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ABSTRACT 

We present a general method for solving the QCD evolution equa- 

tions which govern relativistic multi-quark wavefunctions. In the case 

of three-quark systems, we generate a light-cone basis of completely 

antisymmetric wavefunctions. This provides a general covariant clas- 

sification of baryonic states. We then calculate the spin-orbit mixing 

generated by the QCD evolution kernel in the basis of completely an- 

tisymmetric representations.- We are consistent with previous results, 

but additionally, we obtain a distinctive classification of N and A wave- 

functions. The corresponding Q2 dependence of the baryon distribution 

amplitudes distinguishes the N and A form factors. 
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1. Introduction 

The form of -the short-distance behavior of a baryon wavefunction can 

be computed systematically in perturbative quantum chromodynamic (QCD).l 

The leading behavior of the baryon three-quark wavefunction at large momentum 

transfer or short distances is controlled through an evolution equation 

with an irreducible hard scattering kernel which, in lowest order, is identical 

to the gluon exchange potential. Since the running coupling constant cy8(Q2) = 

47r/[Po en (s21A2>l (PO = 11 - (z/3) nf, where nf is the number of flavors) is 

small for large momentum transfer Q, a perturbative calculation of the short dis- 

tance part of the wavefunction can be justified. The anomalous dimensions of the 

three-quark amplitude can also be predicted by the operator-product expansion 

and the renormalization group.2 

A particularly convenient and physical formalism for studying processes with 

large momentum transfer is light-cone quantization, as discussed in Ref. 1. A 

systematic analysis of exclusive processes and hadron distribution amplitudes 

has been given, including solutions of the evolution equation of the three-quark 

system. Thus far the analysis of evolution equations has not been sufficiently 

detailed to give a complete classification of the nucleon (N) and delta (A) states. 

In particular, the distinction between QCD predictions for the N and A wave 

functions and form factors needs to be clarified. 

In this paper, we develop a systematic basis for the baryon system by con- 

structing completely antisymmetric three-quark representations. The calculation 

of the QCD evolution kernel matrix in the basis of completely antisymmetric rep- 

resentations is given by a straightforward method. The solutions obtained by the 

present method are consistent with the preceding results,ls2 but additionally we 
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obtain a distinctive classification of the N and A wavefunctions and the corre- 

sponding Q2 dependence which discriminates the N and A form factors. 

The methods used in this paper have general applicability to the problem of 

analyzing the short-distance dynamics of multiquark systems. The analysis for 

four-quark systems in SU(2), and six-quark systems in SU(3), will be presented 

in subsequent publications.3 

In Section 2 we classify the baryon state by constructing completely anti- 

symmetric representations. In Section 3 we describe several properties of the 

three-quark evolution equation associated with the various quantum numbers 

and match the antisymmetric representations with the evolution equation. 

To construct a basis of completely antisymmetric representations, we define 

products of spin and orbit representations in analogy to non-relativistic wave- 

functions. Mixings of spin and orbital representations are described in Section 4. 

The results for the anomalous dimensions and the eigensolutions are presented 

and discussed in Section 5. Conclusions follow in the last section. 

2. Antisymmetric Representations 

Two identical fermions cannot occupy the same physical state; thus one de- 

scribes interacting fermions in terms of antisymmetric wavefunctions. The sys- 

tematic classification of bound states of fermion (including the baryons) is gen- 

erated on the basis of antisymmetrized constituent representations. In order to 

describe relativistic systems we always refer to the valence Fock component of the 

bound state wavefunction defined at equal light-cone time in light-cone gauge. 

Further details may be found in Ref. 1. 
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A fermionic system in QCD is classified by the assignment of four quantum 

numbers: color (C), isospin (T), spin (S) and orbital (0). Each quantum sec- 

tor of the wavefunction can be classified using irreducible representations with 

permutation symmetry denoted by Young diagrams4 The explicit construction 

of totally antisymmetric representations in terms of an orbital index-power basis 

will be described in the next subsection. 

2.1 COLOR (C), ISOSPIN (7’) AND SPIN (S) STATES 

We can classify the quantum numbers of C, T and S by the group of G = 

SU(3)C x SU(2)T x SU(2)S without loss of generality. Each quantum state as- 

signed by C, T and S is the irreducible representation of G, and each irreducible 

representation is denoted by the corresponding Young diagram. Once a Young 

diagram is given, the explicit representation can be constructed from its permu- 

tation symmetry4 and Schmidt orthogonalization. 

All physical baryons 

Young diagram is given by 

tion of the baryon is fixed 

are color singlet states. The corresponding 

in SU(3)c . Thus the explicit color representa- 

= -$ (ryb + ybr + bry - byr - rby - yrb) 

(24 

where the completely antisymmetric Cartesian tensor f?ijk (i, j and k correspond 

to one of r, y and b) defines the color singlet representation. The quantum 

state (color in this case) of the first, second and third quark is represented by 

the first, second, and third location of every term in Eq. (2.1). Hereafter, we will 
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use this convention for each quantum number unless we specifically denote the 

particle number. 

The classification of the baryon into N and A is given by the isospin label: 

i.e., T = l/2 and 3/Z, and the corresponding Young diagrams are 
EP 

and 1111 for N and A, respectively. The mixed symmetry 
EF 

has two 

orthogonal permutation symmetries, represented by two different Yamanouchi 

labels @and $. As an example, we present the explicit representation 

of Tz = l/2 for T = l/2 and 3/2, 

13 EF 2 
= -$ (duu - udu) , 

= 

12 

EF 3 
= $ (duu + udu - 2uud) ; 

(TJz) = (&$) 

(2.2a) 

uud = --$ (uud + udu + -duu) ; (T, Tz) = (;, ;) , (2.2b) 

where (T, Tz) = (l/2, l/2) and (3/2, l/2) correspond to p and A+ respectively. 

The spin states of the three-quark system are classified by the Young diagrams 

for S = l/2 and 3/2. Th e explicit representations are obtained from the isospin 

representations with the replacement of u and d by t and 1. 



2.2 ORBITAL (0) STATES 

The orbital states are normally defined by the quantum numbers of angu- 

lar momentum L and Lz. On the light-cone, the quark distribution amplitude 

4(x;,Q) is defined by 

(2.3) 
where T$Q) (xi, cli) is the wavefunction of three quarks which have longitudi- 

nal momentum fractions xi = k:/(‘& k:) = (ki + kf)/[Cf=, (kp + ks)] and 

transverse momenta k3_Lj. In this definition, the Lz = 0 projection defines the 

amplitude for finding the constituents collinear up to the scale Q. We will use 

as a basis for the orbital dependence of d(xi, Q) the index-power space repre- 

sentations xnlxnaxns 1 2 3 with n = nr + n2 + ns . The total power is analogous, 

as far as permutation symmetry is concerned, to the angular momentum L for 

non-relativistic system. In the QCD evolution equation the minimal anomalous 

dimension yn which determine hadronic amplitudes at very short distances are 

associated with small values of n; only the smallest powers of xi are important for 

probing the short distance behavior of 4(xi, Q). Thus, we consider the “orbital” 

symmetry on the index-power space (n = nl + n2 + ng) which determines the 

power of xl, x2 and x3 such as xy’ xr” xz3. 

In this power space, the orbital states are determined by filling up the 

possible Young diagrams with the powers of xi. For example, if we consider 

n = nr + n2 + n3 = 0 case, then the only possible Young diagram 1 1 1 1 gives 

the representation 

01010 = 1 . 
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For n = 1 case, the possible diagrams and representations are 

pqq-q = -5 (Xl + x; + x3) , 

00 
EF = 

1 

‘EP 2 13 = 5 (Xl - x2) , 

12 
L EF = + - . 3 & (Xl x2 2x3) 

P-5) 

(2.6a) 

(2.613) 

However, the representations given by Eq. (2.5) are not independent of the 

representation given by Eq. (2.4) b ecause of the conservation of momentum 

C&r xi = 1. Generally, the orbital representations can overlap each other be- 

tween the same diagrams. Thus we use the Gram Schmidt orthogonalization 

procedure and normalize the states by the following rule between the orbital 

representations &(xi, Qo) and &(xi, Qo) with the same Young diagram: 

(4m (xi, Qo) )b (xi, Qo)) = / [dx] w (xi) 4; (xi, Qo) +n (xi, Qo) 
(2.7) 

where [dx] = dxl dx2 dx3 6 1 - (C:=, xi) 1 and w(xi) = x1 x2 x3. 

After orthonormalization, we obtain the basis set of orbital states. The ex- 

plicit representations and Young diagrams up to n = 2 are presented in Table I. 

We note that the orbital representations in power space are independent of any 

dynamics, and any model-dependent representation can be projected onto our 

representation. A state which has arbitrary angular momentum L can be pro- 

jected on the corresponding index-power space. 
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2.3 ANTISYMMETRIZATION 

In subsections 2.1 and 2.2,’ we showed that the quantum states for each 

C, T, S and 0 quantum number are explicitly represented by the permutation 

symmetry of the Young diagrams. In particular, the completely antisymmetric 

representation of a quark system is obtained by the inner product of C, T, S 

and 0 quantum states represented by the corresponding Young diagrams. As an 

example, let us construct the antisymmetric representation of the excited state 

of the proton with (S,Sz) = (3/2,1/2). For this state, C and T representa- 

tions are given by Eqs. (2.1) and (2.2a), respectively, and the S representation 

is given by Eq. (2.2b) with the replacement of u and d by 1 and 1. To construct 

the completely antisymmetric representations, we combine the possible orbital 

symmetries as given by the Clebsch Gordan series of the permutation group Ss. 

In this case, the only possible orbital Young diagram is 
R 

. The lowest state 

is 021 (n = 1) and the representation is given in Table I. If we consider the 

Clebsch-Gordan coefficients of the permutation group 4 

tm = $ p. x p + 5 p x $ , (2.8) 

then we can obtain the completely antisymmetric representation 
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= g %jk ( tt1 + tit + itt ) (24 

X 
1 

duu (2x1 - x2 - x3) + udu (- x1 + 2x2 - x3) 

+uud(-xl -x2 +2x3)} , 

where N = 21 x 5! and cijk is defined by Eq. (2.1). In a similar way, we can 

classify all possible three-quark states and obtain the explicit antisymmetric rep- 

resentations. In Table II we present the classification and the representations of 

the baryon system up to the power n = 2. 

3. The Baryon Evolution Equation 

The three-quark evolution equation for the three-quark distribution ampli- 

tude rj(x, Q) with Lz = 0 is given by1 

x1x2x3 
(&+%) 

where the reduced amplitude &(x, Q) and the variable E  are defined by 

&, Q) = 9 j [&/I %Y) &(Y, Q> 3 
0 

4(x,Q) = x1x2x3 &(x,9) 3 
and 

Q2 
. 
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The color factor CB = (n, + 1)/2n, = 2/3 is fixed . The evolution kernel 

V(z, y) is the sum over interactions between quark pairs i, j due to exchange of 

a single gluon: 

V(X,Y) = 2Zl x2x3 c tJ (Yi - Xi) 6 (Xk - Yk) ; 
i#i ( 

‘hi4 A 
Xi + Xj +- 

Yi - xi 1 

= V(Y,X) , 
(34 

where 6,,hj = l(0) when the helicities of quark pairs i, j are antiparallel (parallel). 

The infrared singularity at xi = y; is cancelled by A&y, Q) = &y, Q) - &(x, Q) 

reflecting the fact that the baryon is a color singlet. 

We use the following general properties of the kernel: 

(a) The color states are evolved by the operator C”,=, X,/2 X,/2 [the X, 

are the Gell-Mann matrices of SU(3)G group]. Under the action of this operator, 

the antisymmetric color singlet representation does not change. The color factor 

CB is then fixed as 2/3 for the baryon. 

(b) QCD evolution conserves isospin. 

(c) At high momentum, the helicity of the quarks is conserved. However, 

the evolution kernel given by Eq. (3.2) has the 4.~. term, which means the spin 
3 3 

evolution operator is not diagonal for spin multiplets classified by total spin while 

it is diagonal for Sz components. 

(d) For the orbital evolution, the total power n of orbital representation 

[total power of &(y) b e ore gluon exchange and &(x) after gluon exchange] is f 

conserved upon integration Ji [dy]. H owever, many different representations can 

have the same power n. Thus we must allow mixing between different orbital 

states under evolution. 
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The evolution equation Eq. (3.1) h as a general solution of the form 

4(x-, Q) = Xl x2 x3 2 An&(x) (.h $-)-‘̂  , 

n=O 

where yn and dn satisfy the following equation 

Xl x2 x3 (?$-7n) 

(3.3) 

Jrb = $ j [dY] V(X,Y) &n(Y) - (34 
0 

The 7n are the anomalous dimensions corresponding to the three-quark 

eigensolutions &. 

The calculations of the rn and Jn were already given in Ref. 1 for the proton 

(h = l/2). H owever, the complete classification of all baryon states was not 

given. To do this, we use the basis elements in Table II to diagonalize the three- 

quark evolution equation, Eq. (3.4). In general, the eigensolutions Jn are linear 

combinations of antisymmetric representations. As a result, we find different 

7n for the nucleon and isobar states. We present the general solutions for each 

baryon in Table III. 

For specific calculations, one does not always have to use the full antisym- 

metric representation since we can use an effective representation in which the 

helicity configuration is fixed. As an example, we can choose an TJr term for 

Sz = l/2 state as an effective representation. We can also narrow the effective 

representation by fixing the isospin configuration: e.g. , choose the uud term for 

(T, Tz) = (l/2, l/2) and Sz = l/2. Th e orbital wavefunction coefficient then 

provides a practical representation. However, we must choose a proper term in 

order to calculate the mixing coefficients. If we use an improper term (such as 
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the udu term in the above example), then we cannot represent the eigensolu- 

tion because the mixed states (S = 3/2 and l/2 states) have the same orbital 

representation. 

4. Mixing and Diagonalization 

The lowest power orbital state (03 state) of each baryon is unique. These spe- 

cial states are eigensolutions by themselves, giving the eigenvalues 70 by Eq. (3.4). 

However as the orbital power becomes larger, the number of different represen- 

tations is increased and the mixing between the different representations occurs 

as described in the last section. Here we describe the mixing of different spin 

representations for the example given at the end of the last section. We define 

4 312 = (4.1) 

which is the state (I’, 2’~) = (l/2, l/2), (S, Sz) = (3/2, l/2) and n = 1, and 

which is the state (T, 2”~) = (l/2, l/2), (S, Sz) = (l/2, l/2) and n = 1. For 

convenience, we rewrite Eq. (3.4) as 

-b J(x) = y iqx, Y) J(Y) 3 

where b is defined in 

(4.3) 



and v(x,y) = &(x,y) + v~(x,y) is defined by 

O(Yi - XJc5(Xk - yk) 2 
‘h.x. 

* 3 
Xj Xi + Xj 

(4.5) 

A 
O(Yi - Xi) 6(Xk - Yk) 2 - 

Xj & + Xi ’ 

Putting the y representations of r#~~/~ and r$li2 [see Eqs. (4.1) and (4.2), and 

Table II] into the three-quark evolution equation [Eqs. (4.3) and (4.5)], we find 

and 

which gives the eigenvalues and eigensolutions after diagonalization as 

b=l for 

(4.6) 

This gives the expected mixing between +3/2 and d1i2 through the QCD 

evolution. 
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For the antisymmetric representations given by Table II, we find the mixing 

between the following states: for the nucleon case, n = 1 mixes 43/2 and #i2 

(the previous example), and n = 2 mixes 

For the A case, n = 2 has mixing between 

As in the previous example (43/2 and r$‘i2), we can diagonalize the mixing matrix 

v = & + ?” and find the eigenvalues b and the eigensolutions & for all antisym- 

metric representations as given in Table II. The results for b and 4 are given in 

Table III. 

5. Results and Discussion 

We have presented the antisymmetric representations for the three-quark 

system and shown the action of the three-quark evolution equation. We have 

used the following properties of the evolution kernel: 

1. The unique color singlet state of the baryon is preserved. 

2. The isospin state is preserved. 

3. Sz component of the spin state is conserved but different spin multiplets 

(S = 3/2 and S = l/2 states) can mix with each other. 

4. Lz = 0 is fixed on the light-cone and n value is conserved, but different 

orbital multiplets (corresponding to different Young diagrams) can mix with 

each other. 
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After the diagonalization of the mixing matrix v = & + VA, we find the 

eigenvalues and the eigensolutions as summarized in Table III. 

The method by which we obtain the above results is sufficiently straightfor- 

ward that we can find the basis of the eigensolutions before solving the evolution 

equation and see the evolution of each state explicitly. Furthermore, we can 

check every step of the calculation explicitly. For example, the symmetry of the 

evolution potential given by Eq. (3.2) can be checked by obtaining the matrix 

representation such as Eq. (4.6) for th e mixing of J3/” and &l/“. (Note that the 

matrices & and v~ are symmetric separately.) 

From Table III, we find that the eigenvalues and the eigensolutions are consis- 

tent with the previous results, but we have the classification in terms of physical 

baryons. The eigensolutions of the proton with Sz = l/2 case coincide with the 

result of Ref.1 for the distribution amplitude for the proton (h = l/2); 

@ = 
ii 

dt (1) UT(~) + ‘q(l) dt(3) 
d 

u1(2) 

2 l/2 - 0 3 Ut(lb@)Ut(3) 4%,Q) 1 
+ dt(lh(3) - ut(l) dt(3) 

a Y(Z)] dAbi, Q)} 

+ (1 f-) 2) + (2 * 3) , 
(5-l) 

where c#? and 4A are symmetric and antisymmetric under the interchange 

x1 t+ x3 and the color singlet representation cijk/& is understood. The repre- 

sentation inside.the curly bracket turns out to be the same as our effective anti- 

symmetric representation given by Table III. Furthermore, we can give the general 
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distribution amplitudes for the other baryons such as the excited proton &I”, 

1’2 3’2. and isobars qSh , +a . 

4p =; 3’2 (dtw - ut+q) @“(xi, Q) 

1 
+- 

w3 
(dyutut + u&q - 2uptdt) @(xi, Q) 

, (5.2) 

where qP and qSfl have the symmetry represented by the Young diagrams 

respectively, 

= uplut #(x;,Q) + (1 - 2) + (2 - 3) 

(Wdt + Utdm + dtvq) 4%, 9) (54 

where q@ is symmetric under the interchange x1 t) x3, and 

= UptUt +‘(xi,Q> 

= 5 (wdt + utdtut + dyupt) 4’hQ) , 

(5.4 
where the 47 are totally symmetric under any interchange between xl, x2, and x3. 
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As stated in the introduction, we can apply the above method to multiquark 

systems which have several color singlet representations.3 In this case a much 

richer phenomenology of QCD states exists including hidden color configurations. 

We can also combine this approach with the fractional parentage technique5 

to predict the effective interaction between baryonic clusters within a multi- 

quark system. 

In conclusion, we have presented a general technique which combined with 

evolution equations predicts the short-distance behavior and classifies the spec- 

trum of relativistic many-fermion systems. This approach thus provides a funda- 

mental method for studying short-distance dynamics even in the domain of the 

multiquark systems of nuclear physics. 
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I 

Table I 

The orbital representations in the index-power space for the baryon system; the normalization con- 

stant is multiplied by the representation for the correct normalization. 

Index- 
Power Young Diagram and Representation Normalization 

n=O ololo = 1 

n=l 
(21 - x2) 

(Xl + x2 - 2x3) 

ppj-q=$( 2 
x2 x3 + x3 x1 + x1 x2 - - 

7 > 

n=2 

p =g p = (~ = ~ (:;;x3-x1x3~+~~x1-x2~~ 
22 23 + 51 x3 - 2x1 x2) + i (XI + x2 - 2x3) 

(,.., 
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Table II 

Completely antisymmetric three-quark representations for A) the N system and B) the A system. For 

all representations, the color singlet representation factor eijk/fi given by Eq. (2.1) is abbreviated and 
i 

the orbital normalization constant given by Table I must be multiplied for the correct normalization. Even 

though we present the representations for positive Tz and .slz values, those for negative Tz and Sz values can 

be simply obtained by the replacement of u ++ d and t-1, respectively, for the corresponding representations 

of positive Tz and Sz values. For example, Tz = -l/2 representation is obtained by the replacement of 

u * d in the Tz = l/2 representation. 

A. N system (T = l/2); Tz = l/2 is fixed for convenience 

Index-Power 
Symmetry Representation of the Three-Quark System 

1. (8 Sz) = (3/Z, 3/Z) 

& (ttt) [duu(2yl - ~2 - y3) 

+udu(-YI +2y2 - y3) 

+ uud(-yl - y2 + zy3) 1 

& (ttt) [ duu{(2y2y3 - YlYS - y1y2) 
0 1 

EP 

+ ;(2yl - y2 - y3)} 

1 + UdU{(-y2y3 + 2YlY3 - yly2) + ; (-yl + 2y2 - y3)} 

+ uUd{(-y2y3 - yly3 + 2ylyz) + i (-yl - y2 + 2y3)} ] 

- ,  

2. (s, sz) = (3/2., l/2) 
. 

+ [(ttl) + (tit) + (ltt)] [ duu(2yl - y2 - y3) 

00 
RI 1 + uW--yl+2~2 - ~3) 

+ uud(-yl - y2 + zy3) 1 

& [(ttl) + (tit) + (ltt)l I duu-$bm - ~1~3 - yly2) 

EF 

+ ; pylvy2 my3)j 
0 1 

-1 + udu{(-y2y3 + 2ylY3 - M/2) + ; (-yl + 2y2 - y3)} 

+ uud{(-y2y3 - yly3 + 2y1y2) + ; (-yl - y2 + 2y,)} ] 
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Index-Power 
Symmetry Representation of the Three-Quark System 

3. (Wz) = (l/2, l/2) 

00 
EP 1 

0 1 EF 1 

-& [ (iff)(2duu - udu - uud) 

+ (tlt)(-duu + 2udu - uud) 

+ (ffl)(-duu - udu + 2uud) ] x 1 

& [ (ltt) {duu(-2yl +y2 + Y3) + udu(yl+ y2 - 2y3) + uud(yl -2y2 + y3)) 

+ (tit) {duu(Yl + Y2 - 2Y3) + udu(yl - 2y2 + y3) + uud(-2yl+ y2 +y3)j 

+ (ttl) {duu(yl -2Y2 +Y3) + udu(-zyl+y2 + y3)+ uud(yl+ y2 -2y3)j 1 

-& [ (lff)(2duu - udu - uud) 

+ (flf)(-duu + 2udu - uud) 

+ (ttl)(--duu - udu + 2uud) ] x 2 yZy3 + y3y1 + y1y2 - ? 
> 

& ((lttl [ dud{-2 y2Y3 +yly3 +y1~2)+ i(-2ylfy2 +y3)) 

+ UdU{(y2y3 +yly3 - 2yly2) + $1 +y2 - 2y3)) 

+ uud{(y2y3 - 2YlY3 + Y1Y2) + ;(YI - 2y2 + ys)} ] 

+ (tit) [ dUU{(y2y3 +yly3 -2yly2) i- i(yl i- y2 -2~3)) 

+ILdU{(y2y3 -2YlYs$.y1y2) + i(yl -2~2 +y3)} 

+ uud{(-2y2y3 +y1y3 +y1y2)+ ;(-2yl+y2 + y3)} ] 

+ (tt-l) [duu{(Y~ya - 2yly3 +y1y2) 

+ udu{(-2YzY3 +Y1y3 +y1y2 

+UU~{(YZY~ + ~1~3 - 2~1~2) 

+ ; (Yl - 2y2+y3)} 

I+ ;(-2Yl+ Y2 + y3)) 

+ ;(YI +Y2 - 2ys)}]) 
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I). A system (T = 3/2); for Tz. = 3/2, ml = uuu, and for TZ = l/2, ml = 

[(l/&) (uud + udu + duu)] are factors for all representations. 

Index-Power 
Symmetry Representation of the Three-Quark System 

1. (Wz) = (3/Z, 3/Z) 

pqiji.1 5 (ttt) (y2y3 + y3yl+yly2 - ;) 

2. (8 sz) = (3/2, l/2) 

p7pij-q $ Kttl) + (tit) + (ltm  x 1 

1011111 f [(ttl) + (tit) + (ltt)] (y2y3 +y3yl+ yly2 - ;) 

3. (S, Sz) = p/2, l/2) 

+ (ttl)(-?A - y2 + 2y3)] 

0 1 

FP 

(m{2y2Y3-YlY3-yly2 + ~(2y,-y2-y3)) 

1 + (tit) {--y2y3 +2YlY3 - yly2 + ;(-yl+2y2 my3)} 

+ (ttl) I-y2y3 - Y1Y3 +2yly2 + ;(-yl-y2 +zy3)j 1 
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Table III 

Eigenvalues and eigensolutions for A) N system and B) A system: the anomalous dimensions are related 

to b by Eq. (4.4), i.e., 7 = (2bCB + 3C~/2)/p. Th e normalization factor fi for the effective representation 

is also given. 

A. N system (T = l/2); TZ = l/2 is fixed. 

Spin 
Config- Spin 
uration b x Orbital fi J(y) (Effective Representation) 

& [ d42Yl - y2 - y3) 

+ udu(-yl + a/2 - y3) 

+ uud(-y1 - y2 + ~3,~) 1 

& [ dUU{(2Y2Y3 - Y1Y3 - Y1Y2) 

ttt ; lmjxp 6&%x& + ; PYl - Y2 - Y3)) 

+udu{ 1 ++ 2 }+uud{ 1 ++ 3 } ] 

-$ (-duu+ 2udu- uud) x 1 

tit 
2 
3 f (duu - uud) (~1 - ~3) 

to 1 f (duu - 2udu + uud) (-YI + 2~2 - y3) 
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Spin 
Config- 
uration b 

Spin 
x Orbital a J(y) (Effective Representation) 

--& (duu - 2udu + uud) 

X (-6~2~3 - %Y3 -6y1y2 

-dqy xp + i (% + 6~2 + 9y3) > 

7 
3 

1 
5 (duu - uud) 

’ y2y3-yly2 + ; (yry3) 

& (duu - 2udu + uud) 

X (-3Y2Y3 +3Y1Y3 - 3~1~2 

+ ;-;yl+y2-;y3) 
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B. A system (7’ = 3/2); for Tz = 3/2, m  = uuu, and for Tz = l/2, ml = 

[(l/&) (uud + udu + duu)] are factors for the effective representations. 

Spin 
Config- 
uration b 

Spin 
x Orbital n J(y) (Effective Representation) 

ttt 5 42& 
1 
3 y2y3 + y3Y1 + y1y2 - ; 

> 

Tit -1 Irlllt]X101”101 & 1 

-T-&r 1 pxp lhiXd% ; t--y1 + 2Y2 - ys) 

2Y2Y3 + 3y1y3 + 2yly2 

3 1 
- 4 Yl - i Y2 - ; y3 

> 

t.l.t ; -3Y2Y3 + 3YlY3 - 3Yly2 + $ 

- f Yl + y2 - ; y3 
> 
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