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ABSTRACT 

The Ward-Takahashi identities of Lorentz symmetry are examined at finite 

temperature. It is shown that the Lorentz symmetry is broken with the Goldstone 

realization. The analogy with finite-temperature supersymmetry-breaking in an 

R-invariant model is explained. 
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The supersymmetry has been known to be broken at finite temperature for 

some time.““’ Recently,““’ it was found that the supersymmetry is realized 

in the Goldstone fashion. Namely, at finite temperature the supersymmetry is 

broken so that the Ward-Takahashi identities are saturated by zero-momentum 

singularities of the field operators, which couple to the supercurrent. The purpose 

of this letter is to illustrate that an analogous phenomena occurs for Lorentz 

symmetry in a usual field theory, and thereby advance the understanding of the 

nature of the symmetry breaking at finite temperature. 

The formalism to treat field theories at finite temperature is well established. 

In particular, the real-time formalism (Therm0 Field Dynamics) Is1 gives a sound 

basis for dealing with real-time Green’s functions which are physical correlation 

functions in real space. In ref. 3, the real-time fermion propagator was calculated 

to the one-loop order in a (R-noninvariant) supersymmetric model, and it was 

shown to acquire a zero-momentum singularity, implying the Goldstone realiza- 

tion of supersymmetry. A similar calculation”1 in the l/IV-expansion yielded 

the same conclusion. These works motivated the systematic investigation of the 

Ward-Takahashi identities for the real-time Green’s function for the supersym- 

metric theories at the tree and one-loop levels.‘4’s1 Ref. 4 has also investigated 

the R-invariant model, in which the above phenomena does not occur. We have 

found that both at the tree and one-loop levels at finite temperature there al- 

ways are some field-operators (even for the R-invariant model) that couple to 

the supercharge at zero momentum (even for a massive theory), thus confirming 

the Goldstone realization of the supersymmetry. Correspondingly, the Green’s 

functions of those operators have been demonstrated to have singularities at zero 

momentum. + 

In the following, we shall see that essentially the same phenomena is found 

for the Lorentz symmetry in field theories. For the purpose of the illustration, 

we take a real scalar field 4 of mass m and a cubic coupling X@ and observe 

t These singularity were called the ‘Goldstone mode” “’ or the ‘thermal superpair”. 
IS1 
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how the Ward-Takahashi identities of Lorentz symmetry are satisfied at finite 

temperature. (The 4’ coupling necessary for the renormalizability and the sta- 

bility of the vacuum is irrelevant for our discussion.) Other cases can be worked 

out similarly. The relevant Ward-Takahashi identities are obtained by taking the 

functional derivatives of the following with respect to the source J(s) and then 

setting J(s) f O,* 

/ ~~~“@ ‘{J$,&)))J = / d4+)(+& - G$J(~(~>J, (1) 

where M PPtv(z) is the usual angular-momentum current of the theory written in 

terms of the field q5. The single derivative (and J=O) yields the following; 

(/ ~~WWppv(~)4(~))) = -i(+T - dfNW>. (2) 

This, however, is trivially satisfied (both sides being zero) at any order of per- 

turbation theory because of the translational invariance of the system. From the 

second derivative, we obtain the following, 

(/ d4zdP(T{Mplrv(~)~(2)~(y)}) = -Q&a: - W,X)(WW(Y)I), (3) 

where X E z - y. Note that the first term is an integration of a total derivative 

and therefore vanishes unless there is a zeromomentum singularity that supplies 

a boundary term. 

Let us first examine how the Ward-Takahashi identity (3) is satisfied at the 

tree level. The free propagator at temperature l/p is 
. 

f+(P) = * p2 _ ,2 + ir - dP)6(P2 - m2) 9 

q?(P) = ep,p?Iy- 1 ’ 

where n is the four-velocity of the system (n2 = 1, usually chosen to be (1, 8)). 

* In TFD, corresponding to each field in the tero-temperature theory, there is a ghost-like 
partner field. However, in the order of perturbation ueed in this paper, the extra field is 
irrelevant. 
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In the momentum representation, the left hand side of (3) is 

aK a - --&x++(~+f)G~(~-f). aqv pp aqp 
where 

KpP E JpP p2 - f - m2 PpP/L - ;qpqp 
> 

* 

Using the property, 

we find that (6) reduces to 

iD~~b)Gg(P) = -i(p,n, - pn,) dcsBn) 6(p2 - m2) , 

where 
a 

DPv (PI s PP apv 
a -- - P"ap~ 3 

(6) 

(7) 

(8) 

(9) 

(10) 
We find that (9) is exactly equal to the right hand side of (3). 

At the one-loop level, we shall examine the truncated version of (3) for sim- 

plicity. The relevant Feynman diagrams are illustrated in figs. 1 and 2. For the 

right hand side (fig. l), by using the tree level equality proved above, we obtain 

the following q + 0 limit, 

_ -x2 / 

. 

($4 k2 : ,2 &(P + k)w(p + k)b((p + k)’ - m2) 

(11) . 
= -x2 / ($4 k2 : m2 (duly + ~&))W(P + k)UP + k)2 - m2) * 

The DPY(k) term gives no contribution to (11). One can prove this by using 

k ’ 
.a 

pkIc2 - m2 = 'akP - ln(k2 - m2) , (12) 

and doing the partial integration to reduce DP,,(k) to [-&,-&I =o. The 

remaining DPLy(p) term of (11) is equal to the contribution of the self-energy 
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correction (fig. 2) on the right hand side. Thus we confirm that the Ward- 

Takahashi identity (3) is nontrivially satisfied to one-loop order. 

From the fact that (9) and (11) are nonzero at finite temperature, we conclude 

that at finite temperature there is a zero-momentum singularity in the propagator 

of the bilinear operator 44. Otherwise, (3) should vanish since the left hand side 

is an integration of a total derivative. 

The broken Ward-Takahashi identity (3) may be a little unfamiliar at first 

sight, since the breaking occurs only at finite temperature and also the order 

parameter is non-linear in the field operator. However, this situation is quite 

analogous to the R-invariant supersymmetric model (at finite temperature) dis- 

cussed in ref. [4]. This model consists of two real (scalar and pseudoscalar) field 

(A, B) , a Majorana field ($) , and two auxiliary field (F, G). This theory can have 

an R-symmetry (A+iB + e’“(A+iB), rl, + e-ia7b/2+, F+iG + e2’a(F+iG)). 

The relevant Ward-Takahashi identities of supersymmetry, which corresponds to 

(2) and (3), are the following, 

(/ d-G aP(wL4(46(4~) = aw) , (13) 

(/d’laP(T{S~(r)d(z)A(y)}) = i(T{+(z)+(~)))-- %%+)A(Y)))+...., (14) 

where S, is the supercurrent and i... are the terms with auxiliary fields. 

The supersymmetry is broken at finite temperature. At tree level, it has been 

found”’ that (14) is satisfied trivially for finite temperature (both sides are zero) 

while (13) is nontrivial. Similarly to the case examined above, this implies that 

the propagator of the bilinear operator $,A has a zero-momentum singularity. In 

ref. [4], we have confirmed this explicitly and saw that the residue goes to zero 

as eeprn for zero temperature limit. At higher orders of perturbation theory, 

the breaking manifests itself differently depending on the existence of the other 

symmetry that is not broken at finite temperature, in this case, R-invariance. 

5 



In a theory without this invariance, the Ward-Takahashi identity (13) become 

trivial at the one-loop level. Instead, (14) b ecomes nontrivial: The auxiliary field 

acquires a vacuum expectation value and the (single) fermion propagator acquires 

a zero-momentum singularity.[” The latter is because the tree-level singularity 

of $A couples to the single $-channel at the one-loop order. In the R-invariant 

model, (F) always vanishes; the R-invariance is not broken at finite temperature. 

The single fermion propagator does not acquire the zero-momentum singularity. 

Thus, the Ward-Takahashi identity (14) is satisfied nontrivially even at one-loop 

level. 

What we observe for the Lorentz symmetry is exactly parallel to the super- 

symmetry breaking explained above. In both cases, the Ward-Takahashi iden- 

tities ((3) and (13)) that h ave bilinear operators (the propagator) as the order 

parameter (right hand sides) are nontrivial at finite temperature. The Ward- 

Takahashi identities ((2) and (14)) with a single operator order parameter are 

trivial due to the additional symmetries (translational and R-invariance) that are 

good at finite temperature. 

In both (3) and (13), the nonvanishing contribution is related to the exis- 

tence of the parameters that specify the property of the heat bath. For Lorentz 

symmetry, it is the four-velocity n. For supersymmetry, we can imagine a Grass- 

man parameter c that specifies which fields follow the bose statistics and fermi 

statistics. (We can give the fermionic thermal distribution to $ + EA + . . . and the 

_ bosonic thermal distribution to A + $J etc.) A thermal equilibrium has specific 

values of these parameters. The heat bath would have no physical meaning unless 

it distinguishes between the particles that are related by the Lorentz symmetry 

or supersymmetry.* In fact, in the above treatments, we have taken particu- 

lar values for these parameters (for supersymmetry, c = 0). The choice of the 

parameters affect the Green’s function through the boundary conditions. 

* In Borne literature (refa. 3-6 in ref. 4, and also ref. 8), the ‘unphysical heat bath” in 
which all particles obey the same bosonic statistics has been discussed. The relation of this 
unphysical statistics and the decoupling of the aupermupltiplet is pointed out in ref. 9. 
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The current densities MpPv and SP do not induce changes the parameters, 

n and c. They concern with Green’s function, which are linear responses of 

the system obtained in a given heat bath. In particular, the supercurrent can 

annihilate an (on-shell) fermion in the thermal equilibrium and create a boson 

of same momentum (and vice versa), which is allowed because of the super- 

symmetric spectrum (at zero temperature). This is the essential reason for the 

zero-momentum contribution. “A The same argument applies for the present 

case of Lorentz symmetry. The current MPCtv takes a particle from the thermal 

equilibrium and replaces it with a particle with a momentum that is infinitesi- 

mally different from the initial momentum. This of course is possible since the 

original (zero temperature) spectrum is Lorentz-invariant. 

It should be stressed that the situation for Lorentz symmetry and supersym- 

metry at finite temperature is exactly parallel to the usual spontaneous symmetry 

breaking: Imagine a elementary Goldstone model of a complex scalar 4. In order 

to specify a physical vacuum, we have to choose the phase of the background &, 

to be a particular value. (There are unphysical choices like the superposition of 

all different phases or f,& = 0.) This choice does not violate the symmetry ex- 

plicitly, and in fact the Goldstone particle exists. The current density of a given 

symmetry always acts only on a fluctuation of the system and does not trans- 

form the vacuum expectation values of the relevant field operators (the order 

parameters). The way the Ward-Takahashi identities are satisfied for the usual 

Goldstone model is the same as that for Lorentz symmetry and supersymmetry. 

The major difference is that in case of the finite temperature theory, the notion 

of the “particle” is obscure. The particles are constantly created and annihilated 

to achieve the thermal equilibrium. Thus the existence of a singularity does not 

imply a existence of a particle. It simply means the existence of a long range 

correlation. For this reason, the usual terminology of “spontaneous breaking” 

and “Goldstone particle” does not illuminate the current situation. However, 

from the way the Ward-Takahashi identities are satisfied, it is appropriate to call 

them the Goldstone realization of the (Lorentz or super-) symmetry. 
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In conclusion, we find that there are singular zero-momentum contributions 

to the Ward-Takahashi identities for the Lorentz symmetry at finite temperature. 

The singularity is in the sector of the bilinear operator 44 even at the higher order 

of the perturbation theory because of the unbroken translational symmetry. This 

situation is exactly parallel to what has been previously found in the R-invariant 

supersymmetric theory: The symmetry is realized in a Goldstone fashion at finite 

temperature, but the zero-momentum singularity does not appear in a single field 

operator sector due to a conserved symmetry. This Goldstone realization is due 

to the property of the physical heat bath, in which the symmetry is broken, as 

is true for the usual spontaneous symmetry breaking in the vacuum. 
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FIGURE CAPTIONS 

1. The only Feynman diagram that contributes to the left hand side of (3). 

The small circle with cross represents the current term. The limit q --) 0 is 

taken at the end of the calculation. The external lines are actually truncated 

but shown here for clarity. 

2. The self-energy correction that contributes to the right hand side of (3). 
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