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ABSTRACT 

The self-consistent, Poincard invariant and unitary three-particle scattering 

theory developed in a previous paper is extended to include angular momentum 

conservation and individual particle spin. The treatment closely follows that of 

the scalar case, with the complete set of angular momentum states for three free 

particles developed by Wick used in place of scalar plane wave states. 
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1. Introduction 

In a previous -paper1 we presented a self-consistent, Poincare’ invariant and 

unitary scattering theory for three distinguishable scalar particles of finite mass. 

The goal of this paper is to extend the treatment to particles of arbitrary spin 

and to include the effects of angular momentum conservation. 

Two concepts crucial to the development of a relativistic three-body scatter- 

ing theory are introduced in Ref. 1. The first is the use of velocity conservation 

in place of momentum conservation in order to separate Lorentz invariance from 

the off-shell continuation in energy. The second is the introduction of factors 

independent of intermediate state integrations into the relation between the two- 

and three-body off-shell variables. Both ideas, as well as the general operator 

form of the scattering theory, are used here without further comment. The only 

differences are in the definitions of particle states and operator matrix elements. 

A complete orthonormal set of angular momentum states for three free parti- 

cles is developed by Wick.2 Single particle helicity states, from which the angular 

momentum states are constructed, are defined by the action of a Lorentz boost 

in the 2 direction onto a particle at rest, followed by a rotation. In the spin zero 

case, this is equivalent to LM(2.5). Throughout our discussion we adopt Wick’s 

state definitions, normalization, phase conventions, and notation. For details, 

the reader is referred to Ref. 2. 

Chapter 2 extends Wick’s treatment to define another complete three-particle 

basis, which is used in Chapter 3 to develop the two- to three-body connection. 

The resulting angular momentum conserving integral equations are presented in 

Chapter 4. Chapter 5 relates the solutions of these equations to the physical 

probability amplitude. Chapter 6 summarizes the results. 
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2. Three-Body States 

A proceedure similar to that used to obtain W(17) is followed in order to 

obtain the matrix elements between states in the plane wave basis and states 

in the three-body angular momentum basis. A Lorentz transformation h(P), 

satisfying 

h(P) PO = P , 

is applied to W(24).3 Th en the operator acting on Iqlvl, q2 ~2, q3 X3) is 

L = H(P) s . 

The rotation s is specified by pr, ~2, and p3 through 

s=K1(P) I 

and 

Pl = 1 Ql 

P2 = 142 

P3 = 143 , 

where pl, ~2, and ps are restricted to obey 

Pl + P2 + p3 = P 



i 

[Pl + P2)2 = w2 . 

An integration variable change gives 

& [pq/wW] sin9 dB dU, 

= &l ZP2 ZP3 6((p1 + p2)2 - w2) ti4(Pl + p2 + p3 - p) . 

With 

L Ql h,Q2 v2,93 x3 > 

= c (2) (P2; 1) u;‘x (p3; I) Ipl pl,p2 p2,p3 1L3) 3 3 
Plk~3 

and 

D&&-l) = uyJ(P;P) , 

we find 



Pl pl,p2 p2,p3 h3 P’J’M’; w’j’m’X1 x2; x3 > 

= 4 [wW/pq] + NJ, .A!~I emiTs b4(P - P’) 6(w2 - w’~) 

x &&(e) c d”,‘A (PI 1 1 
VlV2 

P-1) 

) dFA (P2) uEL,(l-’ 
2 2 

where 

A’ = Xl 

A’ = m’ 

- 

- 

x2 

x3 

Nj = [(2j + 1)/4?r]+ , 

and 1 is specified by the condition that 1-l transform P to rest, p3 to a vector 

in the direction of the negative z-axis, and pr to a vector in the zz(z > 0) 

half-plane. The angles 0, ,&, and p2 are functions of W, w, and (~2 + ~3)~, as 

indicated in W(Fig. 1). 

In the three-body angular momentum basis completeness involves an inte- 

gration over 

d4P d(w2) = [W3/vo] [@I+‘)] -I dW d3u duo , (2.2) 
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where 

&v,vO) = T;--zul 

w = td(W,vO,m~) . 

In order to streamline the forthcoming equations, we adopt a matrix notaton. 

Underlined symbols represent elements of (2.~1 + 1) (2.~2 + 1) (2~3 + 1) dimensional 

square matrices. The particular elements under consideration will be obvious 

from the context. Thus 

PI pl,p2 p2,p3 p3 P’J’M’;w’j’m’h x2; x3 
> P-3) 

= [u0/w3] [v”” (v02 - I)] -f [p(W,vO) ((Vv, v”)] i 

x S(W - W’) 63(u - u’) quo - VO’) 

x NJJ U~&-‘;P) E12(p1,p2,p3;j’m’) , 

where 

~12(pl,n,m;jm) = Jfj evins2 di,#) c qx, (Pd d;Apd 
Vl v2 
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(2-4 

x NJ, u,,,, (J’) (1-l; p) 812(pl,p2,p3;j’m’) , 1 
where the summation over /J represents a summation over all intermediate helic- 

ities, and a is defined through 

d3v = lv12 d/vi dfl = [TJ”” - l] i o” duo d!-i . 

The operator scattering equations detailed in Ref. 1 will be evaluated in 

terms of matrix elements taken in the three-body angular momentum state ba- 

sis. However, the connection between the two-body input and the three-body 

problem, developed for the scalar case in LM(Chap. 4), is easier to discuss in 

terms of another basis. We therefore define a new three-particle basis through 

the direct product of two-particle angular momentum states I&j m 0102) and 

single particle plane waves Ip3 03). Since the helicities in the two-particle angular 

momentum states are internal variables, 1 Qr2 j m Xr X2) and lq3 X3) in W(20) can 

be identified with Ipy Xl) and lpiX2) in W(5). P er f orming the steps leading from 

W(5) to W(17) in an analogous manner on W (20)) and noting that 

i-PI2 = b(f’f, - w2) d4P12 , 

7 



gives 

= NJ [4W/qIa b4(P- P') 6(P1z2 -w'~) bjjn hcr,~, ~CT~X, 

where 

P = Pl2 -i-P3 , 

and I is specified by the condition that 2-l transform P to rest (P = 0) and P12 

to a vector in the direction of the positive z-axis. 

The orthonormality and completeness of this new basis follows from the prop- 

erties of the direct product 

where 

qp3, J-4) = 2Po3 b3 (P3 - Pi) * 
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Completeness involves an integration which is convenient to write as 

d4P12 i5p3 = [u” a(w, II”)]-’ d3u d3v dw WI 

= [W3/uo] [@W/q) E(I~+I’)]-~ dW d3u dv” dR . 

The projection onto the plane wave basis is 

= Nj [4w/P]’ U’ Q(w,v’) 63(~ VU') b3(v-v') 6(~-w') 

where 

u = Ul - 02 ) 

and Z is specified by the condition that 1-l transform PI2 to rest and p1 to a 

Gector in the direction of the positive z-axis. Thus 

= u” [((W,VO) Q(W, tl”,] 4 syu - u’) 63(v - v’) 

X S(w - 4 Lhi,p2;.i’m’) , 
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I 

i where 

Cl2 (~1, ~2; j m) satisfies 



3. Two-Body Input 

To the requirement of Lorentz invariance and unitarity imposed on the two- 

body input in LM(4.5) we add here angular momentum conservation. The two- 

body transition matrix elements taken between angular momentum states must 

conserve both the total angular momentum and its projection along the z-axis, 

and must be independent of the particular value of the projection. Therefore 

As in LM(4.5), 2 is given by 

rj is a matrix in which each element is associated with a particular combination 

of incoming and outgoing helicities. The X subscripts will not be shown explicitly 

in subsequent equations when their values are obvious from the context. 

Two-body unitarity in operator form is given by LM(4.4). Taking matrix el- 

-ement between two-body angular momentum states leads to the matrix equation 

7j(wlw’; 2,) - d(w/w’; 22) (3.2) 

= (Z, - Z1) / dw” Tj(w(w”; Zl) ’ ’ 
w” - 21 w” - 22 

7+“‘\~‘;22) . 

The connection to the three-body problem is governed by the same consid- 

erations as in the scalar case. Matrix elements of the non-interacting resolvent 
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conserve linear momenta, angular momenta, and helicities. Clustering requires 

velocity conservation in both the two- and three-body systems. Therefore 

= [u’]” [WW’]-’ [(16 WW’/qq’) E(W,v’) @V’,v”)] i 

x b3(u - u’) 6(v0 - ?I”) b2(112 - Cl’) Sjj' 6mmt u~~k;(p3;P~) 

x B(W-&yr- m12v”) 8(W’ - .5iar - m12v”) T[~(GJIG’ ; 2) , 

where 

iiT = (W - Ey)/vO 

io”’ = (W’ - $‘)/ZIO 

We have defined 

212 = (2” - Ey’)/VO . 

zc = z/u0 

and 

U(p;p’) G U(Z;p’) = U(p; Z) 

for a Lorentz transformation 1 which satisfies p = Zp’. Using (3.3) to evaluate 

the matrix elements of LM(3.19), th e unitarity condition for Tlz(Z), reproduces 

the two-body unitarity condition (3.2). 
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The matrix elements of Tl2 (2) between three-body angular momentum states 

follow from (2.2), (2.5), (2.7), and (3.3) 

(PJM;wjmX~A2;X3/ Tlz(Z) IP’J’M’;w’j’m’X:X:;X~) (3.4 

= [u”12 [wW’]-’ [[(W,VO) E(w’,?J”)]-f S3(U -U’) S(V” -v”‘) hjjl 

X 
c/ 

do” dR”’ 62(f2rr - t-2”‘) U$(p;‘;p:“) 
u3 u; m ,I 

x uyL(z”-l; P) U’!,,(P:2’; I”) u$Jpy; I”)] * 

x 
1 
ucJi,(l”‘-l;p’) U$?&(P:,l;Z”‘) u$;,(p;r’;z”‘)] , 

3 3 

where 

P;i and pi’ are functions of u, v’, W, n’ 

. 

P{i’ and pi” are functions of u, 21’, W ‘, !A” . 

1” is defined by the condition that Z “-’ transform P to rest and Pr2 to a vector 

in the direction of the positive z-axis. Therefore, it is a function of u and a”. 
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Similarly 1 “’ is a function of u and R “’ . Integration over the final delta function 

sets 

Then 

c u$,,*(P:,‘; z”) u$),,(p:,“; 1”) = 6,,, . 
rn” 

Since qh’ = Z”-lp~’ and qi” = Z”~‘p~” differ only in magnitude of velocity, 

c (3) $1 *(p;‘, 1”) u$;(P;‘,P;“) q+; (PY, z”) = h,x; * 
3 3 

Q3 fli 

Finally, 

s 
dfl” U yiJ* (p’-1; P) ugJ,(z”-‘; P’) = 

s 
dS1” DiM*(R”-‘) D&&R”-‘) 

47r 
ZE- 

2J+l JJJl 6MM’ hi, - 

Therefore 
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i 

= [UO] 2 [WW’] -: [@v, 8) @v’, v”)] i 

1 Tlz(Z) IP’J’M’; w’j’m’X~ Ai; A;) 

x 63(u-u’) quo- V”‘) SJJ, &MM, 6jjt 6mml 

x qw - &y - m12v”) 8(W' - &gar - m12v”) r';2(Gliu"'; 2) , 

where 

Using (2.7), (2.9), and (3.3) to re-express the matrix elements of Tlz(Z) in 

terms of the plane wave basis gives 

(plhp2~2rp3~31 5712(z) IP;&‘;&‘;P;) P-6) 

= [ZP]” [WV’]-5 [p(W,vO) p(W’, v”,] + 

x b3(u - u’) b3(v - v’) O(W - cgar - m12v”) 

x 8(W’- &Ear - m12v”) 7l2(Pl,P2,P3lPi,P~,P~; 2) , 
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where 

712(Pl,P2,P31P:,Pd,P~ ; 2) 

= C C jJ12(pl,p2;.im) U593d) 

jm UU’ 

This expression can be simplified by substituting the explicit form for I’,, and 

noting that 

c uJ3z-1; PI4 u$i*(z’-‘; P;2) = D;u,(‘-l r’) , 
m 

where r and Y’ are defined by 

?$;(Z-1; P12) = Llj urn (r-l) 

u2)m(z’-1; P;2) = D;,m(r’-l) . 
Then 

712(Pl,P2,P31Pi,Pk,P~ ;z> 

= 
c N; $1; (~3; ~4) 

j 

x D;u,(r-l r’) U&*(p;;~‘) $b:‘(P;$) . 
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4. Integral Equations 

A particular coupling for the three-body angular momentum states is defined 

by the spectator a and the pair (a+, a-), labeled by A. The recoupling coefficient 

is 

PJM;w, jmX,+X,-;X, P’J’M’;wL j’m’X~+X~-;Xi 
> (4.1) 

= [u0/w3] [E(W,vji) [(Iv, v;‘)] k 6(W - W’) J3(u - u’) 

X ~JJ, 6~~1 L&(w jmlw’j’m’;W) , 

where 

&(w jmlw’j’m’; q = [w,v~) E(wJi:’ )] -+ q1 - I cosel) ((A)al(B)b) . 

The angle 8 and the abbreviated coefficient ((~)a1 (B)b) are given by W(31) and 

W(35). 

The integral equations generated by LM(3.22) for particles with spin are 

written in terms of the matrix I&, defined by 
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X 

X %
 

m
 

=-
V fi 3 0%

 
v‘

 

2 0,
 

2 I c 2 0,
 

=:
 

4 - x 3 r.0
 

- 



i &,(W w jmlW’w’j’m’;ZC) (4.3) 

=- SA,, c / dW” [S(W” - E:“’ - mAv2) O(W” - $far’ - m,vz’) 
X”X”’ 

X ,‘,1_ ZC E~(~p”; 2) 

x &B(w”jmlw”j’m’; W”) &tY’lG’ ; 2 ‘)I 

- c ZAD c 
D j”m 

c / dW” dvf’ [B(W” - .gar - m,vt) 
,, X”X”’ 

x e(w " - &iar - mDvE ") 
1 

W/l- zc 

X ri,(iZliZ”; 2) &,(w”jmlw”j”m”; W”) 

where 

x l&,(W” w”j’lm”~W’w’j’m’; 

Z C ) ]  9 

W;’ = w(W”,v~,m~) 

‘I 
WI3 = w(W”,v~‘,m~) 

W;’ = w(W”,v~“,m$ . 
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The summations over A” and A”’ represent summations over all intermediate 

helicities. 
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5. Probability Amplitude 

In order to connect the solutions of the integral equations (4.3) to the physical 

probability amplitude, the matrix elements of WAD(Z) must be re-expressed in 

terms of the plane wave basis. Using (2.3) and (4.2) gives 

= [u”]” [WW’]-f [p(w,?J;) p(W’,v;‘)]f J3(u-u’) 

(5.1) 

x e(w -+y- m,v:) e(w’ - afar’ - mBvi’) 

where 

21 



x c c c c J.F qg!fV;P) ~~(Pl,P2,P3Li4 
JM jm jlrn’ XX’ 

x lViB(W w j m /W’w’j’m ’; 2’) 

x lJKL*(Z’-l;P’) Bi(pi,pi,p{; j’m ’) . 

This can be simplified by noting that 

c u$p; P) ugL*(z’-‘; PI) = D;,,(s-‘s’) , 
M 

where s and s’ are defined by 

dJ) (z-l- P) = D;M(s-l) AM ’ 

U&(1 ‘-l; P’) = D;,&‘-1) . 

An interacting two-particle state is characterized by an invariant mass wA, 

angular momentum quantum numbers j and m , and other internal quantum 

numbers summerized by the single parameter ra. The clustered channel states, 

formed by the direct product of two-particle interacting states with plane waves 
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i for the third particle, satisfy 

The overlap of these states with non-interacting states defines wavefunctions 

=u 0 [R(WA,Zlji) zJ(wi, ?I;)] 4 63(u - u') b3(v, - vl) 

Then 

=u O [S(Wd1ll +:, ?I;)] 3 b3(u - u’) b3(v, -vl) 



where 

6 p,a: +(pa+ ya+,pa- h-I&i’m’d) 

(5.1), (5.2), and (5.4) are the generalizations of LM(5.1, 2.15, and 2.16), re- 

spectively, for particles with spin. The techniques of LM(Chap. 6) are directly 

applicable. We assume, again, that there are no degeneracies in the two-body 

bound state spectrum. LM(6.11) becomes 

X 
( u, uA, lcIA(rlLp,.ip mP,~P),~a~Q~~‘(Ep)~u,u~,~,(~p’, jP’mp’,yP’),p~) . 

The spar factors are fixed by LM(6.14) 

,pr = WP - 
2 w(Wp, z):, rnz) vy 

EH”” = Wp - u(Wp,vs)‘,m~) vf’ . 

By taking the matrix element of LM(3.18) between a bra and a ket formed from 
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the same helicity plane wave state we obtain an equation similar to LM(6.16) 

= - S(w4JyJ (W - wp)2 Pa+ k+,Pa- /-b-I~~,.iPmp97~)~2 . 

Define 

Then, in analogy to LM(6.18), we find the probability amplitude for elastic and 

rearrangement scattering 

= --x(pl,pZ,P3,~:) x(&h&&) (5.8) 

cd) ~~~AD(P~)P~,P~IP:,P~,P~ ;wp + iEC) . 

The amplitude is not explicitly invariant because the helicities of single particle 

plane waves are defined with respect to the frame of the observer. 
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The probability amplitude for free particle scattering is similar to LM(6.20) 

A(+)(Qo(P1 Pl,P2 l;tz,P3 p3)I@o(P{ l&P; /f&P; i-4) Y) (5-g) 

= -c [P(W,V;) p(w,V;‘)]’ [&, 63(v, -vi) ~I+)(P~,P~,P~IP:,P;,P;;W) 

*>B 

+ w(At,‘(Pl,P2,P3(P:,P:,P~ ;w)] - 

The probabilty amplitudes for breakup and coalescence are, just as in the 

scalar case, obvious extensions of (5.8) and (5.9). 
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6. Conclusion 

The techniques of Ref. 1 have been extended to include the effects of angu- 

lar momentum conservation and individual particle spin. The resulting angular 

momentum decomposed equations exhibit the same properties as the scalar equa- 

tions: exact unitary and physical clustering. 
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