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ABSTRACT 

One reason why cosmic strings are interesting is because they may provide 

the primordial density fluctuations that began the process of galaxy formation. 

For the scenario in which galaxies condense around oscillating closed loops it is 

necessary that gravitational radiation be the dominant energy loss mechanism. 

It is shown that loops of strings from a broken exact global symmetry decay too 

quickly to serve this purpose. Loops of strings from a broken gauge symmetry 

may have Goldstone boson couplings as well. It is shown that the decay rate 

-of these strings due to Goldstone boson emmission is strongly suppressed. This 

supports the conjecture that gauge strings may seed galaxy formation. 
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1. Introduct ion 

Topological defects arise in a GUT which undergoes a sequence of phase tran- 

sitions in the early expanding universe. M One type of defect is the cosmic string: 

a filament of a primordial vacuum topologically trapped in the present vacuum. 

Strings are particularly interesting because of recent suggestions that they may 

explain the density fluctuations which began the process of galaxy formation. 13431 

In the scenario of Vilenkin,“’ galaxies and clusters condense around oscillat- 

ing closed loops which gradually decay in - lo* Hubble times from the instant 

of their creation. This requires that for large loops the dominant energy loss 

mechanism is gravitational radiation. To support this, it has been shown that 

both electromagnetic radiation and the radiation of massive particles fail to be 

significant factors for the energy loss of the large loops envisioned for galaxy 

format ion. ‘3-‘1 

In this paper we consider the effects of massless Goldstone bosons. We find 

that for theories in which strings come from a broken global symmetry the lifetime 

of a large oscillating loop is much shorter than in the cases mentioned above, and 

consequently the scenario in which these loops seed galaxy formation does not 

work. 

It is possible that strings from a broken local symmetry have couplings to 

massless Goldstone bosons. We show that the emission of these particles is 

suppressed compared to gravitational radiation, and consequently such strings 

are permitted for galaxy formation theories. 

This paper is organized as follows: In the first section we review the properties 

of the simplest string. In the second we use a geometrical argument to derive 

the radiation rate of an oscillating global string. In the third we discuss small 

oscillations of infinite gauge strings and estimate the power loss from Goldstone 

boson emmission for a simple model. We conclude with a discussion of string 

models of galaxy formation and Goldstone bosons. 



2. String Review 

The simplest string is a classical solution to a spontaneously broken U(1) 

gauge theory, which is cylindrically symmetric and has finite energy per unit 

length. We take a complex scalar field r$ with lagrangian 

L = I(a, - ieAcc)q512 - V(4) - a72 

V(4) = p(cg - v2)2 

and as long as v2 > 0 we can make the following classification of field configura- 

tions which minimize the action. 

Vacuum sector: 

&) = 0 (c#J) = VP 6 = arbitrary phase 

String sector: 

e (A,) = n$ (4) .= vein8 8 = azimuthal angle 

Where b,B = S$L! , 6ye = F and n is an integer. With these vacuum expectation 

values (VEVs) as the classical values of C$ and A,, all the terms in the Lagrangian 

are zero.Furthermore, any other configurations which minimize L will be gauge 

equivalent to one of these, for some value of n. In the following n will allways be 

taken to be 1. 

The string solutions have the peculiarity that (4) cannot lie in one of the de- 

generate vacua, where 1 (4) 1 = v, at all points in space because single-valuedness 
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requires that (4) + 0 as r + 0. Similarly (A,) + 0 as r + 0. Thus we write 

(4) = vf(r)eie (2.1) 

e (Ap) = s(r)$ 

where 

f(r)+O, g(r)--+0 as r-0. 

The functions f and g may be obtained from the effective lagrangian 

2 

C,,f = -v2(d,f)2 - v2 f 2 
( > 

9 - Y(f2 - 1)2 - f [ 1 ;a g 2 r - 
and they have the following limiting values: 

f -r for r< ---& 9-r 2 for ve r < + 

f-1 for r>--& 9 -1 for r>>+. 
ve 

Thus, assuming that e - 6, the thickness of the string is roughly the Compton 

wavelength of the massive higgs or, equivalently, of the massive gauge boson.The 

magnetic field of the string is that of a very thin solenoid: the field is zero 

everywhere outside, but since around the string 

there is a parallel magnetic field trapped in the core. 

String solutions similar to the one above are a general feature of sponta- 

neously broken gauge theories in which a discrete symmetry survives the breaking. “I 
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3. Goldstone boson radiation from global strings 

Global strings. are classical solutions to a spontaneously broken global U(1) 

theory obtained by setting A, = 0, or equivalently g(r)=0 in the previous exam- 

ple. In this case a single straight string has a logarithmically divergent energy 

per unit length.‘I’ One might think that such strings should be ignored as being 

unphysical. However, following a cosmological phase transition they form a ran- 

dom random network and may be in loops of finite total energy or in open strings 

with finite energy per horizon. In any case, the radiation problem is simpler for 

global strings so we consider this case first. 

We start with the static string solution, eq. (2.1), 

(4) = vf (r)eie 

and look for low energy excitations. We define fields p” and E and their shifted 

counterparts p and cy, where 

4 = Feiz E (p + f (r)v)e’(‘+z) 

(3 = f(r)v (Z) = 8 (p) = 0 (a) = 0. 

The Lagrangian is 

L = p,iq2 + P”“(dpiq2 - V(2 

= k%h + vf)12 + (P + vf)‘($ + $Y)2 - V(p + vf). 

(34 

P-2) 

Spontaneous symmetry breaking requires that p have mass N vfi and a! be a 

massless goldstone boson. More generally, the string will not be straight. It 

will be curved, possibly in a loop, and moving under the influence of external 

forces and its own tension. As long as its typical inverse radii of curvature and 

frequencies of oscillation are small compared to v, the very massive p field will not 

be excited, so the low energy physics of the string will involve only the massless 

a field. 



Now suppose that a long straight string oscillating back and forth with am- 

plitude d and frequency w. The solution for the radiation field of Q: is readily 

found under the condition d < $. This is because, for values of r such that 

r < i, the field will be carried rigidly along with the string as it moves. That is, 

at a particular time t and for t < A, the Z field will appear to instantaneaously 

establish itself in the new string vacuum centered at r’+ z(t). If the condition 

d < r holds true as well, a small angle approximation can be used to obtain 

d(t) E(t) = 8 - - r sine=& 
d cos wt sin 8 

t - (3.3) 

Thus we have a boundary condition with we can match to the solution for E 

when $ < r. 

For r>>d and r>> $ we have p” = v = constant ,so Z satisfies the massless 

wave equation 

a%3,i5 = 0. 

We define the excitation field o as in eq.(3.1). This must satisfy 

with boundary condition from eq.(3.3) 

-vd coS wt sin 8 
Cl!= 

r 
d<r<i. 

The solution which involves outgoing radiation is 

Cr= F[lVl (wr) cos wt - 51 (wr) sin wt] sin 8 

where Nr and Jr are Bessel1 functions. As r -+ 00 it has limiting behavior 
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and the power radiated per unit length is 

~o&3,~(rd8) = :v2d2w3 
0 0 

Note that this result does not depend on the internal structure of the string, 

nor on any assumption that the amplitude d is small compared to the string 

thickness. We need only wd < 1.“’ To this rather unphysical example of a 

straight,rigidly oscillating string may be added dynamics in the string direction 

without changing the basic form of our result. 

4. Goldstone boson radiation from gauge strings 

4.1 TRANSVERSE WAVES ON STRINGS 

First we show that there are small amplitude transverse waves travelling along 

the string at the speed of light. This is shown for gauge strings, though a similar 

result can be obtained for global strings by setting g = g = 0 everywhere. In 

either case, it is these transverse modes that give off Goldstone boson radiation. 

The example of the last section was equivalent to having one very long wavelength 

mode excited. 

We start with the static string solution of Sec.2 and look for low energy 

excitations. We suspect that such excitations must, at a given time and at a 

given point along the string, look like a translation of the unperturbed string 

from its unexcited position because any deformation of the cross sectional shape 

of the string will cost a large amount of energy. Therefore,we define the spacelike 

vector i(z, t) = d(z, t) 2 and for the excited fields we try 

p(q) = vf(Z- 2) = vf(r*> 

~(2, t) = e*(z- i) 
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where r* and 8* are the cylindrical coordinates measured from the instantaneous 

center of the string, a,“’ = T and $* = 9. With these fields the lagrangian 
is 

Let a=x,y and i=z,t. Since z and t appear only through the function d(z,t) we 

may derive the following: 

(diE - e&)2 = (-f&O* + ‘s:e*)2(3id)2 

(aid) 2 

(4.1) 

(4.2) 

(4.3) 

Thus we may write 

z = (&z)” + ?(a az - e;i,)” - V(F) - i(&b)2 + H(X, y, d(z, t))(aid)2 

where lI comes from (4.1-3). Since at any fixed t and z the string configuration is 

just an undeformed translation from the static d=O solution , we can integrate this 

lagrangian over the transverse dimensions x and y, and use translation invariance, 

to obtain 

Finally, because translation invariance also requires that $ IIdxdy E K be inde- 

pendent of d, we find that the effective two- dimensional lagrangian for d(x,t) 
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is 

!eff[d] = K(aid)2- (4.4 

Hence the low energy excitations of the static string solution are described by a 

two-dimensional massless free field theory, ie., transverse waves travelling at the 

speed of light. 

4.2 A MODEL 

To calculate the rate of Goldstone boson emission from such an excited string 

we must choose a model in which the fields that make up the gauge string carry 

a charge for a spontaneously broken global symmetry. In the following we use 

a simple U(l)gauge x U(l)global model. There are three complex scalar fields 
& = pieiW i = 1,2,3 with the following charges: 

42 --e 

43 -0 

and the scalar lagrangian is 

Since both U(1) ‘s are broken there must be two Goldstone bosons, one of 

which becomes the longitudinal component of the massive gauge field, and three 

massive scalar particles. The Goldstone bosons are the linear combinations of 
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the axis which transform only under U(l)laUge or U(l)globol, but not under both. 

The third linear combination transforms under neither. Accordingly we define 

Ql + a2 - 2a3 
X= 2 - 

The Lagrangian is now 

LT = ~{(qbPi)2 - 4 Pi A( 2 - ui”)2} + 2cp1pap: cos x 
i 

with minimal string solution 

(P> = (x) = 0. 

We see that outside of the string p will remain massless, 7 will be eaten, and x 

will aquire mass from symmetry breaking. 

As defined p is a dimensionless field. The physical field corresponding to it 

is 

with classical equation of motion 

where we have made the following additional definitions: 



For the case of a static string the source term, a . K, is zero and W is a 

function of r which goes to zero as - r 2 inside the string and is equal to 1 for 

r > $, so p satisfies the massless wave equation outside the string. The time 

independent ground state for p is /3 = 0. 

4.3 EXCITING THE GAUGE STRING 

Now we let the string wiggle. Following the method of Sec. 4.1, we shift the 

center of the string, using z(~,t) = ^d x cos w(z - t). As long as w < vi the string 

oscillations will not have enough energy to produce any of the massive particles 

of the theory, so we need only consider the interaction with the massless p field. 

The equation of motion for ,f3 becomes 

In this case the source term is not zero. By translation invariance Pg, = 

aa& = 0, so 

arjy, = #& i=t,z 

From Sec. 4.1 

and therefore 

To estimate. the effect of this source term we assume that our results will 

depend only slightly on the detailed profile of the string. Accordingly, we use 
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x = vir* and g = @r* for r* < k, andfi = Zj = 0 for r* > 5. Furthermore, we 

exclude the case where ~1 = 2r2 and Xr = X2 because it would imply an extra 

symmetry that prevents any coupling of the Goldstone boson to the string. Our 

purpose here is to investigate the case in which the Goldston boson is coupled to 

the string. Since all the VEVs are expected to be very large we take ~1 - v2 - B. 

Under these assumptions eq. 4.7 becomes 

ai& = { w4 - (v2)4} [ ,;y-$: y2] (&cq2 

k: 04(wd)2 sin2 w(i! - 2) 
[x - dcosw(t - z)]y 

d[x - d cos w(t - 2)]2 + y2 

(4-g) 

in which we have gone to Cartesian coordinates and explicitly indicated the 

dependence on z and t, in this case due to a transverse wave moving in the +z 

direction. 

Integrating the term over xy gives zero, so the net ‘charge’ vanishes and there 

will no static - lnr component of the field of the oscillating string. In fact, this 

term has the form of a 2-dimensional quadrupole with moment 

Q zy -4(wd)2 1 $&dxdy = @& - v 
-1 @  

(4.10) 

Looking back at eq.(4.9) we see that the source of radiation comes from two 

effects, the intrinsic oscillation of the quadrupole moment because of the sin2 w(t- 

z) factor, and the effect of this quadrupole oscillating back and forth with large 

amplitude d, which should to produce octupole radiation. We could straight- 

forwardly calculate a radiation field and total power emmitted by using eq.(4.10). 

Though it would give the right order of magnitude, it turns out that this is not 

the correct path to follow because of the non-standard W term in eq.(4.7). In the 

appendix we discuss the generalization of 2-dimensional electrostatics to fields in 

a string background. 
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Just as in sec.2, we can find fi for all r >> d by matching outgoing Bessel1 

waves to the following boundary condition: that for d < r < i the solution 

must look like the static field produced by the source (4.9) with z and t fixed. 

Using eq.(A6) this boundary condition is 

3&-7 [ 1 4 
sin2 w(i! - 2) (wd)2 

(x - d cos w(t - z))y 1 
r << - 

2, [(x - d cos w(t - .z))2 + ~212 W 

and if r >> d this becomes 

_ dsin3Osinw(t --;)cos’w(t - z)] (wf)’ [3&4- 71 [ cos 6 sin 8 cos2 w(t - z) r2 

Which has both quadrupole and an octupole parts.We drop the octupole because 

it will be relatively suppressed by a factor of wd. The solution for fi which involves 

outgoing radiation is 

j = [ “Js,- ‘I@${ -rwf,rin2e[cos2w(i?-z)IV~(2wr)-sin2w(t-z)J2(2wr)~} 

and its limiting behavior for r > $ is 

3& - 7 (wd)2 kwi 
P-- 4 1 1 oyj- sin(2wt - 2wz - wr - p). 

-The total power radiated per unit length is 

P 3&i-7 
-= 

2(wd)2 4 
L [ 4 1 402 rw 

The reader will see in the folowing section that this result will be extrapolated 

up to values wd - 1, in which case the the octupole component of the power 

cannot be neglected. But since the two components of the power have the same 

order of magnit.ude for wd - 1 we will reach the same conclusions regardless of 

which we use. 
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5. Galaxy Formation and Goldstone bosons 

Strings can be formed following a GUT phase transition in the early universe 

as long as the unbroken subgroup has a discrete factor. I” Though not a property 

of the minimal SU(5), such strings are copiously produced in non-minimal ver- 

sions of SU(5),“’ SO(lO),~lo’l’l SO(18)“21 and even in the Es x Es and SO(32) 

superstring theories. WI 

The initial configuration is a random tangled web throughout the universe, 

the strings traversing a Brownian walk of step length - [G, the Ginzberg corre- 

lation length,“’ at the GUT time - 10-37s. [G depends crucially on the nature 

of the phase transition, though it is constrained by causality to be less than the 

horizon size at the time of symmetry breaking. After t - 10-32s, long before 

the Weinberg-Salam transition at - lo-l1 s, frictional effects become negligible 

and the strings oscillate”“’ on scales less than the horizon. Vilenkin”’ has shown 

that these oscillations diminish and the strings tend to straighten out as far as 

the horizon, though on larger scales the system remains Brownian. 

The sub-horizon straightening comes about through cosmological stretching 

and the formation of loops as the strings cross each other (intercommute) at 

relativistic speeds. These loops will then oscillate and shrink as they radiate away 

their energy, [15’ eventually turning into elementary particles.[161 As the universe 

expands the loops continue to be created, to start to oscillate and eventually 

dissapear, and the scale of the string network continues to increase with the 

horizon. 

Any new loops that appear within the horizon at time t will have a size 

roughly equal to t. Once a loop is in the horizon its lifetime is bounded by the 

decay time due to gravitational radiation. This is 

q- - .OIRmplanck N 10-4R 
mGUT 

(5.1) 

where R is the -size of the loop and we have taken ??ZGUT - 10l’GEV. 16’ Of 

course, the existence of a more efficient mechanism for energy loss will result 
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in a shorter lifetime. Assuming that the dominant mechanism for energy loss 

is gravitational radiation, Vilenkin has shown that loop production generates 

energy density fluctuations which gives rise to structure in the universe that is 

in good agreement with observation. PI I41 

To support the conjecture that gravitational radiation dominates, the authors 

of ref [7] have calculated the energy loss due to EM radiation and massive parti- 

cles, finding that for R > y EM becomes negligible and for R > & 

the effect of massive particles becomes negligible. 

Now we turn to examine the case of massless Goldstone bosons. Since an 

oscillating loop is an exceedingly complicated source we can only estimate the 

order of magnitude of the radiated power. Following [7], we do this by extrap- 

olating the result for an infinite string, derived under the condition wd < 1, up 

to the typical value for loops, wd - 1. Taking w - A, where R is the length of 

the loop, and using (3.1), we obtain for global strings 

P - u2 

Since the mass of a string of length R is - w2R we find that the lifetime of an 

oscillating loop is roughly equal to its size 

7-w R. 

This is much shorter than that for gravitational radiation (5.1), and consequently 

models with global strings cannot supply us with the persisting loops in the early 

universe which we need for a plausible galaxy formation scenario. In particular, 

this result rules out the global strings produced in variations of the inflationary 

SU(5) model of ref.[8] as seeds for galaxy formation. 

The case for gauge strings with Goldstone boson couplings is different. Set- 
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ting d - i - R, where R is the size of a loop, we obtain from (4.9) 

. p-1 
vR3 

r - R4v3. 

For loops much larger than the GUT scale this is enormous compared to the life- 

time for gravitational radiation (5.1). W e conclude that the radiation of massless 

Goldstone bosons from these strings does not pose a problem for galaxy forma- 

tion. 

APPENDIX 

We engage here in a short discussion of static multipole fields in the back- 

ground of a static string of the type in Sec. 4.2. To the Lagrangian may be added 

an explicit source term for B so that eq. (4.5) becomes 

PW(r)dPj3(r, 6) = p(r, 0). (Al) 

in which the p is taken to be independent of z and t. In the following these two 

dimensions are suppressed. Because of W, eq. (5.1) is only rotationally invariant 

about r=O, so only if the moments are calculated from r=O will eq.(S.l) relate b 

and p term by term in their multipole expansions 

j = C pneine 

. Defining 

p = C pneine 

we find 

(A2) 

Multiplying eq. (5.2) by an undetermined function f, and performing some ma- 
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nipulations, we get 

fpn = . L&Wr& - fn2W Pn 
I r 1 

= $& [fWr& - f’Wr]& + i (f’Wr)‘- F 
{ > { > 

( w 
. 

Now suppose that f(r) satisfies 

(f’Wr)’ _ fWnz = 0 
r (A4 

then we can integrate eq.(A3), finding 

Qn - 
s 

’ fpnr’dr’ - {!%rW(f/3; - f’pn)} = rW(f& - f’pn). ( w 
0 

Assuming that the source is localized, this tells us that the values of the field 0, 

on the surface of a large cylinder depends on p 

which we call the generalized multipole charge. 

we would just have a-dimensional electrostatics 

dimensional Coulomb law. 

For r >> $ W=l. From eq.(A4) we find f 

first because it is the one that corresponds Pn as 

solution is then 

n Qn 

only through the constant Q,, 

Note that if W=l everywhere, 

and eq.(A5) would give the 2- 

= rn or f = r+; we use the 

a decreasing function of r. The 

j&Z-- 
2nrn 

which has the same functional form as we would get from an n-pole in 2-dimension- 

al electrostatics. However, the generalized n-pole charge Q, is defined by an 

integral over a region where W # 1, so its numerical value will be different.It 

turns out that eq.(A5) is an impractical formula for calculating Q, because f 

is in general not defined at r=O, and so a delicate limiting procedure must be 

followed to obtain a finite Q,. 
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For a particular case such as that of Sec. 4.3 it is easier to use eq.(A2) 

to find the solution for Pn directly. We make the approximations W = 02r2, 

p = ;v4(wd)2 sin2 ti(t - z) sin28.E par sin28 inside the string , and W = 1 and 

p = 0 outside. The regular solution for p2 is then 

p2 = -$r+Ar&-’ r<l B 

= BrA2 1 
r>- 

B 

where A and B are constants are determined by the requirement that & and & 

be continuous at r = 3. The result is 

P2=-$r+ [ 3 1 PO +/ii-l 1 
&+1 fi4--h 

r<- 
@ 

= [ 3&-7 1 PO 
jj? 

-2 1 
4 

r>- D 

ACKNOWLEDGEMENTS 

I am grateful to Savas Dimopoulos and Helen Quinn for insightful discussions. 

18 



REFERENCES 

1. T.W.B.Kibble Phys. Rep.. 67 No.1 183-199, 1980 

2. T.W.B Kibble J. Phys. A9 1387, 1976 

3. Ya. B. Zeldovich, Mon.iVot.R.Astr.Soc. 192 663, 1980 

4. A. Vilenkin, Phys.Rev.Lett. 46 1169, 1981 

5. A. Vilenkin and Q. Shafi, Phys.Rev.Lett. 51 1716, 1983 

6. A thourough review and bibliography may be found in: 

Vilenkin, Tufts-84-084 (1984) 

7. Vachaspati,Everett and Vilenkin, Tufts-84-0557 (1984) 

8. w > f implies that the cross-sectional shape of the string core is being 

deformed and that modes of the super massive Higgs are being excited. 

9. Vilenkin and Shafi, Phys.Rev. D 29 1870, 1984 

10. Kibble, Lazarides and Shafi, Phys.Lett. 113B 237, 1982 

11. Lazarides, Shafi and Walsh, Nuc.Phys.B 195 157-172, 1982 

12. Dimopoulos and Bagger, iVuc.Phys.B 244 247, 1984 

13. E. Witten, Princeton Preprint-85-0209 1985 

14. These are effectively massless strings since the energy is proportional to the 

length, and typical speeds of the oscillating strings are -1 

15. It is possible for a loop to collapse into a black hole, but it requires very 

special initial conditions; strings are not an important source of primordial 

black holes. [‘I 

16. This is a possible source of baryon number: 

Bhattacharjee, Kibble and Turok, Phys.Lett. 119B 95, 1982 

19 


