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ABSTRACT 

The short-distance behavior of multiquark wavefunctions can be systemati- 

cally computed in perturbative &CD. In this paper we analyze the wavefunc- 

tion of a four-quark color-singlet bound state in SU(2)c as an analogue to 

the six-quark problem in QCD. We first solve the QCD evolution equation for 

the multi-quark distribution amplitude at short distances in the basis of com- 

pletely antisymmetrized quark representations. The eigensolutions of the evo- 

lution kernel correspond to a spectrum of candidate states of the relativistic 

multi-quark system. We then connect the four-quark antisymmetric representa- 

tions and the eigensolutions to the physical two-cluster basis of SU(2)c dibaryon 

(NN, NA, AA) and hidden color (CC) components and derive constraints on 

the effective nuclear potential between two clusters. We also find anomalous 

states in the spectrum which cannot exist without substantial hidden-color de- 

grees of freedom. 
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1. INTRODUCTION 

Among the key goals in the application of quantum chromodynamics (QCD) 

to nuclear physics are to predict the bound-state spectrum of relativistic multi- 

quark color-singlet systems and to identify the role of non-nucleonic degrees of 

freedom in a nucleus. Recently, we presented a general method for solving the 

QCD evolution equations for distribution amplitudes, the equations which de- 

termine the behavior of hadron wavefunctions at short distances. An important 

simplification of the analysis is to choose as a basis of the evolution kernel the set 

of antisymmetrized multi-quark representations. Since the evolution equation is 

relativistic and obeys all the conservation laws and symmetries of the full QCD 

Lagrangian, its set of eigensolutions should correspond closely to the structure of 

the true spectrum. Applications of the method to the baryon system have been 

presented in Ref. 1. 

In this paper, we analyze the structure of the spectrum and the short-distance 

behavior of the four-quark system in SU(2)c as a first attempt in analyzing actual 

multiquark color-singlet bound states in &CD. Even though this is a toy model, 

the results have a number of interesting implications for the realistic dibaryon 

system. 

An outline of the method is as follows: we first construct the set of completely 

antisymmetric four-quark representations as a basis for diagonalizing the QCD 

evolution kernel. After diagonalizing the mixing matrices, we find the eigenvalues 

and the eigensolutions of the four-quark evolution equation. The eigenvalues are 

the anomalous dimensions of the distribution amplitudes which describe the short 

distance behavior of the system. The eigensolutions correspond to candidate 

four-quark states for the spectrum of the full SU(2)c Hamiltonian. 
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A relativistic color-singlet bound state in QCD has a consistent Fock repre- 

sentation at equal time on the light cone in A+ gauge. The lowest Fock amplitude 

is referred to as the valence wavefunction. In the evolution equation formalism,2 

the valence wavefunction is represented by the distribution amplitude 4(~i,Q), 

the amplitude for the valence quanta to each carry light-cone longitudinal mo- 

mentum fraction 

collinear in relative transverse momenta up to the scale Q. Physically, r$(xi, Q) 

at large Q2 probes the short-distance behavior of the quark system, in the regime 

where all the constituents are within a transverse distance l/Q of each other. In 

general, the logarithmic Q2 dependence for 4(xi, Q) is predicted by QCD from 

the anomalous dimensions (eigenvalues) of the evolution equation. 

The four-quark eigensolutions can be expanded on the physical basis of ef- 

fective clusters, the analogs of the NN, AA, NA, and CC states in &CD. By 

analyzing the behavior of 4(xi, Q) at large Q2, we can predict the effective po- 

tential between two clusters. For example, we find that one of the hidden color 

states has a large projection on the eigensolution with leading anomalous dimen- 

sion (dominant at short distances), whereas the states analogous to NN and 

AA in QCD have an almost negligible leading component. This implies that 

the effective potential tends to be repulsive between color-singlet clusters and 

attractive between colored clusters at short distance. 

We also find two other types of four-quark states in SU(2) color which can- 

not be identified with dibaryon degrees of freedom. One of these states has 

equal NN, AA and CC components. The other state is an anomalous hidden- 
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color two-cluster system orthogonal to the usual hidden-color state which has 

the unusual feature that it has very small projection on the eigensolutions which 

dominate at short distance; i.e the effective potential between the colorful clusters 

of the anomalous hidden color state tends to be repulsive. We speculate that the 

analogous anomalous states in QCD could be quasi-stable non-nucleonic nuclear 

systems, possibly related to the anomalous phenomena apparently observed in 

nuclear collisions.3s4 These results also give some support to the conjecture that 

multiquark hidden color components exist in ordinary nuclei.4 

The organization of this paper is as follows: In Section 2, antisymmetric 

four quark representations are constructed. In Section 3, the four quark evolu- 

tion equation is expanded on this basis and solved. In Section 4, we relate the 

eigensolutions to an effective cluster representation and derive constraints on the 

nuclear potential between two clusters. In Section 5, we discuss the anomalous 

states of the SU(2)c theory. The results and conclusions are summarized in 

Section 6. 

2. ANTISYMMETRIC REPRESENTATIONS 

In Ref. 1 we presented a general method for constructing antisymmetric 

representations of relativistic many-fermion systems at equal time on the light- 

cone and used it to solve the evolution equation in QCD for the three quark 

system.2 Essentially, we use the following procedure:. 

1. Construct the irreducible representations in each quantum space, color (C), 

isospin (T), spin (S) and orbital (0) in terms of the irreducible represen- 

tations of the permutation group by using the Young diagram technique.5 
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2. 

For the orbital representations, we use the index-power space which is con- 

structed from the powers ni of the longitudinal momentum fractions x;. 

The orbital representations for the e quark system are the polynomials 

IL x:1’ with the orthonormalization condition, 

/ PI 4~) &(xi) d&i) = bnn, (2.1) 

where &, and $m are the orbital representations constructed by the same 

Young diagram with the index-power n and m, and w(xi) = l-J:=, xi. 

Construct completely antisymmetric representations in the entire CTSO 

space from the inner product of Young diagrams, using the Clebsch-Gordan 

coefficients of the St permutation group. 

The color singlet state of the four-quark system in SU(2)c is given by the 

Young diagram 
B 

. There are two orthogonal representations given by 

4 bb = = 5 (a - 52) 

= -5 (h + h - 2(s), 

(2.2) 

where 

cl = -$(bwbw +wbwb) 

f2 = --$(wbbw + bwwb) 

and 

c3 = +bbww + wwbb) 
fi 

. (2.3) 

Note that unlike the three quark system in QCD which has a unique antisym- 
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metric color representation, the SU(2) c multiquark system has mixed color sym- 

metry; i.e., several orthogonal representations. 

The notation used in Eq. (2.3) can be repeated for isospin and spin. We 

denote these representations by 571 , 2’2, and 7’3 (Sr , Sz, and S3) for 2’ = 0 (S = 0) 

with the substitution of (b, w) by (u,d) ((r, I)). Also we use the conjugate 

notation Tr, Fz, and T3 (31, ??z and 33) with the U-n sign instead of “+” 

sign between the two terms in the respective representations for the (T, Tz) = 

(LO) ((S, Sz) = (v)) t t s a es. In this analysis, we consider the T = 0 case, the 

analogue to the actual deuteron system. 

The results of the four-quark antisymmetric representations are summarized 

in Table I. For convenience, we present only effective representations which are 

sufficient to show the operation of the evolution kernel. In the Sz = 0 case, the 

SrTz and 31 Tz terms are presented for S = 0 and 1 representations, respectively. 

In the 5’~ = 1 and 2 cases the (tffJ.)Tr and (rrrt)Z”r terms are presented, 

respectively. Also, we denote in parentheses in Table I the spin-orbit Young 

diagrams for the cases in which several spin-orbit total symmetries are allowed 

from the inner product of spin and orbit representations. 

3. EVOLUTION OF THE FOUR-QUARK SYSTEM 

The distribution amplitude c$(x~, Q) is th e valence Fock State wave function 

at equal time on the light cone integrated over transverse momenta & 2 Q2: 

The wave function $J~(x;, LL;) satisfies the Bethe-Salpeter type bound state wave 

equation shown in Fig. 1. One can derive an evolution equation for the four-quark 
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color-singlet state which expresses the variation of d(xi, Q) as Q2 is increased: 

&xi; Q) = -3 /[dylV(xi, yi)&yi, Q) , (3.2) 

where 

and /3 = 11 - fnr (nf 

in SU(2)c). The term 

4(X;, 9) = ~1~2x3~4 &Xi, Q), (3.4 

is the number of flavors) and CF = (nz - 1)/2n, (=3/4 

y in Eq. (3.2) is derived from the wavefunction renor- 

malization of the quark propagators. To leading order in og(Q2), V(xi, yi) is 

computed from the single-gluon exchange kernel and is given by 

Yi ( 
% iii . A 

X- 3 +- 
X, 3 Xi + Xj Yi - xi > 

P-5) 

= V(Yi,Xi) , 

where F= (71, 72, 73) are the SU(2)c Pauli matrices and $xj = l(0) when the 

constituents {i,j} have antiparallel (parallel) helicities. The infrared singularity 

in the kernel at xi = yi cancels for color singlet bound states: A&(yi,Q) = 

&yi, Q) - i&it 9). 

The general solution of Eq. (3.2) can be written in the form 

&(xi,Q) = 2 a, &(xi)e-7ne(Q’) , 
n=O 

(3.6) 

where rn and & are the eigenvalues and eigensolutions of the following charac- 
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teristic equation: 

($$ - 7n) &a(xi) = -i /[dY] V(xi, yi)&a(yi) - 
0 

(3.7) 

The Jn basis is given in Table I, as explained in the last section. The remaining 

task is to find the anomalous dimensions 7n which determine the short-distance 

behavior of the four-quark wave function by computing the matrix of the evolu- 

tion kernel in this basis and diagonalizing it. Note that when a gluon is exchanged 

between the first and second quarks then the basis vectors (1 and 52 can be inter- 

changed while $3 preserves itself. Thus the calculation of the color factors is not 

as simple as the three-quark QCD case and requires a complete matrix analysis. 

The mixing between different spin and orbital multiplets is similar to the 

three-quark case. For example, the mixing matrix for the orbital power n = 2 

has dimension 4 x 4 for the Sz = 1 case and dimension 6 x 6 for the Sz = 

0. After diagonalizing the mixing matrices, we find the eigenvalues 7n and the 

eigensolutions Jn. The results are summarized in Table II. 

4. TWO-CLUSTER DECOMPOSITION 

In this chapter, we will connect the eigensolutions of the four-quark evolution 

equation to the physical two-cluster basis and derive constraints on the effective 

nuclear potential between the clusters. 

The four-quark antisymmetric representations can always be decomposed into 

a sum of products of pairs of two-quark representations. The two-quark antisym- 

metric representation is called a cluster which is classified according to its quan- 

tum numbers under G = SU(2)c x Sum x SU(2)s. In SU(2)c a four-quark 
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color singlet can be constructed not only from a pair of two-quark color singlet, 

but also from the product of two-quark color triplets (C). These correspond to 

dibaryon and hidden color states, respectively. The dibaryon states are classified 

by their isospin quantum numbers : N and A correspond to T = 0 and 1, in 

analogy to the T = l/2 and 3/2 states in &CD. 

A given four-quark antisymmetric representation (A) can be decomposed onto 

two clusters (Al @  AZ) using the following steps: 

1. Represent the four-quark antisymmetric representation as an inner product 

form A = C x T x S x 0. 

2. Decompose each four-quark representations C, T, S and 0 as an outer 

product of two two-quark representations using fractional parentage coef- 

ficients,6 e.g. C = Cl I~I Cz. 

3. Recombine the representations as an inner product: A = (Cl @ C2) x (7’18 

372) x (Sl 8 S2) x (01 c3 02). 

4. Commute the order of inner product and outer product, gathering together 

representations of the same cluster: A = (Cl x 2’1 x Sl x 01) 8 (C2 x 2’2 x 

S2 x 02) 3 A1 @ A2. 

5. It is sufficient to consider only the coefficient of the symmetric orbitals Or 

and 02 to classify the clusters such as NN, NA, AA and CC. 

Using these steps, we can determine the relation between antisymmetrized four- 

quark antisymmetric representations and the effective two-cluster representa- 

tions. For the 2’ = S = 0 case, we obtain the transition table given in Table 

III which relates the two kinds of representations. M. Harvey’ has already ob- 

tained the analogous transformation matrices between the physical basis and the 
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symmetry basis for six-quark systems. His definitions of the physical and sym- 

metry bases are essentially the same as the two-cluster representations and the 

completely antisymmetric representations used here. 

From Table III, we can relate the two-cluster distribution amplitudes with 

the completely antisymmetric quark distribution amplitudes. For example, the 

dinucleon distribution amplitude is given by 

hv~(xi,Q) = - ; +[4]{22} (xi,Q) + ; 4[22]{22}(%9) 

- 5 +[22]{4}(xidi?) 7 

(4.1) 

where the orbital and the spin-isospin symmetries are represented inside the 

square and the curly brackets. Since the eigensolutions are linear combinations 

of completely antisymmetric representations, we can relate the right-hand side of 

Eq. (4.1) with the eigensolutions given by Table II. The eigensolutions 4rn (xi, Q) 

have the following form: 

&,,(xi, Q) = e-mt(Q”) q&(x~) . (44 

Consequently, we can expand each two-cluster distribution amplitudes in terms of 

the orbital index power representations r&(xi). To probe the high Q2 behavior 

of the two-cluster distribution amplitudes, it is sufficient to consider only the 

leading terms which have the lowest anomalous dimensions 7n because of the 

damping factor of Eq. (4.2). Th e 1 owest orbital power with representations 

which provide well-defined two-cluster distribution amplitudes is n = 2. We will 

discuss the special properties of the n = 0 representation in the next section. 
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The n = 2 two-cluster distribution amplitudes can be expanded in terms of 

the orbital representations &(xi) - c&: 

+NN(X~,Q) = 0.07 e0*13Fc$~.13 - 0.64 e-“*06$b-0.06 

+ 0.39 em2*01F cj-2.01 - 0.47 essasot X5.50 

+ 0.44 e-6'75'&6.,5 + 0.15 e-7'40~~-7m40 , 

4AA (xi9 Q) = -0.07 e”‘13’ $0.13 - 0.59 e-“~06~q$~o~06 

+ 0.32 e-2*01rqL2.~1 + 0.47 e-5-50~tj-5.50 (4.3b) 

and 

_ 0.55 e-6*75? (b-6.75 - 0.15 f?-‘*40’ L40 , 

q5(fq, = -0.70 e0*13~qS0.13 - 0.35 emo*06t 70.06 

_ 0.61 e-2-olF r&2.01 - 0.08 e-5*50~ -4-5.50 

(4.3a) 

(4.3c) 

+ 0.02 ee6'75r(b-6.75 + 0.05 e-7*40'i#L7.40 , 

where r= yE(Q2). W e will discuss the second hidden-color state +(c,-+ in the 

next section. 

As seen from Eq. (4.3), each distribution amplitude has a distinct high Q2 

behavior which depends on whether it is composed of colorless or colorful clusters. 

The prototypes of the dibaryon system have a negligible coefficient for the most 

leading term at high Q2 and relatively large coefficients for the next-to-leading 

terms, whereas the hidden color state (CC), h as a large coefficient for the leading 

term. 
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One can imagine constructing a state at the scale Qo which only has the 

NN component of Eq. (4.3a) and then studying its evolution as Q increases. 

The high Q2 behavior of 4(xi,Q) g’ Ives the probability amplitude that all the 

quarks have impact separation less than l/Q. Thus the colorful clusters tend to 

coexist at short distances; i.e., the colorful clusters tend to attract each other 

and the colorless clusters tend to repel each other at short distances. Although 

these results are strictly only applicable in the limit of vanishing interparticle 

separation, they do provide rigorous constraints on the effective nuclear potential 

at short distances. 

5. ANOMALOUS STATES 

In the last section, we expanded the effective two-cluster representations in 

terms of the eigensolutions of the evolution equation and derived constraints on 

the effective nuclear potential at short distances. A state which at large distances 

corresponds to two colorless clusters (such as NN and AA) acts as if there is 

a short-distance repulsive potential between them. On the other hand, a state 

which consists of two colorful clusters at large distance ( (CC), ) sees an attrac- 

tive potential at short distances. These results show that the leading contribution 

of QCD to the multiquark wavefunction at short distances has a behavior con- 

sistent with the repulsive core nucleon-nucleon potential of conventional nuclear 

physics.8 However, we also find that the theory predicts the existence of anoma- 

lous states which differ from the normal nuclear degree of freedoms. 

As shown in Table III, if the total power n of orbital representation is zero, 

then only the completely symmetric orbital is possible. Thus, we can read Table 

III vertically but not horizontally. Since this state cannot exist without including 
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hidden color components with 50% probability,g we cannot interpret this state 

with normal nucleonic degrees of freedom. If such states exist in physical nuclei 

then they can provide non-additive nuclear phenomena, such as that observed in 

the EMC effect4 in deep inelastic lepton-nucleus structure functions. 

The (CC), state in the orthonormal cluster basis also has anomalous prop- 

erties. If we expand the n = 2 component in terms of eigensolutions, then 

d(cq,(xi,Q) = - 0.04e0~'3~q50.~3 - 0.30e-5*50~gL5.50 

(5.1) 
- 0.95e-7*40T+-7.40 . 

Since this state has negligible coefficients for the leading terms and very large 

coefficient for the strongly damped non-leading terms, the (CC), state acts as 

if there is a repulsive potential between two colorful clusters at short distances. 

This behavior contrasts with the more conventional behavior of (CC), 

If such a nuclear state were quasi-stable it could have unusual interaction 

properties. Since it consists of separated triplets (octets in SU(3)c) the state has 

a large color-dipole moment, producing large hadronic cross sections and short 

mean free paths. It is amusing to speculate whether the states in QCD analogous 

to the (CC)2 cluster configurations have any connection with the anomalous 

phenomena apparently observed in heavy ion collisions.3p10 
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6. SUMMARY AND CONCLUSIONS 

The results in this paper represent a first attempt to extract exact results 

for the composition and interactions of multiquark nuclear systems at short dis- 

tances. For simplicity, we have analyzed four-quark bound states in SU(2)c, 

but we expect that many of the derived properties extend to six-quark states in 

QCD.ll In particular, since the leading eigensolution at high momentum transfer 

has 80% hidden color probability,’ we expect a transition of the ordinary nu- 

clear state to non-nucleonic degrees of freedom as one evolves from long to short 

distances. 

The set of eigensolutions of the evolution equation represent all the possible 

degrees of freedom of the multiquark bound state system since its kernel has the 

same invariances and symmetries of the full QCD Hamiltonian. We thus expect 

that the eigensolutions of the evolution kernel which are dominantly hidden-color 

to correspond to actual states and excitations of ordinary nuclei. A careful ex- 

perimental search for these exotic resonances should be made. Possible channels 

where signals for such states may be observed include Compton and pion photo- 

production on a deuteron target at large angles. 
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TABLE CAPTIONS 

Table I: A set of antisymmetric representations for T = 0 four-quark distribution 

amplitude i) Sz = 0 ii) Sz = 1 iii) Sz = 2 case. The normalization factors are 

given in iv). For simplicity we present the effective representations which are a 

part of completely antisymmetric representations such as SrTz or 8rT2 terms for 

i), (TttJ) Tl terms for ii), and (tttt) Tl terms for iii). 

Table II: Eigenvalues and eigensolutions for T = 0 four-quark system up to total 

orbital power n = 2. Every eigensolution is a linear combination of completely 

antisymmetric representations given by Table 1. For convenience, we represent 

eigensolutions as Young diagrams of spin and orbital spaces since the color and 

isospin Young diagram is fixed by HxH. 

Table III: Transition between four-quark antisymmetric representations and ef- 

fective two-cluster representations. Square and curly brackets represent the or- 

bital (0) and spin-isospin (TS) symmetries respectively. 
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Spin x Orbital (SO) 

TABLE I 

(i) 5’~ = 0 : SIT, or SIT2 

Effective Representations 

terms 

ppp-j-qxpqqqil 

$3 - <1)(x1 - x2 +x3 - x4) 

&Cl - <2)(x1 - x2 + x3 - x4) 

$3 - h) ( x1x2 + x1x3 + x1x4 + X2X3 + X2X4 + x3x4 - 
1 
- 
3 > 

&I - 52) ( 
1 

‘1’2 +x1x3 + x1x4 + X2X3 +X2X4 +x3x4 - - 3 > 

;(<a - a) { x2x4-xlx3+~(Xl-X2+x3-x4) 

$1 - h) { x2x4-xlx3+~(Xl-X2+X3-X4) 

- h)(- x1x2 - x3x4 - xlx4 - x2x3 + 2(X1X3 + X2x4)} 

&{a(x1 - +2icx3 -x4) + <2(x1 - x4)(x2 - x3) +g3(q -x3)(X4 

&{s1(x1 - x4)(x3 - x2) + 52(x1 - x2)(x4 - X3) +53(x1 - x3)(x2 

& + 252 - <3)(x1 - x3)(x2 - 24) 

,r 

- 

- 

I .  

18 



(ii) SZ = 1: (tttl) Tl terms 

Spin x Orbital (SO) . Effective Representations 

pp(mn) 
pep 

pqqmn) 

$2 - a) 

$2 - 53)(-X1 - X2 - x3 +3x4) 

$(X1 - X3) + h(X2 - Xl) + <3(x3 - x2)} 

$2 - a) ( 
1 

X1X2 + X1X3 + 21x4 + X2X3 + x2x4 + x3x4 _ _ 3 ) 

32 - <a){ X1X2 + X123 - 51x4 

+&x1 - x2 - x3 + 3x4) 
> 

+ X2X3 - X2X4 - X3X4 

3 I 1 

4 { 2fi 51 -xlx2 +x3X4 - Xl24 + X2X3 + 5(zl - x3) 
1 

+52 -X2X4 + X1X3 + X1X4 - X2X3 + :(-Xl + X2) 

+a x1x2 - X3X4 + X2X4 - X1X3 + ;(-X2 + X3) 11 
+$1(x1 -x3)(x4 -x2) +52(x1 - X2)(X3 - X4) +(3(x1 - x4)(x2 _ x3)} 
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Spin x Orbital . 

(iii) S,z = 2 : (tttt) Tl terms 

Effective Representations 

[mXpj-i-pj $2 - 53) ( 
1 

xlx2 + X1X3 + X1X4 + X2X3 + X2X4 + x3x4 - _ 3 > 

&{s1(x1 - x3)(x4 - x2) + 52(xl - X2)(X3 - X4) + <3(X1 - x4)(x2 - x3)} 

(iv) Normalization Factors: For every representations, the follow- 

ing normalization constants must be multiplied according to their 

orbital representations. 

Orbital Normalization 
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TABLE11 

Spin x Orbit (SO) 

s, = 0 8 -- 
3 

-2.13 

-1.94 

2 -- 
9 

0 

0 

0.006 

8 
9 

0.56 m[ - 
H) 

tt x 
11 

pq-qqq - 0.43 pj-qq-q 00 
x 11 H 

I- 
. . 

.; 

. . 
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10 
3 

3.5 . 

4.75 

5.40 

s, = 1 
ll-m 

18 

-1 

-0.98 

1.13 

-0.42(m\ - m) 

0.52 11111 - 0.21 

-0.48(mi + m) 

-0.40 III - 0.06 

0.35 II - 0.67 

,-p x p (-0.17mi -0.16B) 

+p X p (-0.7i.m -O.,,H) 
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I 

s, = 2 

11+&m 
18 - 

2.51 

4.4 

+p X p (0.62~~ -O.,,H) 
u U \ 

0.76[fltlfT1 x ml -0.6411 00 
x 11 83 

+p x p (-0.02lmJ +o.o,H) 

TABLE III 

PIW~ W lwo PW) W I O lll) 

NN -f -; 0 

AA 1 1 
ii 5 

5 0 

0 

.W)2 0 0 0 1 
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I 

Xi, k*i 

=E 
= 

20) 
6-85 

=fE 30) \,. -T E + 

Figure 1: Evolution equation for the four-quark wave function to leading order 

in LYE (Q2). 
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