

90 -0.9883 -0.9881 
mt = 180 94 -0.9471 -0.9486 

98 -0.8844 -0.8866 
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co5 I9 

1.0000 
0.99 
0.90 
0.80 
0.70 
0.60 
0.50 
0.40 
0.30 
0.20 
0.10 
0.0 

-0.10 
-0.20 
-0.30 
-0.40 
-0.50 
-0.60 
-0.70 
-0.80 
-0.90 
-0.99 
-1.00 

co5 0 
1.00 
0.99 

-0.90 
0.80 
0.70 
0.60 
0.50 
0.40 
0.30 
0.20 
0.10 
0.0 

-0.10 
-0.20 
-0.30 
-0.40 
-0.50 
-0.60 
-0.70 
-0.80 
-0.90 
-0.99 
-1.00 

Table IV 

The ratio of Bhabha scattering to ~1 pair production on Z” resonance 

for various cos 6, Mz, tit, t?‘&H to one loop in GSW. All masses 

are in GeV. X = 
a(e+e- -b e+e-) 
a(e+e- -+ p+p-) 

-1 
I 

(1 - cos ey 
s=M$ 

m = 30, mH = 100 
Mz =90 Mz =94 

0.0510 0.0498 
0.0532 0.0519 
0.0543 0.0532 
0.0547 0.0537 
0.0547 0.0540 
0.0545 0.0541 
0.0541 0.0540 
0.0533 0.0536 
0.0522 0.0529 
0.0506 0.0519 
0.0486 0.0504 
0.0463 0.0485 
0.0435 0.0461 
0.0406 0.0434 
0.0376 0.0405 
0.0346 0.0375 
0.0317 0.0345 
0.0289 0.0315 
0.0263 0.0287 
0.0238 0.0260 
0.0215 0.0235 
0.0195 0.0214 
0.0193 0.0211 

m = 30,mH = 1000 mt = 180,m~ = 1000 
Mz=90 Mz =94 Mz=98 

0.0516 0.0507 0.0464 
0.0537 0.0528 0.0484 
0.0549 0.0541 0.0498 
0.0552 0.0546 0.0505 
0.0552 0.0549 0.0510 
0.0550 0.0550 0.0515 
0.0546 0.0548 0.0518 
0.0538 0.0544 0.0520 
0.0526 0.0537 0.0520 
0.0510 0.0526 0.0517 
0.0490 0.0510 0.0511 
0.0466 0.0490 0.0501 
0.0439 0.0465 0.0490 
0.0409 0.0438 0.0463 
0.0379 0.0409 0.0441 
0.0349 0.0378 0.0414 
0.0319 0.0348 0.0384 
0.0291 0.0318 0.0354 
0.0265 0.0289 0.0324 
0.0240 0.0262 0.0295 
0.0217 0.0237 0.0267 
0.0197 0.0215 0.0242 
0.0195 0.0213 0.0240 

Mz =98 
0.0454 
0.0474 
0.0487 
0.0494 
0.0500 
0.0505 
0.0509 
0.0511 
0.0511 
0.0509 
0.0504 
0.0492 
0.0477 
0.0460 
0.0436 
0.0410 
0.0381 
0.0351 
0.0322 
0.0293 
0.0265 
0.0240 
0.0238 

COB 0 
1.00 
0.99 
0.90 
0.80 
0.70 
0.60 
0.50 
0.40 
0.30 
0.20 
0.10 
0.0 

-0.10 
-0.20 
-0.30 
-0.40 
-0.50 
-0.60 
-0.70 
-0.80 
-0.90 
-0.99 
-1.00 

co9 e Mz=90 Mz =94 
1.00 
0.99 
0.90 
0.80 
0.70 
0.60 
0.50 

0.0441 0.0413 
0.0460 0.0431 
0.0470 0.0442 
0.0473 0.0447 
0.0474 0.0450 
0.0473 0.0451 
0.0469 0.0451 
0.0463 0.0449 
0.0453 0.0444 
0.0439 0.0435 
0.0422 0.0423 
0.0403 0.0407 
0.0377 0.0387 
0.0350 0.0363 
0.0327 0.0340 
0.0298 0.0315 
0.0273 0.0293 
0.0248 0.0264 
0.0226 0.0243 
0.0204 0.0218 
0.0185 0.0197 
0.0168 0.0179 
0.0166 0.0177 

0.40 
0.30 
0.20 
0.10 
0.0 

-0.10 
-0.20 
-0.30 
-0.40 
-0.50 
-0.60 
-0.70 
-0.80 
-0.90 
-0.99 
-1.00 

m = 180, rnH = 100 
Mz=90 Mz=94 Mz=98 

0.0436 0.0405 0.0356 
0.0454 0.0422 0.0371 
0.0465 0.0433 0.0383 
0.0468 0.0438 0.0389 
0.0469 0.0441 0.0394 
0.0468 0.0443 0.0399 
0.0464 0.0443 0.0403 
0.0459 0.0441 0.0406 
0.0448 0.0436 0.0407 
0.0434 0.0428 0.0407 
0.0417 0.0416 0.0403 
0.0397 0.0401 0.0396 
0.0372 0.0381 0.0384 
0.0347 0.0360 0.0377 
0.0321 0.0336 0.0351 
0.0295 0.0310 0.0329 
0.0269 0.0285 0.0306 
0.0245 0.0261 0.0282 
0.0223 0.0237 0.0259 
0.0202 0.0215 0.0236 
0.0182 0.0194 0.0213 
0.0166 0.0176 0.0194 
0.0164 0.0175 0.0191 

Mz =98 
0.0365 
0.0381 
0.0392 
0.0399 
0.0404 
0.0408 
0.0412 
0.0415 
0.0416 
0.0415 
0.0411 
0.0402 
0.0389 
0.0373 
0.0357 
0.0335 
0.0311 
0.0287 
0.0263 
0.0239 
0.0217 
0.0197 
0.0194 
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Table V 

The Z” decay width I’z to one-loop in GSW for various Mz, mt, 

mH. Fermion masses have been neglected in 1PI vertex and fermion 

self energy parts but included in 1PI vector boson self-energies. Strong 

interactions have been neglected. All masses are in GeV. 

rz 

Mz mH = 100 mH = 1000 

90 2.4631 2.4532 
mt = 30 94 2.8991 2.8853 

98 3.3866 3.3684 

90 2.3694 2.3616 
mt = 180 94 2.7786 2.7681 

98 3.2344 3.2213 
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Table VI 

The W* mass Mw to one-loop in GSW for 

various M,, mt, mH. All masses are in GeV. 

Mw 

Mz mH=lo mH = 100 mH = 1000 

90 78.37 78.29 78.12 
92 80.88 80.80 80.64 

mt = 30 94 83.33 83.26 83.10 
96 85.74 85.66 85.51 
98 88.11 88.03 87.88 

90 78.36 78.27 78.11 
92 80.86 80.78 80.62 

mt=60 94 83.30 83.22 83.06 
96 85.69 85.62 85.46 
98 88.05 87.98 87.82 

90 78.55 78.47 78.30 
92 81.06 80.98 80.81 

mt = 90 94 83.50 83.43 83.27 
96 85.90 85.82 85.67 
98 88.26 88.18 88.03 

90 78.79 78.70 78.53 
92 81.30 81.22 81.05 

mt = 130 94 83.75 83.67 83.51 
96 86.16 86.08 85.92 
98 88.53 88.45 88.29 

90 79.14 79.06 78.88 
92 81.66 81.57 81.40 

mt = 180 94 84.12 84.04 83.87 
96 86.54 86.46 86.29 
98 88.92 88.84 88.67 
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Table VII 

R& ratio of neutral current muon neutrino to muon 

antineutrino-electron scattering to leptons for incoming 

neutrino energy E, = 70 in electron rest frame to one-loop in 

GSW for various Mz, WZH, mt. All masses are in GeV. 

MZ mH = 100 mH = 1000 

90 1.0325 1.0065 
mt=30 94 1.2862 1.2572 

98 1.5224 1.4920 

90 1.1598 1.1297 
mt = 180 94 1.4352 1.4022 

98 1.6841 1.6504 
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Table VIII 

RNC;CC ratio -of neutral to charged current muon 

neutrino electron scattering to leptons for incoming neutrino 

energy E, = 70 in electron rest frame to one-loop in 

GS W for various Mz, mH, mt. All masses are in GeV. 

RNC,CC = 
a(vpe + vpe) 

a(qd -+ bs) 

Mz mH = 100 mH = 1000 

90 0.1158 0.1145 
mt=30 94 0.1295 0.1281 

98 0.1424 0.1409 

90 0.1204 0.1193 
mt = 180 94 0.1344 0.1333 

98 0.1471 0.1462 
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Table IX 

Shifts in various quantities due to v.e.v.‘s of 

scalars not in doublet representations 

Shift Formula for Shift 

Shift Evaluated 

Mz = 94 GeV, 6p = .Ol Comments 

initial or final 

64s;~; 
(1+ $)2 6p 

.021 

state longitudinal 

polarization asymmetry 

e+e- + p+p-, r+r- 

on 2’ resonance 

charge asymmetry 

e+e- -+ p+p- on .0094 

Z” resonance 

transverse polarization 

asymmetry e+e- + j~+p- 

on 2’ resonance 

16~ s2c2 eel3 
- (1+ t$)2(1 - 29;) 6P 

.0066 

6Mw W* mass 4 
2(1- 2s;) Mw 6P 

570 MeV 

ratio Bhabha to 

e+e- -b p+p- on Z” 

resonance Eq. (4.10) 

at cos 6 = 1 
[ 

cr (sgy + (-5 + .sgp 453c3 
2 + (3)" + (-3 + 33)" 1 l- 23; 6P 

6X(cosB = 1) 
X(cos l9 = 1) 

-.013 

[g+j.,]r,,, Z” width 38 MeV 

53 MeV 
3 4 
zi=x$ rw 6P W* width 

ratio of neutral uPe 
64s; c; 

(1+ u,g + $2 R,, 6p 
.033 

~RNC;CC 

ratio of neutral to 

charge u,,e scattering 

E, = 70 GeV 
1 4(1- 2w&$c; 
2 + (1 - ve + $)(l - 293 1 RNc;cc 6p .0043 
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Table X 

Responses at one loop of various asymmetries on Z” 

resonance and the W* mass to new one-loop physics. 

Numbers are generic, calculated using Mz = 94 GeV 

One-Loop Physics ~ALR = 64,oi ~AFB &AI 6Mw (MeV) 

GSW Weak 
mt = 30 
mH = 100 

Heavy Top Quark 
mt N 180 GeV 

Heavy Higgs N 1 TeV 

Heavy Quark Pair 
a) Large I Splitting 
b) Degenerate 

Heavy Lepton Pair 
a) Large I Splitting my = 0 
b) Degenerate 

Heavy Squark Pair 
a) Large I Splitting 
b) Degenerate 

Heavy Slepton Pair 
a) Large I Splitting 
b) Degenerate 

W inos 
a) m3i2 < 100 GeV 
b) m3i2 >> 100 GeV 

Technicolor 
su8 x s&3 

016 

-0.03 

0.03 

-0.01 

0.02 
-0.004 

0.012 
-0.0013 

0.02 
0 

0.012 
0 

0.005 
<O.OOl 

-0.04 
-0.07 

Strong Interaction Uncertainty f.0033 

-0.01 

0.0075 

-0.0045 

0.01 
-0.002 

0.006 
-0.0006 

0.01 
0 

0.006 
0 

0.0025 
<O.OOl 

-0.018 
-0.032 

f.0016 

.005 

0.004 

-0.003 

0.007 
-0.001 

0.004 
-0.0004 

0.007 
0 

0.004 
0 

0.001 
<O.OOl 

-0.012 
-0.021 

f.OO1 

-180 

780 

-160 

300 
-42 

300 
-14 

300 
0 

300 
0 

100 
<lO 

-500 
-500 

f25MeV 

61 



FIGURE CAPTIONS 

1. QED vacuum polarization graphs. 

2. QED detector dependent graphs specifically excluded from 4-fermion pro- 

cesses considered in this paper. To thee we must add all permutations of 

the photon lines. See Ref. 9. 

3. Unrenormalized 1PI vector boson self-energy. ;,j refer to the particles 2, A 

(photon), W* or to the SU2 isospin 1, 2, 3 and electromagnetic & currents. 

Solid lines with arrows are fermions, dashed lines scalars, wavy lines vector 

particles, and dotted lines with arrows are ghosts. 

4. Unrenormalized 1PI fermion self energy. 

5. Unrenormalized 1PI fermion Z” vertex part. 

6. Unrenormalized 1PI fermion W* vertex part. Graphs are similar to those 

in Fig. 5. 

7. 1PI box diagrams contributing to muon decay and the form factor Vp+peve. 

8. Forward-backward asymmetry AFB as a function of ,/X The dashed lines 

include no radiative corrections, not even from QED diagrams of Fig. 1, 

and the solid lines include all one-loop GSW corrections except those of 

Fig. 2 for mt = 30 and mH = 100. All masses are in GeV. 

9. Longitudinal polarization asymmetry ALR = A,,, as a function of &. The 

dashed lines and solid lines are as in Fig. 7. The dotted lines include only 

the QED graphs of Fig. 1 contribution to the renormalization of CX. 

10. Contribution of an extra quark doublet to ~ALR for various isospin splitting 

ratios mg/mT as a function of mT. All masses are in GeV. 
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11. Contributions of an extra lepton doublet to ~ALR for various isospin split- 

ting ratios m,/mp as a function of ml-. All masses are in GeV. 

12. Contributions of heavy degenerate generations of quarks and leptons to 

~ALR as a function of the fermion mass. All masses are in GeV. 

13. Contribution of a squark doublet to ~ALR for various isospin splitting ratios 

rngjrnp as a function of rnp We ignore mixing between “left” and “right” 

squarks and take their masses degenerate. All masses in GeV. 

14. Contribution of a slepton doublet to ~ALR for various isospin splitting 

ratios m;/ rn?- as a function of rnr-. We ignore mixings between “left” 

and “right” sleptons and take their masses degenerate. All masses are in 

GeV. 

15. Contributions of various technicolor models to GALR as a function of a mass 

scale which occurs in such models. The contribution from a GSW Higgs is 

displayed for reference relative to a “standard” value ?nH = 100. All masses 

are in GeV. 

16. SUSY shifts ~ALR in models in which the gaugino masses are related to 

the SUSY breaking gravitino mass m312 from SUGRA. All masses are in 

GeV. 

17. SUSY shifts ~ALR in models in which the gaugino masses are independent 

of m3/2. In some models they are due to radiative corrections and are small. 

All masses are in GeV. 

18. Shift 6Mw versus shift ~ALR for an extra quark doublet as a function of 

mT. We include the shift due to heavy GSW Higgs’ for reference. All masses 

are in GeV. 
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19. Shift 6Mw versus shift c5A~ for an extra lepton doublet as a function of 

ml-. We include the shift due to the GSW Higgs’ for reference relative to 

a “standard” value mH = 100. All masses are in GeV. 

20. Shift 6Mw versus ~SALR for two technicolor models as a function of a scale 

which enters into such models. We plot also the shift due to the GSW Higgs’ 

for reference relative to a “standard” value ?nH = 100. All masses are in 

GeV. 

21. SUSY shifts 6Mw in models in which the gaugino masses are related to the 

SUSY breaking gravitino mass m3i2 from SUGRA. All masses are in GeV. 

22. SUSY shifts SMw in models in which the gaugino masses are independent 

of m3j2. In some models they are due to radiative corrections and are small. 

All masses are in GeV. 
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