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ABSTRACT

The self-consistent, Poincaré invariant and unitary three-particle scattering
theory developed in a previous paper is extended to include angular momentum
conservation and individual particle spin. The treatment closely follows that of
the scalar case, with the complete set of angular momentum states for three free

particles developed by Wick used in place of scalar plane wave states.
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1. Introduction

In a previous Lpaperl we presented a self-consistent, Poincaré invariant and
unitary scattering theory for three distinguishable scalar particles of finite mass.
The goal of this paper is to extend the treatment to particles of arbitrary spin

and to include the effects of angular momentum conservation.

Two concepts crucial to the development of a relativistic three-body scatter-
ing theory are introduced in Ref. 1. The first is the use of velocity conservation
in place of momentum conservation in order to separate Lorentz invariance from
the off-shell continuation in energy. The second is the introduction of factors
independent of intermediate state integrations into the relation between the two-
and three-body off-shell variables. Both ideas, as well as the general operator
form of the scattering theory, are used here without further comment. The only

differences are in the definitions of particle states and operator matrix elements.

A complete orthonormal set of angular momentum states for three free parti-
cles is developed by Wick. 2 Single particle helicity states, from which the angular
momentum states are constructed, are defined by the action of a Lorentz boost
in the 2 direction onto a particle at rest, followed by a rotation. In the spin zero
case, this is equivalent to LM(2.5). Throughout our discussion we adopt Wick’s

state definitions, normalization, phase conventions, and notation. For details,

the reader is referred to Ref. 2.

Chapter 2 extends Wick’s treatment to define another complete three-particle
basis, which is used in Chapter 3 to develop the two- to three-body connection.
The resulting angular momentum conserving integral equations are presented in
Chapter 4. Chapter 5 relates the solutions of these equations to the physical

probability amplitude. Chapter 6 summarizes the results.



2. Three-Body States

A proceedure similar to that used to obtain W(17) is followed in order to
obtain the matrix elements between states in the plane wave basis and states
in the three-body angular momentum basis. A Lorentz transformation h(P),

satisfying

h(P) P° =P,

is applied to W(24).3 Then the operator acting on lql Vi,q2 V2, q3 )\3> is
L=H(P)S.

The rotation s is specified by p1, p2, and ps through

s=h"Y(P) I
and

pn=lq

" p2=lge

ps=1lgs,

where p1, p2, and p3 are restricted to obey

p1+ps+p3=P



(p1 + p2)? = w? .

An integration variable change gives

& [pa/wW] siné db dU,
= dpy dps dps 6((p1 + p2)® — w?) 6*(p1 + p2 + ps — P) .
With
L |qv1,92v2,q3 /\3>

= Y Ufﬂ,l(pl;l*) Uft?,z(pz;l) UfZ)As(ps;l) plul,pzuz,p3u3>
By Hg By

and

Din(s™) = U P)

we find



<P1 K1, P2 K2, D3 Ns]P'J'M'; w'7'm' AL Ag; A3> (2.1)
3 ; 4 2 12
= 4 [wW/pq]® Ns+ Nj» €772 6%(P — P') §(w* —w'")

x doi(0) D d3ty (B1) 42, (B2) USTyy (177 P)

Vv,

x U, (p13) U?, (pasl) U (psil)

where

M= — A

A'=m'-—>\3

(V1

Nj = [(27 +1)/4n] 7,

and ! is specified by the condition that [~! transform P to rest, ps to a vector
in the direction of the negative z-axis, and p; to a vector in the zz(z > 0)
half-plane. The angles 0, 8;, and B; are functions of W, w, and (pz + ps)?, as
indicated in W(Fig. 1).

In the three-body angular momentum basis completeness involves an inte-

gration over

d*P d(w?) = [W/u®] [¢(W,0%)] " aW dPu do® (2.2)
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where

w = w(W,v°,mk) .

In order to streamline the forthcoming equations, we adopt a matrix notaton.
Underlined symbols represent elements of (2s; +1)(2s2 +1)(2s3 + 1) dimensional

square matrices. The particular elements under consideration will be obvious

from the context. Thus

(1 w1, pa 2, po | P1I M ' Xy Aas s ) (2.3)
2 2 -1 1
= [u?/W3] [V (v°" = 1)]7% [p(W,2°) UMK
X §(W —W') 83(u—nu') §(v° —v°)

J! _ —_ .
x Ny UYL (171 P) Byglpr, pasps; i'm')

where

Bia(p1spo,pasim) = Ny e a7 ,(0) Y d3 a2, (62)

ViV,

x UL (p130) U (p230) UL, (psid) -



Ei9(p1,p2,p3; J m) satisfies

6771 SMmMr 8550 bmmt 6x a1 8y x1 63 a1 (24)
*
= Z/dﬂ dp [NJ Uit P) Elz(pl,pz,ps;jm)]
W

X [NJr U,(\J.A},(l‘l;P) Elz(pl,pz,pa;j'm')] ,

where the summation over u represents a summation over all intermediate helic-

ities, and 1 is defined through
v = [v[? dv] d2 = [v°° — 1] v° dv® dn2 .

The operator scattering equations detailed in Ref. 1 will be evaluated in
terms of matrix elements taken in the three-body angular momentum state ba-
sis. However, the connection between the two-body input and the three-body
problem, developed for the scalar case in LM(Chap. 4), is easier to discuss in
terms of another basis. We theréfore define a new three-particle basis through
the direct product of two-particle angular momentum states |P12 jmol 02> and
single particle plane waves |p3 03>. Since the helicities in the two-particle angular
momentum states are internal variables, !Qm imA A2> and |q3 /\3> in W(20) can
be identified with |p? A1> and \pg /\2> in W(5). Performing the steps leading from

W(5) to W(17) in an analogous manner on W(20), and noting that

APy = §(P% — w?) d'Piy



gives

<P12jm01 023 s Us\P'J'M';{iU'J"m'/M A2; >\3> (2.5)
3 4 ' 2 )2
= Ny [4W/q]® §*(P ~ P') §(Prs" —w ) 6551 652, Bo 2,

x UL (75 Py US) (Pra3 1) U(S‘Z’)As(pa;l) ;

where

P = P13 +p3,

and ! is specified by the condition that =} transform P to rest (P = 0) and P2

to a vector in the direction of the positive z-axis.

The orthonormality and completeness of this new basis follows from the prop-

erties of the direct product

<P12 jmoy og;ps 03| Py j'm'o] og; a§> (2.6)

= 54(P12 - P1,2) g(p3apé) 5]']" dmm! 50'10" 50'2627 708

1

where

5(p3,p3) = 2p3 8%(ps — p3) -
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Completeness involves an integration which is convenient to write as

d*Pyy dps = [w? w(w,vo)]_l du v dw (2.7)

= [W3/u®] [(4W/q) E(W,0%)] " dW dPu do® dO1 .

The projection onto the plane wave basis is

<P1 K1, P2 12, P3 M31P1'2 J'm'oy 025 ps 03> (2.8)

1

= K; [40/p]* ° w(w,o°) 8%(u —u') (v —v") 6w —w')
X byo, U(Sln?(l—l;Pm) U,(flzfl(m;l) U;(zilz(m;l) ,
where
O =01 — 02 ,

and ! is specified by the condition that {~! transform Pjs to rest and p; to a

vector in the direction of the positive z-axis. Thus

<P1 K1, P2 2, D3 us’Pl'z 7'm'oy 09; ps 03> (2.9)

[

= u® [¢(w,v°) w(w,v?)]? 63(u—u') 63(v —v')

x §(w—w') Lyp(p1,p2;5'm') ,



where

- i . ]
Lyo(pt, P25 m) = Kj 6oy UL Pr) UL, (p130) US) (p31) -
T1.(p1,p2; 7 m) satisfies

G0 b b Br,03 Grgoy = 3 [ €8 Tiapr,pns i m) Tualpn, s ') - (210
"
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3. Two-Body Input

To the requirement of Lorentz invariance and unitarity imposed on the two-
body input in LM(4.5) we add here angular momentum conservation. The two-
body transition matrix elements taken between angular momentum states must
conserve both the total angular momentum and its projection along the z-axis,

and must be independent of the particular value of the projection. Therefore

(Prajmaada| t(2) [Plys'm/M M) (3.1)

IS

0

2 - ] :
= [uls]” [ww']™® 6 (w12 —uip) &jr S Til,\z,,\;,\;(w|w';z) .

As in LM(4.5), Z is given by
0
Z == Z/ul2 .
77 is a matrix in which each element is associated with a particular combination

of incoming and outgoing helicities. The A subscripts will not be shown explicitly

in subsequent equations when their values are obvious from the context.

Two-body unitarity in operator form is given by LM(4.4). Taking matrix el-

‘ement between two-body angular momentum states leads to the matrix equation

ww'; Z1) — 7 (wlw'; Zp) (3.2)

1 1

] 1 !,
w,/__Zl w[,_zz TJ(w lw sZZ)'

_ (22—21)/dw" i (wlw'; 24)

The connection to the three-body problem is governed by the same consid-

erations as in the scalar case. Matrix elements of the non-interacting resolvent
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conserve linear momenta, angular momenta, and helicities. Clustering requires

velocity conservation in both the two- and three-body systems. Therefore

<P12 Jjmoyo2;p3 03{ T12(2) |P1'2 j'm'o| og;p4 U§> (3.3)

(ML

= [0 [WW'] 73 [(16 WW'/qq') £(W,°) EW',0%)]

!
X 53(11 - 11/) 5(’()0 -0 ) 52(Q - QI) 6551 Omm Ugilé(p%pé)

X O(W — eb™ — myav®) O(W' — b — my200) sz(u'ﬂﬁ)" i Z),

where

_We have defined

and
Up;p') = U p") = Upsl)

for a Lorentz transformation ! which satisfies p = Ip’. Using (3.3) to evaluate
the matrix elements of LM(3.19), the unitarity condition for T13(Z), reproduces

the two-body unitarity condition (3.2).
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The matrix elements of T12(Z) between three-body angular momentum states

follow from (2.2), (2.5), (2.7), and (3.3)
<PJM;wij1/\2;/\3] Tia(2) |P1T'M 3w m'A] M) (3.4)

3

= [u]® WW']7F [e(W,00) (W ',0°)] ¢ 82 (u —u') 6(° —°) &0

par

X Ny Ny 0(W - sgar — mlzvo) H(W' — €3

— my0°) 7, (@3 ; 2)

% Z /dﬂ” o' 52(911_0111) 5()7 (p3 ,p'”)

! X
Oa 0 M

% [Uj(\‘zjv)[(l”—l;P) U,(,f?,m(sz';l”) U(az\a(pél;l”)]

T3

% [UI(JA'/)II(IIH—I;P/) ( ") (PIH lIII) U(%Z\l( 1, l'”)} ,

I!ml

where

P/, and p;’ are functions of u, W0, W, Q'

P/s" and pj'’ are functions of u, o0, Wl

1! is defined by the condition that 17! transform P to rest and P13 to a vector

in the direction of the positive z-axis. Therefore, it is a function of u and o,
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Similarly {'"! is a function of « and 1'"". Integration over the final delta function

sets
P
ulp=ulf .
Then
ZU]"m PII lll) m"ml(P1,2”’l”) = b -
mll
Since g’ =1""" 1 pi and ¢! = l”—lp_.’j” differ only in magnitude of velocity,
Z Uc(ra))\ (p” l”) U() (p3 ,Pé”) (%2\'( 1 lll) _ 5,\3/\:; )
0303
Finally,

[t v ey v = [ 9" Dias’ @) DEirer(@")

4
= T 6771 6pamr G -

Therefore
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(PJ Mswjm s ,\3’ T2 (2) IP’J’M’;w'j’m’A{ M) (3.5)

W=

=[] W13 [6,0%) €W ',00)]
X 63(11 —u’) 5('00 - ‘UO’) 5]_]' 5MMI 5]']'1 6mml

X 0(W - sgar — mlzvo) G(W' - Egar - leUO) Z{z(wla' ; Z) )

where

(BT 2) = 6y 5y (@5 Z) .

Using (2.7), (2.9), and (3.3) to re-express the matrix elements of T12(Z) in

terms of the plane wave basis gives

(P11, p2 2, po iz Ti2(2) |1l 24 b0l 1) (36)

=

= [u)? WW']"3 [p(W,0°) p(W',v°)]

x 63(u —u') (v —v') 4W — 2 — mya1°)

X 9(W’ - Egar - levo) ZlZ(plip%pSlp{’pé,pé;Z) ’
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where

112(P1,p2,p3|1){,p£,p:§ 3 Z)

= 3 Lualpr,pzsim) US), (ps; p3)
jm oo!
X (wlw s Z) Lia(p1,pgs9m) .

This expression can be simplified by substituting the explicit form for Ty, and

noting that
ST UGt P) UG, (1 PY) = D(r ),
m

where r and r'! are defined by

UG (™ Piz) = DI, (r)

o

. -1 . ~1
Ugim'™3 Pl) = DY (r'7)

Then

732(P1, P2, P3|p1, P. P33 2)

=Y N ,ﬁL (p3; p3)
J

e
z
N

(p231) T3y (W &'

x 35 (i) Ul

! !
0105 0,02

7:

oo!

- 1) * 2) %o,
x DI, (i) U (pf31) UG (p331") -
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4. Integral Equations

A particular coupling for the three-body angular momentum states is defined
by the spectator a and the pair (a+,a~), labeled by 4. The recoupling coefficient

is

(PI Msw,jmdas dai X

P'IM 5 w) i mI AL M ,\,;> (4.1)
= [u®/W?] [£(W,03) E(W,v) ,)]% §(W —~W') §%(u—u')
X 6750 6 Afp(w jmlw'j'm! ;W) ,
where
‘_A_iB(wjm|w'j'm';W) = [£W,)) S(W,Ug')]_% 0(1 — |cos0]) {(A)a|(B)b) .

The angle 6 and the abbreviated coefficient ((A4)a|(B)b) are given by W(31) and

W (35).

The integral equations generated by LM(3.22) for particles with spin are

written in terms of the matrix WY, defined by

17



(PIMiwaimhas dasi A

W.s(2) ‘P'J'M'; wy 3'm! AL A _; /\£> (4.2)

= [w]® WW'] 7 63(u—n') 6151 Samar [£(W,00) W', u3")?

X O(W — &8 —m,0l) (W' — 2’ — 00’

A b

X Wi, (Wwjim|Whw'j'm'; 29 .

Then
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W (W wimW'w'j'm'; Z9) (4.3)

=— 8,5 Z /dW” [G(W"—sg“r—mAvg) 0(W”—s§ar'—m5vg,)
Al'AllI

. . x ~ ~
X éﬁu(w”] mlwIIJImI;WII) _’Cz; (wll|wl;zl)]

S8 YN [ o - e med
D

]'IImII_AIIAIII

: o't 1
X 0(W”—€§’tr — Mmp¥, ) m

X 1],;(17)/|ﬂ)/”;2) _A_fD(w"J'm|w"J"'m";W”)

% Mg[}(WIIwIIJ-IImIIIWIwI]-ImI;ZC)] ,

where

wzlal = w(W”’UgamZ)
'
wh =wW'" 19" mk)

"o nooll 9
w,) =wW' v ,m3) .
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The summations over A'' and A''’ represent summations over all intermediate

helicities.
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5. Probability Amplitude

In order to connect the solutions of the integral equations (4.3) to the physical
probability amplitude, the matrix elements of W,;(Z) must be re-expressed in

terms of the plane wave basis. Using (2.3) and (4.2) gives

pl .}, vl 1) (5.1)

<P1 M1, D2 K2, D3 us‘ W.o(2)

! !
X O(W — b —m,vl) 0(W'—ep™ — mpv

x W,,(p1,p2,3|P1,P2s P33 Z°)

where
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lV_AB(PlaPZaP3|P{,Pé,P:§ 1Zc)

JM 7m j'm' AA

X W (WwimW'w's'm'; 2%

J -1 . )
x UG, ("7 PY) Eb (vl phophs 5'm)
This can be simplified by noting that
> UM P) Uy @7 P = Diule™ o

where s and s’ are defined by
US (5 P) = Dl (s7™)
USR5 PY) = Dina(s™) -
An interacting two-particle state is characterized by an invariant mass w,,
angular momentum quantum numbers j and m, and other internal quantum

numbers summerized by the single parameter «,. The clustered channel states,

formed by the direct product of two-particle interacting states with plane waves

22



for the third particle, satisfy

u’,ui,%(w’,j’m’,v’),o;> (5.2)

<'u'a u’A,d)A(w,jmav)aaa
— 0 o 753 ) 53 —vY § " .- Py 5
=u w(wA’vA) (u u ) (VA VA) (wA’wA) jj! Omm! Oy, ~) 95,0} -

The overlap of these states with non-interacting states defines wavefunctions

<PAjm0a+ Oa-3Pa Oa ulauia"pA(wl,jlm,a'Yl)saé> (5.3)

(M1

63(u—u') 3(v, —v!)

= u® [w(w,,v]) w(w},vd)] :

A A VA

X 6]']" 5mm' 50,,0’.{ z,bf,(w,ou. aa_|w','7') :

Then

<p1 H1,P2 12,DP3 /1'3’ul’ui>¢A(wl’]-'ml,'7,),oé> (54)

= [¢(wa,09) w(w!,02)]7 63(u—u') (v, —v')

X byt Y (Pat MatsPa- Na—lw,:aj,m'a’ﬂ) )
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where

5;;“0,{ ¢(Pa+ Ha+,Pa- Ha- lw,_,,ﬂ, ].Imls "7',1)

. !
= LA(PI,PZ;JI,mI) ¢i (‘U),O'é_,*_ U;I—le,,yl) 50":’0": .

a-ll
(5.1), (5.2), and (5.4)are the generalizations of LM(5.1, 2.15, and 2.16), re-
spectively, for particles with spin. The techniques of LM(Chap. 6) are directly
applicable. We assume, again, that there are no degeneracies in the two-body

bound state spectrum. LM(6.11) becomes

1 : : . 1
g im (¢’ <p1 K1, P2 K2, P3 uale(Eerw)\p{ K1sPs Ky P3 ué> y L)
41 TR
= [g*(wA,vg) g(wz’;’vg )] : [W(NB""E) w(ugl,vg )] 2 (5'5)

X (Do Mat>Pa- Ma- |18, 7P mP,A8) ¥* (ph, po,,Pi_ py_ |08, 7P 'mP ' AR ")

X <u’ uA, ¢A (:u'p’jp mp> ’Yp)alj'a 1(4.;) (EP))’U,, u{-n wB (.u'p’ajp’ mP” ’Yp’)a /'LI:> .

The €P?T factors are fixed by LM(6.14)

Par . WP _ P 0 n2) .0
g =WP —w(WP v',mi) v;

par! __ o! 2y ,0!
e =WP —w(WP v ,mi) v, .

By taking the matrix element of LM(3.18) between a bra and a ket formed from
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the same helicity plane wave state we obtain an equation similar to LM(6.16)

VI W3 p(w,v?) lm (—ie,) 7,(p1,p2,P3|p1, P2, P35 1 + d€,) (5.6)

ea—0

= — ¢(wa,v) (W — WP)? |4h(pay HatsPar pa |8y 5° mP,~R)|* .
Define

X(PlaP2,P3, ,U,?)

pie
(M

[— lim (—ie;) 7,(p1, P2, P3|p1, P2, p3 s P +i€;)]”

61——'0

= [U(I) w3 w(“?’v?)]

Then, in analogy to LM(6.18), we find the probability amplitude for elastic and

rearrangement scattering

-’q(+) (@A ('U,,'U,A, ¢A (:u’p’jp mp’ ’7p)3 Na)) IQB (ua uzln ¢'B (:u'p,,jp ! mP’, '7p I)’ ll‘é)) ;WP)

= — x(p1, P2, p3, 48) x(p{,ps, P4, u2") (5.8)

x lim  lim (—es€p) W, (p1,p2, P3P, Pg, P33 WP + 1€°) .

€a—0 ;-0

The amplitude is not explicitly invariant because the helicities of single particle

plane waves are defined with respect to the frame of the observer.
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The probability amplitude for free particle scattering is similar to LM(6.20)

A) (@o(p1 11, P2 M2, D3 43) |®0(p{ 11, Pg e, P53 u3) s W) (5.9)

= - Z {P(W,Ug) p(W’UgI)]E [5“3 53(VA - v,,g) Z&+)(plsp2sp3lp{spéapé;w)

A,B

+ M&:)(plsp2a p3lp{a péa p:; sW)] .

The probabilty amplitudes for breakup and coalescence are, just as in the

scalar case, obvious extensions of (5.8) and (5.9).
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6. Conclusion

The techniques of Ref. 1 have been extended to include the effects of angu-

lar momentum conservation and individual particle spin. The resulting angular

tions: exact unitary and physical clustering.
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