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1. Introduction 

Consider a Fermi field coupled to a Bose field by the trilinear form X$&J , 

In one time and one space dimension, one has 3 constants of motion: the total 

energy E, the total momentum P, and the total charge Q. Here E and P 

are components of a Lorentz vector, whose contraction is the invariant mass 

squared M2 = E2 - P2. Upon quantization at equal time, E, P, Q and M2 

become operators which commute mutually. Their simultaneous diagonalization 

is equivalent to solving the equations of motion for the operator fields, i.e. the 

Klein-Gordon and the Dirac equations. Brooks and Frautschi[‘l have studied 

this problem numerically in the “number” or Fock space representation. The 

number of Fock states with the same P and the same Q has no upper limit, 

the dimension of the Hamiltonian matrix is therefore unlimited as well. By 

introducing an artificial length L and a momentum cut-off A, the matrix can be 

made finite, though large, and can be diagonalized numerically. One must then 

be able to show that physically relevant results do not depend on either L or A. 

Because of the difficulty of the numerical work this has not been done in practice. 

The same problem can be treated in a different way”’ by quantizing the fields 

at equal light cone time r = t + x. Again one has 3 constants of motion, but they 

appear as the total light cone energy P- = E-P, the total light cone momentum 

P+ = E+P, and the charge Q. The operators P- and P+ are again components 

of a Lorentz vector, whose contraction is the invariant M2 = P’P-. Since 

Q, P* commute mutually, they can be diagonalized simultaneously. One can 

formulate the problem in Fock space representation, introducing again two formal 

parameters, a box size L and an ultraviolet regulator A. Thus far everything is 

analogous, if not identical, to the usual quantization; in fact, if done correctly, 

one can switch back and forth between space-time and light cone quantization, 

since the representations are connected by a unitary transformation. But there 

is an essential difference: on the light cone only a finite number of Fock states 

can have the same (light cone) momentum and the same charge, and therefore 
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the mass matrix has a finite dimension to begin with. All this was discussed at 

length in paper 1”’ , as well as the fact that the operator M2 = P+P- is strictly 

independent of the box size L. 

The present work has three objectives. (1) W e d emonstrate, that the physical 

results, the mass spectra and the eigenstates, become independent of the cut-off 

A in the limit ; --+ 0. This is discussed in sections 3 and 4. (2) We show 

that the discretized light-cone quantization method as developed in the earlier 

paper I21 is feasible, and that no difficulties arise obtaining numerical solutions for 

the bound state spectrum and the bound state wavefunctions. In some cases we 

give exact analytical solutions (see section 3). In the same section, we discuss the 

question of renormalization. In order not to overload the paper with numerics, we 

restrict ourselves to the charge 0 and charge 1 sectors. (3) Last but not least, we 

convince ourselves (in section 5), that the numerical results obtained with light- 

cone quantization are not in conflict with those of space-time quantization. 111 

In section 6, we summarize the main results, and discuss discretized light-cone 

quantization, in particular to which extent the case of scalars in l+l dimensions 

might be useful for developing methods suitable for the more interesting fields in 

3+1 dimensions. 

2. The Model and the Notation. 

The Lagrangian density 

specifies the physics of a fermion field II, interacting with a boson field cp. In one 

space and one time dimension, the canonical procedure generates three constants 

of the motion. In light cone notation [‘I , they are the total (light cone) momentum 

P+, the total (light cone) energy P-, and the total charge Q. If one expands the 

fields into plane waves, and requires them to be periodic operator functions on the 
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light cone space interval (-L, L), then &, P+ and P- become operators acting 

in Fock space, i.e. they can be expressed in terms of creation and destruction 

operators for fermions (i.e. bf, and b,), antifermions (i.e. df, and d,) , and bosons 

(i.e. afi and a,), which obey the usual commutation relations. More specifically, 

one writes the fields as 

dz) = g & (a, e-ik=z, + ai e+ik,“z, > , and 

ti(z) = $ -& (b, e-ik:z, + dt, e+ik,Yz, >, 

with discretized single particle light cone momenta 

k:=Fn , n = 1,2,.--A . 

The single particle light cone energies are 

k, = 9 mi 
k+ 

and k, = - 
n k+ ’ n 

(2.2) 

(2.3) 

(2.4 

for fermions and bosons, respectively. The spinor u is independent of n. One 

should note the introduction of two additional and formal parameters, i.e. the 

bos size L, and the maximum single particle momentum, the cut-08 A. 

As a peculiarity of working on the light cone, one can isolate all the depen- 

dence on the light-cone boz size L rather neatly, i.e. 

P+ = ? K and P- = -& H , thus M2 E P’P- = KH, (2.5) 

and work with the operators K and H which do not depend on L. 
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In the Fock space representation, two of the three operators are already 

diagonal: 

Q = CQbn - &dn and K = C ,(a;,,, + b!b, + df,d,) . P-6) 
n n 

The Hamiltonian H is rather complicated, non-diagonal and split up according 

to 

H=HM+Hv+H~+H~. P-7) 

Its mass part HM, 

HM = c i LaLan cm& + !J201,) + bibn (m$ + g2pn) + dLdn (m; + g2qn) 1, 
(2.8) 

n 

depends on the bare Fermion and Boson masses, and on the self-induced inertias 

Q, p and 7, defined below. The uertez purt Hv of the Hamiltonian is linear in 

the coupling constant g E -&=, 

Hv =gmF c (btb k ,cf+bibkq) [{k+lI--m}+{kl+I-m}] 
kJ,m 

(dLd,cf + d~dkq) [{k + II - m} + {kl + I - m}] 

(bkd,,&f + dib:q) [{Cc - II + m} + {ICI - I+ m}] , 

while the seagull part 

Hs =g2 c blbmcfcn [{k-nil-m}+{k+lI-m-n}] 
W,wn 

+dLdmcfcn [{k-nil-m}+{k+lI-m-n}] 

P-9) 

(2.10) 

+(dkb,cfc+ + bidLc,cl) {I - kin - m) n , 
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and the fork part HF of the Hamiltonian, i.e. 

HF = g2 C (btk;Lcfc~ + bt,bkCnCl) (k + Z(n - m) 
Wm,n 

+(d~dmcfc~ + &dkCnCl) (k + lln - m} 
(2.11) 

+b:dkcfcn [ {k - njm + I} + {k + Ijrn - n}] 

+dmbkc?,cl [ (k - nlm + 1) -t- {k -I- llm - n)l~ 

are proportional to g 2. We use the abbreviation c, G h fi. The matrix element 

{ nlm} conserves the light cone momentum and has the values 

‘n’m’ = idrn,+ 

if n = 0 and m = 0, 

if n # 0 and m # 0 . 
(2.12) 

The self-induced inert& depend explicitly on the momentum cutoff A, i.e. 

A 
a n= C{ n-mlm-n)-(n-kml-m-n), 

m=l 

Pn= k ;{n-,I,-n> and 7n= 5 z(n+ml-m-n), 

(2.13) 

m=l m=l 

and will be discussed to some detail in the next section. 

. As for the notation, we shall label the eigenvalues of H or of KH 

M2 Ii) = Mf Ii) , (2.14) 

as opposed to the diagonal element for each the Fock state 1;) , i.e. 

Di = (;I M2 Ii) = Di = (iI H Ii) K . (2.15) 

Since K is diagonal, H and M2 have the same eigenstates. After renormalization, 

M2 has only positive eigenvalues. In line with conventional interpretation, one 



identifies the lowest eigenstate of M2 with the physical particle of charge Q. The 

physical boson has charge Q = 0 and physical mass 6B, the physical fermion 

has charge Q = 1 and a fixed mass 6~. This can be achieved by the freedom to 

choose the mass parameters mg and mF, the bare masses as they appear in the 

Lagrangian. The renormalization of the masses, i.e. the finding of the functions 

mB = mB(zF,GB,S,K,A) and mF = mF(~F,~B,SK,A) (2.16) 

is the major problem one faces in the numerical work for strong coupling. In 

principle, one should renormalize also the coupling constant, but this finite renor- 

malization can be postponed until dealing with a scattering theory. 

The structure of the solutions depend to some extent on the choices of the 

physical masses. Although we have done calculations with various parameters, 

we shall present results for only two sets. The first one may be taken as a 

representative for &jiB < &F, i.e. 

FiiF = 6.7 and 6iB = 1.0 (2.17) 

in units of the pion mass, for example, and was used by Serot Is1 in order to 

produce reasonable binding in one-dimensional nuclei. The second one, i.e. 

6iF = 0.3 and jiiB = 1.0, (2.18) 

is introduced mostly for the purpose of comparison with the results of Brooks 

and Frautschi”’ and may be taken as a representative for 6jiB >> %F. 
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3. The Self-induced Inertias and the Fock Space. 

The self-induced, instantaneous inertias arise from normal ordering the sea 

gull graphs”’ . This murky birth might be an explanation why they have appar- 

ently not been noticed before. Their existence is not specific to a scalar theory 

nor to one space dimension; they will appear also in the three dimensional treat- 

ment of QED and &CD. As a matter of fact, they play an important role in 

the renormalization of the bare masses and in finding the exact spectrum. If 

one analyses their origin in time-ordered perturbation theory in the way done by 

Weinberg [‘I , they turn out closely related to vacuum polarization and self-energy 

terms. In a way, they represent a resummation of certain graphs to all orders. 

It is therefore instructive to analyse their dependence on the momentum 

cut-off in somewhat greater detail. With the identity 

n 1 1 
m(n-m) =K 

-- 
m - n’ (3-l) 

the self-induced inertias, as defined in Eqs. (2.13), become for the fermions for 

example 

Since & changes sign in the sum, one rewrites this as 

A 1 n-l 

c 
- = 
m-n c 

m=l,m#n m=l 
&+ 2E1 &+ 2 y-&Y 

m=n+l m=2n 

and notes that the two first terms cancel each other. Treating on and rn in the 
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same way one gets 

1 A. 1 A 1 
%a=--- - - n c m-l-n c 

m=l m=2n+l 
m-n’ 

and 

A 1 
7n=+C; -e&u 

m=l m=l 

One notes already at this point that logarithmic divergences pile up for on, 

while they cancel in Pn and 7n. To be more specific, one replaces summation by 
1 

integration, i.e. substitutes ‘&+ by 1”:” dm to obtain in lowest order of 
‘-3 

n 
4 

CY, - 21n(2n + 1) - i - 21n(2A + l), 

Pn N ln(2n + 1) - E + L- 
A+ t’ 

and 
(3.4 

7n - ln(2n + 1) - 5. 
2 

Obviously, the boson inertias diverge like In A plus negligible terms in (i)“, while 

the divergence cancels in the fermionic inertias with terms in i surviving. Note 

that both the differences an - am and the fermionic inert& @  and 7 become 

independent of A in the limit A + 00. 

The approximation (3.4) reproduces the exact numerical values, as given in 

Tables 1 - 3 within a few percent. The numbers show quite nicely the expected 

convergence with increasing cut-off, but the convergence is slow. In the numerical 

work, we use the value A = 2048, if not noted otherwise. As we have tested in 

various calculations, this value is sufficiently large to erase the dependence on A 
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to within 3 significant digits in all numbers quoted below, in particular in the 

mass spectra. 

In order to solve the spectra, one chooses the Fock space representation, and 

enumerates all possible Fock states with the same eigenvalues of the momentum 

K and the charge Q. As discussed elsewhere”’ , their number is finite, and we 

refer to it in short as the Fock space dimension. A typical Fock state can be 

written as 

Ii) = lnl,nz ,..., nN; fil,@ ,..., AR-; ii~1,fi~2 ,..., ii?) 

- (bnlbn2 . . . bnN)+ (dr,dR,. . . da,)+ (azaz . . . a;;) + lo) ci . 
(3.5) 

It is antisymmetric in the fermionic, and symmetric in the bosonic coordinates, 

i.e. in the N occupied momentum states n;, which by convention carry a bar for 

the antifermion and a tilde for the boson momenta. The constant Ci ensures the 

normalization (iii) = 1 on the interval (-L,+L). The finding of all Fock states 

with the same K and Q is a non-trivial combinatorial problem, which can be 

solved efficiently on a computer. As can be seen from Table 4, the Fock space 

dimension increases rapidly with increasing K for Q fixed, but decreases with 

increasing charge Q for a fixed K. 

The Fock space vacuum 10; 0; 6) = IO) h as no occupied light cone momentum 

states at all. It has charge Q = 0; momentum K = 0, and because of the latter 

also an invariant mass M = 0. It is the only state with these quantum numbers, 

and therefore is an eigenstate to the Hamiltonian H: As is well known 15’ , in light 

cone quantization the Fock space vacuum is identical with the physical vacuum, 

as opposed to space-time quantization. 

But so far it has not been noted that other Fock states are eigenstates of the 

Hamiltonian as well. In fact, we can differentiate at least two classes of them. 

The first class has Fock space dimension 1, similar to the vacuum state, which 

we refer to as primitive states. As one sees from Table 4, every charge sector has 
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at least one primitive state, the one with total momentum K = Q(Q + 1)/2. 

This is understood easily. Imagine a Fock state with no bosons and antifermions, 

but with Nf fermions, occupying the lowest possible momentum states, i.e. 

ll,2,..., - ,” Nf;O; 0). The state has a total charge Q = Nf and a total momen- 

tum K = Nf(Nf + 1)/2. It is impossible to construct any other state with the 

same charge and the same momentum: The Fock space dimension is 1, and the 

Fock state is thus an eigenstate of H. 

To the second class of states we shall refer to as angel states: By definition 

they have no finite off-diagonal elements with any state. They have the structure 

10; Ti; I”). As they do not interact, they are pure, like angels. Angels contain 

neither fermions nor antifermions, and therefore have charge Q = 0. As a con- 

densate of momentum 1 bosons they have total momentum K. Let us study, how 

the Hamiltonian acts on these states. All terms with destruction operators b, 

and dm vanish, because the condensate is a vacuum with respect to fermions or 

antifermions. The only non-vanishing contributions of Hv must have the opera- 

tor structure d;bfal, but the corresponding matrix element {k + II - 1) vanishes 

for any positive k or 1. A similar result holds for Hs. The only non-vanishing 

terms must have the structure dLb!alal, but the corresponding matrix element 

{k - 111 - I} vanishes for k = 1 = 1. Thus, angels are eigenstates of H with an 

invariant mass squared 

Mi = K2(m& + g2cq). (34 
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4. The Mass Spectrum as Function of Harmonic Resolution. 

The Fock space dimension not only is finite, it can be as small as 1. Since 

a 2 by 2 matrix can be trivially diagonalized, a number of cases can be treated 

analytically. In the sequel, we shall increase the resolution stepwise in order to see 

how the invariant mass spectrum gains complexity as a function of the harmonic 

resolution K. 

4.1 HARMONIC RESOLUTION K = 1 . 

According to Table 4, one has only primitive states for K = 1. Their Fock 

representation and diagonal elements D are explicitly 

lb) = lO;o;i’) with Db = rn; + cqg2 , and 

If) = (1;Ti;b) with Df = rn$ + p1g2 . 
(4.1) 

It is natural to identify the single Fock state in the charge 0 sector with the 

physical boson state lb), and the single Fock state in the charge 1 sector with the 

physical fermion If). Renormalization is easy in this case, i.e. 

mF-mF 2 - N2 - p1g2 and rn$ = i?ig - cqg2 . (4.2) 

The mass spectrum is reduced to the identity, Mf = 6~ and Mb = 6~3. At 

the lowest level of resolution, one has thus a tautology. 

-4.2 HARMONIC RESOLUTION K = 2. 

Increasing the resolution by one unit, one has already three Fock states for 

Q = 0, i.e. 

11) = IO;“; 5’) with D1 = rni + g2cq , 

12) = Ii;i;6 ) with DZ = 4m$ + 2g2(P1 + 71) , (4.3) 

13) = lo,9 I”) with 03 = 4m$ + 4g2al . 

All off-diagonal elements vanish: The Fock state 13) is an angel state, which 

cannot interact with any other state. The interaction (11 H 12) is zero, because 
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the vertex part has a vanishing matrix element for equal fermion and antifermion 

moment a. Thus, all three Fock states in the charge 0 sector are exact eigen- 

states of the Hamiltonian, with invariant masses Mf = Di, provided one has 

renormalized the bare masses. 

Boson and Angel Renormalization. How does one have to intepret the states, 

Eq. (4.3) ? One of them must be taken as the fermion-antifermion, the quasi-pion 

state; i.e. Ifr) = 12). B t h h u w ic one of the two remaining states is the better 

boson state lb)? 0 ne cannot label the states according to the boson number aion, 

since it does not commute with the Hamiltonian. For small coupling constant, DI 

is less than D3, and therefore one has to identify lb) = 11) in line with convention. 

This choice fixes the bare mass in boson renormalization 

rn; = Gig - g2a2. (4.4) 

By substitution, one obtains the invariant mass of the angel state Jbb) 

ikf;b = 4%; - 4g2 (CY2 - (Yl). P-5) 

According to Table 1, (~2 - or is positive; eventually, beyond the critical value of 

the coupling constant 

gc(K=2)=6B 
3 

4(w - 3)’ (4.6) 

the angel mass will intersect the boson mass. For even larger values, one is in 

conflict with convention, since the lowest eigenvalue is not 6~. One maintains 

the conventional interpretation by switching over to angel renormalization 

rni = $65 - g2al for 9 L ii@). 

For arbitrary K the angel renormalization is given by 

GB 2 m&= 7 ( 1 - g2w for g 2 s,(K), 

(4.7) 

P-8) 

according to Eq. (3.6) . N ow, the angel becomes the physical boson with invariant 
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mass l&b = 6~3, while the “boson” becomes an excited state with invariant mass 

+ g2(a2 - ~1) for 9 2 h(2). (4-g) 

Its mass is aZways larger than %. 

Fermion Renormalization. The invariant mass of the quasi-pion state can be 

given only when the bare mass mF is expressed in terms of the physical masses, 

which shall be done next. According to Table 4, one can construct 2 Fock states 

for charge Q = 1, i.e. 

11) = 12;0;1, ) with D1 = rn$ + g2p2 , 

12) = ll;B;P) with 02 = 2rng + 2rni + 2g2(/& + aI) + g2 . 
(4.10) 

Note that the seagull part gives the contribution g2 in D2, while the vertex 

part of the Hamiltonian generates the interaction (11 H 12) = 3mFg . Of the 

two eigenvalues, Mf and M,f , the lower one is to be identified with the physical 

fermion mass, i.e. 

6; = D1iD2 - \l(D1iD2)2+(3mpg)2, (4.11) 

while the second eigenvalue shall be identified with an excited fermion Ifb) with 

invariant mass Mfb, i.e. 

Mjb = D1:D2 + \/(D1iD2)2+(3mFg)2. (4.12) 

Eq. (4.11) must be inverted. It is a second order equation in rns, which one can 

write rather transparently (m$ - A) (2ms - B) - 9m$g2 = 0, where A and B are 

related to the diagonal elements by A = rns + 6% - D1 and B = 2rns + 6% - D2 
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or explicitly 

A = 6% - g2jT2 and B.= 6; - 2rng - 2g2(p1 + cyl) - g2 . (4.13) 

The solution is 

m$ = a 
[ 
2A+B+9g2+ (2A - B)2 + 18g2(2A + B) + (9g2)2 1 . (4.14) 

The sign in front of the square root has been chosen in order to get the right 

value for vanishing off-diagonal matrix element, i.e. rn$ = A. One should note 

that ?‘.?ZF depends on mg only through B. 

The Mass Spectrum. Having constructed explicitly the two functions 

W?(~F,%?,il,K = 24) and ?nF(%F, 6B,g, K = 2,A), one can calculate the 

spectrum. In boson renormalization, i.e. for g 5 gC, the expression 

B = 6’~; - 2%; + 2g2(a2 - a1 - PI) - g2 (4.15) 

has to be inserted into the expression for mF, Eq. (4.14) , which yields the three 

physical boson masses 

Mb = i%B, Mbb = F/m, and MfT = 2mF , (4.16) 

as well as the two physical fermion masses Mf = 6~ and Mfb . Use was 

made of pr + 71 = 0, which holds for large A to very high precision (see Tables). 

The explicit expression for MfT in terms of 66~ and 66~ is rather complicated. 

Similarly, in angel renormalization, one has to use 

B = 6; - iiS& - 2g2& - g2 , (4.17) 

in order to obtain the physical boson masses 

Mb=~/1+3(~)2, Mbb=&B, and Mfy=2mF. (4.18) 

The physical fermion masses have the same form as above. 

15 



Independence of Cut-of A.One should note that the physical masses do not 

depend on A in the limit A + 00. The self-induced boson inert& appear in the 
. combination (~2 - (~1. Differences m on, as well as the fermion inertias Pn and 

7n, are independent of A in this limit, as discussed above in section 3. 

4.3 HARMONIC RESOLUTION K > 2. 

The Fock space dimension in the charge 0 and the charge 1 sector increases 

rapidly with harmonic resolution. But as can be seen from Table 4, it is still 

sufficiently small for K = 3 and K = 4 that we can write down the explicit 

matrices, as is done in Appendix B. But they are too large for the analytic 

evaluation of the eigenvalues or explicit renormalization in closed form. In order 

to be flexible, we have developed a computer code for the general case, which is 

described in Appendix A. 

Without going any further into the details, we shall discuss now some selected 

numerical results, mostly with the purpose of demonstrating how the harmonic 

resolution K acts like a measure of complexity. 

Selecting the three values K = 2,4 and 6, we present in Fig. 1 the invariant 

mass spectra of the charge 0 sector, as obtained for the parameter set Eq. (2.17), 

i.e. for 6~ << 6~. Because of the latter, the spectrum separates into two 

clusters of states. The lower one appears around the boson mass +‘%B, the higher 

one around the quasi-pion mass of Mf7 - 2GF, since fermions and antifermions 

must come in pairs. These numbers are calculated with the renormalized masses, 

of course, and to be complete we present them in Figs. 2 and 3. We have made 

sure by large scale variations, that we are in a regime of the ultraviolet-cut-off 

(i.e. A = 2048), h w ere the numbers do not depend on A within three significant 

figures. 

The lowest invariant mass, the boson mass 6~ appears first for K = 1, and 

repeats itself in any subsequent value of the harmonic resolution. This, of course, 

occurs by construction, but one should note that the corresponding eigenstates 
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gain considerable structure in terms of Fock space components, in particular 

when the coupling constant becomes large. The repetion of these states with K 

are manifestations of the same physical particle, viewed however with increasing 

resolution. 

The same mechanism is observed for the ‘excited’ physical bosons, for exam- 

ple for the first excited state. For K = 2 it is the angel state, as defined and 

discussed above. The same eigenvalue can be observed for K = 4 and K = 6, 

albeit with a different eigenfunction (the angel state proper turns out to have 

always the largest mass within the lower cluster). The aspect of repetition in- 

cludes even the bunching of the states around the critical coupling constant gC, 

as defined by Eq. (4.6). 

The repetition of states occurs not only for the boson cluster, but appears 

also for the upper, the quasi-pion cluster. Every state which appears for K = 2 

appears also for K = 3 (not shown) and for K = 4 with almost the same 

invariant mass as manifestation of the same physical particle; every state of K = 4 

reappears for K = 5 and K = 6, and so on. On the other hand, every physical 

particle has a threshold value of K, for which it appears first, a property which 

is amazingly similar to the charge, as seen from Table 4. 

5. Comparison with Space-Time Quantization. 

The rather extensive discussion of the spectra as function of increasing har- 

monic resolution K allows also for the following conclusion: As long as one is 

interested only in the invariant mass of a certain physical particle, as function of 

the coupling constant, one can restrict to the case of its first appearance. Thus, 

the most important aspects of the quasi-pion 1 fr> are given already by the ana- 

lytically soluable case of K = 2, see section 4.2. Its invariant mass as function of 

the coupling constant is plotted in Fig. 4 once for the the cut-off A = 2048 and 

once for A = 8. They were calculated from the analytical expressions as given in 

17 



section 4.2 for the parameter set Eq.(2.18) and are an example for 6~/6~ >> 1. 

The plot gives also all other physical states, in the above notation. 

The difference in the two quasi-pion curves Mf~ is striking, in particular for 

coupling constants 1.3 5 X 2 1.7. For A = 8 no quasi-pion state is possible in this 

region. The analysis on the solutions of Eq.(4.14) is somewhat lengthy. Suffice 

it to say that depending on the ratio 6~/6i~ the absence of Mr7 is caused by a 

delicate cancelation in Eq.(4.14) , such that rng may even become negative. This 

is reflected also in Fig.5 , where the renormalized fermion and boson masses are 

plotted versus the coupling constant. This cancellation has almost no effect on 

the other physical masses; they are quantitatively but not qualitatively different 

for the two values of A. (Mfb has actually been calculated with the negative 

value of rn$, for A = 8.) For large A such difficulties do not occur. 

The parameter set 6~/6~ = 0.3 was chosen with the purpose of comparing 

the above results to the recent work of Brooks and Frautschi[” in space-time 

quantization. Their final result for the invariant mass spectrum looks more like 

the right than like the left part of Fig. 4. In particular, their quasi-pion intersects 

the vacuum state above a certain value of the coupling constant, X,, but their 

value is about twice as large as ours. Brooks and Frautschi express concern 

about this intersection. They mention an increase of X, with increasing cut-off 

in the (space-time) momentum, and surmise, that X, tends to infinity for large 

cut-off. Also in the light cone results, the intersection X, tends to larger values, 

for example increasing the cut-off from A = 8 to A = 10. But this ceases to 

be true for larger cut-offs. At A - 27 already, no intersection occurs at all, at 

any value of the coupling constant. For even larger values of A, the quasi-pion 

mass approaches gradually the asymptotic value plotted in the left part of the 

figure. In space-time quantization, one has to introduce an additional cut-off in 

the boson number. This, and the lack of information on the momentum cut-off, 

or at least on the dimensions of the matrices actually diagonalized, makes a more 

quantitative comparison rather difficult. We conclude in view of the qualitative 

agreement with the A = 8 case that the cut-offs in space-time quantization have 
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been taken too small, despite the fact, that the matrix dimensions were most 

likely at the edge of numerical feasiblity. 

The too-small cut-offs can explain also why the sharp kink of the boson-angel 

system at X, = If-- -&L = e-al 2.4715 is not observed in space-time qantization. This 

kink represents a crossing of states; at X = X, the two states are degenerate. In 

practice, it is difficult to reproduce degeneracies like this one in another repre- 

sentation, in particular if the space is not large enough. In general, the sharp 

strucures are washed out; instead of a crossing one will observe smoothly repelling 

curves. Brooks and Frautschi observe a non-unique mass renormalization. The 

numerical value of the branch point (X - 2.4 , as read off from their figure), 

agrees well with our X,. Although perhaps accidental, this gives a hint for the 

conclusion that their observation is a remainder of the underlying structure, the 

boson and angel renormalization as discussed in section 4.2. 

6. Conclusions and Outlook 

In a preceeding and in the present paper we have investigated the bound 

state problem of fermions interacting with scalar bosons in one space and one 

time dimension. Using discretized light cone quantization this model is strictly 

soluable at almost any level of refinement. The level of refinement is governed 

by the value of the quantum number K. This quantity has two aspects. On 

the one hand, it is closely related to the total light cone momentum P+; i.e. 

K = L P+/ 27r, where L is the length of the periodic interval in the light cone 

distance z-. The introduction of this dimensional parameter is necessary to 

denumerate the momentum states. On the other hand, K can be viewed as the 

integral ratio between this box size and the Compton wave length of a physical 

particle (state) with mass M, i.e. K = L/Xc with Xc = 2 . For fixed mass, the 

larger L, the closer one is to the continuum limit and the more complex becomes 

the spectrum of .physical particles with mass close to M and the more complex 

becomes its eigenfunction in terms of free Fock states. 
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Both the eigenvalue of the invariant mass operator and its eigenfunctions are 

independent of the two formal parameters of the theory, the box size L and (at 

large A) the (light cone) momentum cut-off A. 

Our numerical results are not in conflict with the recent numerical work 

in space-time quantization by Brooks and Frautschi, but it appears as if the 

calculated spectrum is still sensitive to the cutoff shown for the (space-time) 

momentum. It must be noted, that the space-time approach is less economical 

by orders of magnitude than the present light cone approach. 

In addition to the practical advantages of discretized light cone quantization 

for obtaining bound state spectra and wavefunctions, there are also a number of 

conceptual advantages: 

Unlike equal time formalism, a consistent Fock state representation exists at 

equal z+. The basis is orthonormal with positive norm components summing to 

unit probability. 

There is a precise theory of observables in terms of light cone Fock state 

wavefunctions. In particular, matrix element of currents and form factors can 

be directly expressed as a convolution of light-cone wavefunctions in momentum 

space. Structure functions for inclusive reactions and distribution amplitudes for 

exclusive reactions also have an immediate representation in this basis PI . 

- Quantization of non-abelian gauge theory at equal z+ is reviewed in refs.(5,6). 

By choosing the light-cone gauge A+ = 0, de pendent degrees of freedom are 

eliminated through the equation of motion as in paper I. In this gauge there are 

no ghosts or negative-metric propagating vector or scalar fields. 

Unlike lattice gauge theory with the standard nearest-neighbor appproxima- 

tion to the derivative of the fermion field, the discretized light cone quantization 

approach does not lead to doubling of the fermion states. This derivative is repre- 

sented as the factor l/n in the massive part of the hamiltonian HM in momentum 

space. 
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Unlike path integral formulations, fermions and bosons are treated on an 

equal basis in the light cone hamiltonian formulation. 

The ease of generating exact solutions to a simple field theoretic problem 

creates opportunities for further development and investigation: 

It appears possible to treat higher particle systems ( nuclei) with reasonable 

numerical effort in 1 + 1 dimensions. In fact, the major part of the numerical 

work is taken up by the renormalisation of the masses, since the Hamiltonian has 

the largest dimensions in the charge 0 and the charge 1 sector. 

The essential and surprising feature of the discretized light cone approach is 

the appearance of finite dimensional Hamiltonians. Usually such a property is 

related to a discrete group and a compact Lie algebra. We have no idea to which 

group the present approach is isomorphous. Its discovery could be of great help 

in finding the most enonomic approach to 3+1 dimensions. 

The ultimate goal is to obtain non-perturbative solutions in 3+1 dimensions. 

If one introduces light cone variables in a preferred direction z f t and param- 

eterizes the perpendicular directions with variables L, and transverse momenta 

kt one at least reduces the dimensionality of the problem significantly compared 

to space-time quantization171 . 
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APPENDIX A:Th e numerical procedure 

For minimal storage requirements in the computer, it is convenient to use 

an indirect addressing scheme. The Fock space information can be generated 

efficiently by first calculating the Boson space 8, i.e. all Boson states 

which have total light cone momentum KB = En n aLa, 5 Kmaz, where Kmaz 

is equal to the value of K under consideration. In the same way one calculates 

the Fermi space 3 

li)~ = Inl(ml),n2(mz),---,n~,(m~p)) , i = l,*a*,N~, 

with the occupation numbers rni = 1 and KF 5 K,,,. The same information 

can be used for calculating the Dirac space D, i.e. all possible states for the 

diracons (= antifermions) with KD 5 Kmaz. The Fock space is obtained by 

taking all possible combinations 

Ii> = I& Ik)D I1)B 

for which hold 

K=KF+KD+KB and &=NF-ND. 

One needs to store only a mnemonic number representing all the quantum num- 

bers of the state. If one stores for each state lj)F or IZ)B the partial momentum 

(i.e. KB), the number of occupied states (i.e. NB), the single particle momenta 

nl, and their occupation number ml, one has to meet the Fock space storage 

requirements as compiled in Tables 4 and 5. 
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In u second step one calculates the diagonal element Di for each Fock state. 

Provision was made for removing all states whose diagonal element exceeds a 

given cut-off Dcut . ‘In this way one can cut down efficiently the large dimensions in 

matrix diagonalization problems, without losing too much accuracy. The method 

seems particularly suited for determination of the renormalized masses. In this 

paper, however, this option has not been used, since restriction was made to 

K 5 6. 

In a third step, the Hamiltonian matrix K (jl H Ii) was calculated. The 

Hamiltonian has non-vanishing matrix elements only if the two states in ques- 

tion are at the most, relative two-particle-two-hole states. If these selection rules 

are satisfied simultaneously in the boson, the fermion and the diracon sector 

(which can all be done in rather fast fix point arithmetic) then the matrix ele- 

ment is computed (it involves one single square root operation). The set-up of 

the Hamiltonian matrix consumes a time negligible compared to the Fock space 

combinatorics, diagonalization, and renormalization. 

In a fourth step, the matrix is diagonalized numerically. Standard numerical 

procedures are used, as provided by the Eispack package at SLAC. 

Lust, one must renormalize the boson and fermion masses numerically. The 

following procedure was chosen. (1) Take as a guess value the boson renor- 

malization rni = fi;$ - cx2g2, as obtained analytically for K = 2. Experience 

shows, that this value is close to the final result, see Fig. 2. (2) With ?ng 

fixed, search for V&F in the charge 1 sector by a combination of bisection and 

Newtonian interpolation. (3) With the so determined starting values of ?ng and 

mF, iterate simultaneously by a 4-point interpolation in 2 dimensions, until the 

lowest eigenvalues in the charge 0 and the charge 1 sector agrees within 10m4 

with the given values 6% and 6%;. (4) Last, if the angel mass drops below GB, 

i.e. if K2(m$ + arlg2) < f%&, repeat step (2) in angel renormalization. - By 

large scale variation and tracing in two dimensions, it was made sure that the so 

obtained values are unique. 
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The routines are written in standard Fortran IV and were tested by comparing 

the numerical results with the analytical expressions for K 5 4, as given in App. 

B. 

APPENDIX B: The Fock Space and 
the Hamiltonian for K=3 and K=4 

The Fock space without the angel state for K = 3 and Q = 0 has 5 compo- 

nents 

11) = Jo;B; 3’) with D1 = rn& + g2cx3 

12) = lO;b; I’, ?$) with D2 = % rn& + 3g2 (al + ?f) 

13) = Ii;i;P) with Da = 3rns + 6rng + 3g2(71 + p1 + (~1) + 8 g2 

14) = 12;i;?)) with 05 = g rn$ + 3g2(-y1 + 6, 

15) = 11;2;6) with D6 = img+3g2(?f+P1) 

and correspondingly, a 5 by 5 invariant mass matrix M2 = HK 

11) 12) 13) I4 15) 
PI Dl 
(21 0 02 

(31 0 0 D3 

(41 -plc $p2 ;tG D4 

(51 +$c -+g2 pkc 0 D5 

with the abbreviations g E -& and IC = ?nFg. 
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The charge 1 sector for K = 3 has the Fock space 

11) = 11;G;4l) with D1 = p rni + 3rns + 3g2(y + pl) + k g2 

12) = ll;O;P) with 02 = 6rng + 3m$ + 3g2 (aI + PI) + 3 g2 

13) = 12;Ti; I’) with Ds=3m&+~m$+3g2(al+!f)+4g2 

14) = 13; 0; 6 ) with D4 = rni + g2& 

and the invariant mass matrix M2 

IO K-9 13) I4 
(11 Dl 

(21 0 D2 

PI ps2 i&h-/c D3 

PI 2&&c g&2 ;lc 04 



For K = 4, Q = 0 , the Fock space without the angel state has 11 components 

11) = lo;O; Z’>- 

12) = 1o;o; I’, 51) 

13) = Jo;i’j; 53) 

14) = lo;& 12,9) 

15) = li;i;12) 
16) = li;i$) 
17) = 12;i;ll) 
IS) = 13;i;b) 
19) = 11;2; I’> 

110) = 123; 6) 

Ill) = 11;3;6) 

with D1 = rni + g2a4 

with D2 = !$ rn$ + 4g2 (a1 + 2) 

with D3 = 4(mg + g2a2) 
with D4 = 10 rn$ + 3g2 (2q+ y) 

with D5 = 2m$+8m$+4g2(y+&+71)+!$g2 

with De = 8m~+4~+4g2(al+pl+71)+8g2 
with 07 = 4rni + 6m$ + 4g2 (cq + !f + 71) + $ g2 

with Dg = ym$+4g2(%+71) 

with Dg = 4m&+6m$+4g2(al+&+?f)+~g2 

with Dlo = 4m$ + 2g2(h + 72) 

with Dll = $ rn$ + 4g2(/31 + 2) 

and the invariant mass matrix is correspondingly large, i.e. 

11) 
(11 a 

(21 0 

(31 0 

(41 0 

(51 0 

(61 -0 
(71 -+ (y 

(81 -$n 

PI +$ g2 
(101 0 
(111 +$ 

12) 

02 

0 

0 

13) 

03 

0 

0 

0 

0 

2dG2 

0 

0 

-2fig2 

I4 

D4 

0 

0 

4g2 

0 

-492 

0 

0 

15) 16) 17) 18) 1% IlO) 111) 

0 D6 

-2 3 9 6fig2 07 

Ed2 
3 n 2dh2 y/c D8 

M2 3 g Sfiic 0 0 DQ 

0 0 6n 0 6~. DIO 

Ed2 3 Ic 2&g2 0 0 A$ 0 Dll 



Finally, one gets a Fock space for K = 4, Q  = 1 : 

11) = Il;G;?)- with D1 = $mg+4m$+4g2(y+/?1)+g2 

12) = Il;G;il,S1) with DZ = 6m& + 4m$ + 4g2 (aI + ?f + PI) + 6 g2 

13) = ll;G;P) with D3 = 12mk + 4m$ + 4g2(3cq + PI) + 6 g2 

14) = 129; 9) with Dq = 2rng + 2m$ + 2g2 (cup + p2) + i g2 

15) = 129; I”) with D5 = 8m& + 2rng + g2(2cq + 6) + y g2 

16) = 13;& i’) with Dg = 4rns + $ rn$ + 4g2 (al + 6, + 3 g2 

17) = 14;o;q with D7 = rn$ + g2p4 

18) = 11,2;i;6) with D8= 10m$+4g2(++q+-yl) 

The invariant mass matrix M2 is 

IQ 
01 Dl 
(21 0 
(31 0 
(41 - %9" $ 

(51 0 
(61 5 
VI ++ 
(81 -+ 

12) 13) I4 Is> 16) 17) 18) 

02 

0 D3 

6~ 0 04 

$ g2 S+c 0 06 

;fitc 2A72 $5 g2 +b D6 

gag2 0 + $dh2 $c D? 

-2fig2 0 0 0 0 0 D8 
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Table 1: Self-induced inert& & = cxyn - (~1 and &I = -CY~ as function of the cut-off A. 

n A-8 = 32 = 128 = 512 = 2048 

1 4.4218 7.1160 9.8661 12.6326 15.4023 
2 1.5429 1.5029 1.5003 1.5005 1.5019 
3 2.4519 2.3410 2.3340 2.3342 2.3371 
4 3.1519 2.9310 2.9178 2.9180 2.9223 
5 3.7750 3.3897 3.3683 3.3685 3.3743 
6 4.4036 3.7670 3.7354 3.7351 3.7422 
7 5.1464 4.0894 4.0457 4.0445 4.0531 
8 6.3518 4.3722 4.3145 4.3112 4.3212 

Table 2: Self-induced inertias Pn as function of the cut-off A. 

n A=8 32 128 512 2048 

-0.8750 -0.9687 -0.9922 -0.9980 -0.9995 
0.7679 0.5635 0.5157 0.5039 0.5009 
1.6012 1.2635 1.1903 1.1725 1.1680 
2.2179 1.7147 1.6149 1.5911 1.5851 
2.7679 2.0504 1.9230 1.8931 1.8855 
3.3345 2.3207 2.1645 2.1284 2.1193 
4.0250 2.5497 2.3631 2.3208 2.3102 
5.1857 2.7504 2.5321 2.4835 2.4713 

Table 3: Self-induced inertias 7n a+s function of the cut-off A. 

n A=8 32 128 512 2048 

0.8889 0.9697 0.9922 0.9980 0.9995 
1.2889 1.4403 1.4845 1.4961 1.4989 
1.5313 1.7450 1.8102 1.8275 1.8317 
1.6980 1.9673 2.0527 2.0755 2.0811 
1.8211 2.1402 2.2451 2.2736 2.2806 
1.9163 2.2806 2.4043 2.4383 2.4467 
1.9925 2.3978 2.5398 2.5792 2.5890 
2.0550 2.4978 2.6574 2.7022 2.7135 
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Table 4: The number of Fock states for given momentum K and charge Q. 

Momentum 1 Charge Q 
K 

1 1 1 
2 3 2 
3 6 4 
4 12 8 
5 21 15 
6 38 27 
7 63 47 
8 106 79 
9 170 130 
10 272 209 
11 422 329 
12 653 509 
13 986 777 
14 1480 1169 
15 2185 1739 

0 1 12 I3 I4 I5 

1 
2 
5 
9 
18 
31 
54 
88 
145 
229 
362 
556 
850 

1 
2 
4 
8 
16 
29 
52 
87 
143 
228 

1 
2 
4 
7 

13 
25 1 
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Table 5: Storage requirements for the Fermion and Boson spaces. 

Maximum . FERMIONS BOSONS 

Momentum Number of States Storage of Number of States Storage of 

K max with KF 5 Km= occupied states with KB 5 Km= occupied states 

1 2 10 2 10 

2 3 15 4 20 

3 4 20 7 37 

4 11 67 12 66 

5 15 93 19 111 

6 19 119 30 182 

7 45 341 45 287 

8 58 446 67 443 

9 74 576 97 667 

10 92 724 139 987 

11 201 1865 195 1433 

12 251 2353 272 2054 

13 312 2952 373 2901 

14 380 3624 508 4052 

15 460 4418 684 5596 
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FIGURE CAPTIONS 

1. The mass sp.ectrum for charge 0 versus the bare coupling constant X.- The 
masses are 6~ = 6.7 and GjiB = 1.0, and the cut-off is A = 2048.- Note the 
increasing complexity with increasing K. 

2. The bare fermion mass rrZF versus the bare coupling constant X.- The 
masses are %F = 6.7 and 6~ = 1.0, and the cut-off is A = 2048.- Note the 
slow convergence with increasing K. 

3. The bare boson mass ?ng versus the bare coupling constant X.- The masses 
are 6~ = 6.7 and 6~ = 1.0, and the cut-off is A = 2048.- Note the weak 
dependence on K. 

4. The K = 2 mass spectrum for charge 0 and 1 versus the bare coupling 
constant A.- The masses are &F = 0.3 and #zB = 1.0. The left part of the 
figure is independent of the cut-off (A = 2048). In the right part the cut-off 
is A = 8, far away from the A-independent regime; cf. also Tables l-3. 

5. The bare fermion and boson masses, W&F and mg, respectively, versus 
the bare coupling constant A.- The masses are &jiF = 0.3 and Gig = 1.0. 
The cut-off has two values, i.e.A = 2048( - ) and A = 8(- - --).- See 
discussion in the text. 
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