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Introduction 

The past two years have seen a new assault on one of the basic questions of high-energy 

physics, the question of the structure of the nucleon. The new developments involve an old 

model of the nucleon, one introduced by Skryme in 1961’ and seemingly made irrelevant 

a few years later by the invention of the quark model. It is more accurate, though, to 
say that the virtues of Skyrme’s model went unappreciated by most field theorists until it 

was revived by the recent work of Balachandran, Nair, Rajeev, and Stern2 and Witten. 

The explosion of interest in this model which followed these papers has established the 

Skyrme model as a picture of the nucleon from which one can derive quantitative and 
-quite nontrivial predictions. 

In this lecture, I have chosen to discuss in detail one particular set of results which have 
been derived from the Skyrme model, results on the S-matrixfor pion-nucleon scattering. 

I have chosen this topic, first, because I have been involved in it directly, but also, more 

importantly, because these results provide a direct and pleasing link between very abstract 

notions of field theory and concrete results of experiment. The analysis which I will discuss 

is due to Hayashi, Eckart, Holzwarth, and Waliser,’ at Siegen, and to Mattis, Karliner, 

and myself, 5’6 at SLAC. A detailed survey of the applications of the Skyrme model has 

recently been presented by Nappi;’ the reader should look there for an overview of the 

new results which have been obtained from Skyrme’s picture. 

The Skyrme model is a particularly appropriate topic for a symposium in honor of Niels 

Bohr because it is a striking example of complementarity, both in itself and in its relation 

to other aspects of pion-nucleon physics. It is, first of all, a picture of the nucleon which 

is complementary to the more conventional quark picture, in that it pulls new information 

from the same underlying theory by utilizing a different set of approximations. To explain 

this, I should first explain the other sense in which the model is complementary: it is the 
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simultaneous realization of two quite different viewpoints on what makes the nucleon large 

and stable. 

The first of these viewpoints originated with Skyrme’ and Finkelstein and Rubinstein.* 
These authors put forward the suggestion that conserved quantum numbers arise in physics 

for topological reasons, that particles which carry conserved quantum numbers are built 

up from classical fields of‘nontrivial topology. This idea has a particularly straightforward 

realization the strong interactions with two light quark flavors. The global symmetry of the 

model is chiral SU(2) x SU(2); this symmetry is spontaneously broken to SU(2) isospin. 

The symmetry-breaking can be described phenomenologically by parametrizing the local 

orientation of the chiral symmetry breaking condensate by an SU(2) matrix U(z). The 

fluctuations of U(z) about a constant value are Goldstone boson excitations; these are the 

pions: 

U(5), = ezp (+ 4). 0) 

The space of values of U(z), the group SU(2), is isomorphic to the 3-dimensional sphere; 

by mapping the 3-sphere onto 3-dimensional space (e.g., sending the north pole to infinity 

and the south pole to the origin), one can define topologically nontrivial maps from SU(2) 

-onto 3-space. The map in this topological class which gives the field configuration of 

lowest energy defines a stable, finite-energy excitation of the vacuum. Skyrme proposed to 

identify this object with the nucleon and the conserved topological quantum number with 

baryon number. Witten has bolstered this interpretation by showing, after a remarkable 

analysis, that, in the phenomenological theory derived from QCD with three light flavors, 

an adiabatic rotation of Skyrme’s object through 27r produces a phases (-l)N, where N 

is the number of colors in QCD. Thus, Skyrme’s object is a fermion or a boson in accord 

with the properties of nucleon in N-colors &CD. 

The second viewpoint is due to Witten and represents his attempt to find the sys- 

tematics of baryons in QCD as the number of colors is taken to infinity. The theory of 

mesons was shown by ‘t Hooft” to be very simple in this limit; as I will discuss a bit 

later, mesons become well-defined, narrow states with interactions proportional to l/N. 
Witten proposed that baryons be viewed as the solitons of this weakly-interacting theory. 

He noted that the basic relations which are true of solitons in a theory with expansion 

parameter LY, that the mass of the soliton is proportional to o-l, and that the radius of 

the soliton and the soliton-meson cross-sections are independent of a, are true in QCD at 

large N if tr is replaced by the expansion parameter l/N. 
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If the two pictures connect, the baryon must arise as a soliton in a field with the 

transformation law of the matrix U(z) which may be described semiclassically in the limit 

N -+ 00. We can see how this field arises in two complementary ways. First, consider 

a quark-model description. For N large, the nucleon is built of N quarks occupying the 
same wavefunction. This wavefunction has some fixed radial dependence and also carries 

spin and isospin indices:.Q;(r). As N ‘. + 00, Q:(r) becomes macroscopically occupied and 

takes on classical significance. Alternatively, we might take a pion viewpoint. Consider 
constraining the quark bilinears Qq and py5raq to have fixed values: 

(cjq + qy5Fq. 3) = A . U(z), (2) 

and then integrating out the quark and gluon fields. As N -+ 00, the leading contributions 

to this integration come from planar diagrams with external insertions of U(z); a typical 
such diagram is shown in Fig. 1. Each of these diagrams is of order N; thus, the sum 
yields an effective action of the form: 

l eff = N{j2tr[drUtdpU] + i2tr[~pU~&Uil~U~Z’U] + -a a}, (3) 

where the parameters f, 8, . . ., are independent of N. In this expression, l/N stands in 
the place of Planck’s constant, so that the U field becomes classical as N t 00. 

Fig. 1. A typical diagram contributing to the effective 
action for U(z) to the leading order in l/N. 
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The classical field configurations which emerge from these two arguments are not ob- 
viously equivalent, but they do clearly share a common feature: The macroscopic wave- 

function of the quark picture can be written as 

and the topologically nontrivial U field configuration can be written as 

Uo(z) = ezp{iF(r)+ - 0). 

In each expression, the classical wavefunction defines a coordinate system for isospin space 

in terms of axes in physical space. Each is transformed by the separate action of ?and J’ 
but is invariant to the combined action I’+ J’. 

Gervais and Sakita” and Manoharr2 have emphasized that this group-theoretic 

property leads directly to many of the pleasing phenomenological results of the Skyrme 
model. The symmetry I+ f, which we call z, will in fact play a central role in the 

analysis I will present here. More model-specific properties of the Skyrme model also 

tend to work quite well, however, as was first emphasized by the detailed results on the 

static properties of nucleons presented by Adkins, Nappi, and Witten. l3 I will try to 

strike a balance, then, between purely group-theoretic and more scheme-dependent results 

concerning pion-nucleon scattering. 

Baryon resonances in large-N QCD 

Since I will use l/N as an expansion parameter, we should begin this analysis by 
discussing qualitatively the properties of the nucleon and its excited states as N + 00. 

These properties will guide us in setting up a proper analysis and in simplifying it to the 

greatest extent possible. 

We should first recall the basis of ‘t Hooft’s result that mesons become weakly coupled 

in the large-N limit. lo Let us take as our starting point the effective Lagrangian (3), 

which was derived by summing the planar diagrams. (A more general argument would 

involve an effective Lagrangian involving fields which create higher-mass mesons.) Expand 

U = ezp(ifi - 3) in terms of pion fields, and renormalize the pion fields by the replacement 

l-r(z) = 7(z) * 5 

in order to normalize the kinetic energy term to $ i(2?r7r)2. (Our formula (1) contains 

this prescription, since, for large N, fn - fi.) Then th e t erms cubic and quartic in pion . 
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fields have coefficients proportional to l/o and l/N, respectively, and so the width and 

scattering cross-sections of mesons fall off as 

1 0--. 
N2 (7) 

For baryons, analogous results apply, The expansion of .f,~ in small fluctuations alI 
about a classical solution Uo(z) takes the form 

& eff = N So[Uo] + 1 J 
6l-I * &[U,] * 6l-I + 

/ 
L3.6rImI4rI+... > (8) 

Again, one should rescale 6lI according to (6); after this resealing, one can see that the 

cubic and higher terms are small in the large-N limit.. However, the quadratic term, 

which is of order 1 in powers of l/N, already generates nontrivial scattering of pions 

from the soliton. Excited states of the nucleon appear as resonances in this scattering 
process. These states are not particularly narrow or long-lived; their features follow the 
motion of the pion-soliton phase shifts. In this respect, the results of the leading order 

in l/N contrast markedly with those of the nonrelativistic quark model, in which baryon 

resonances are zero-width states to leading order. 

I have already remarked that, in the field of a soliton of fixed orientation, I’and J’ 

are not necessarily conserved, since only their combination r? = I+ J’leaves the soliton 

invariant. This implies that the eigenfunctions of L2 [ Uo], and, thus, the nucleon resonances, 

are classified only by K. The idea of testing the Skyrme model by assigning resonances 

to J? channels has been explored by several groups;14-16 Hayashi and Holzwarth l6 have 

given a particularly complete catalogue. However, since resonances are not neccesarily 

narrow in this model, it is useful to develop a formalism which treats both resonant and 
nonresonant 2 channels contributing to the same physical pion-nucleon amplitude. 

Such an analysis is possible because the limit N + 00 allows some additional simplifica- 

tion in the way one connects the stability matrix l,[U] to the amplitudes for pion-nucleon 
scattering. To see this, let us first recall that nucleons arise in the Skyrme model as ro- 

tational eigenstates of the soliton: l3 Since the soliton is not invariant to spatial rotations, 

one can obtain a family of soliton solutions, all degenerate with a given solution Uo, by 

rotating UO through an arbitrary set of angles. We may write these solutions as 

U(A) = AUoA-l, (9) 

where A is an SU(2) matrix acting on a’ in (5). To break the degeneracy, one treats A as 

a set of canonical coordinates (collective coordinates). Since the energy of the soliton is 

5 



independent of A, one should diagonalize the corresponding canonical momenta. For the 

problem at hand, A gives the coordinates of a symmetric top; diagonalizing the angular 

momenta conjugate to A yields the eigenfunctions of the symmtric top, characterized by 
I = J and independently chosen 1=, Jz. For the case of two quark flavors, it is permissible 

to quantize I and J as integers or as half-integers.* To describe baryons, we make the latter 

choice and identify the I = J = fr and I. = J = i states with the N and A, respectively. 

As N + 00, both the mass and the moment of inertia of the soliton increase as N’. 

Therefore, the translational and rotational energies of the soliton 

P2 J(J + 1) 
is 21 

are of order l/N, and so the corresponding velocities are of order l/N. Thus, if the energy 
of the incident pion is of order 1 (that is, of order mP, or another typical meson mass), we 

may neglect the motion of the soliton during the scattering process to leading order in l/N. 
To compute the amplitude for pion-nucleon scattering, then, we need only decompose a 

nucleon state into soliton states of fixed orientation, compute the pion-soliton S-matrix 
in these fixed orientation states by diagonalizing L32(U(A)], and.then combine the results 

coherently to form a final-state baryon of definite spin and isospin. Let me now explain 

how to carry out this program explicitly. 

Reduction of the pion-nucleon S-matrix 

Let us first work out the general properties of the pion-nucleon S-matrix which follow 

only from the symmetries of the problem. Following the program sketched in the previous 
section, we can perform this analysis in two steps, first, the computation of S for a fixed 

orientation of the soliton, and, afterward, the reconstruction of initial and final states of 

fixed spin and isospin. This treatment is quite similar to the analysis of excitations of 

deformed nuclei in the adiabatic approximation of Bohr and Mottelson.17 

Let us begin by considering the soliton to be tied in a particular orientation, that of 

the reference configuration UO given by (5). In this background, the wavefunctions of pions 

may be classified by the conserved quantum numbers K, K,, I, L, where I and L refer to 

the pion alone (I = l), and r? = r’+ L’. The dependence on isospin and angle of such a 

state is that of a vector spherical harmonic 

(11) 

Three values of L couple to each K. However, since the parity of a pion wavefunction 

. is (-l)L-l, the states with L = K do not mix with those of L = K f 1. Now imagine 
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that we have computed the S-matrix in a given K channel; we can represent this by a 
reduced S-matrix SKLIL, where L’ and L are, respectively, the final and initial pion angular 

momenta. The S-matrix is then given, in a basis of definite I, L, by 

qL’L:f:;LL.z,) = c(L:I: ( KKz)~KLx(KK, 1 LJ,). (12) 
K,Kz 

In this equation, and henceforth, primes denote the quantum numbers of the final state. 

To find the S-matrix for a different fixed orientation of the soliton, we need only rotate 

the soliton through A, or, alternatively, rotate the pions backwards through A. If we 

denote the matrix representation of A on a state of spin s by Ata), the rotated S-matrix 

is given by 

&V 
(L’L:z:;LL.z,) = C A”‘:(L:TL 1 KK,)sK~~L(KK, ( Lz.Tz)A~~‘szz. 

K,K, ('I 
(13) 

Let us now project this amplitude onto external nucleon states, or, more generally, onto 

external baryons chosen from the tower of rotational excitations. Denote any one of these 

baryons by I = J = R. The corresponding wavefunction is given by the symmetric-top 

_ eigenfunction: 13 

where cab = (-l)‘-‘6(a+ b) serves to lower the first index. As a shorthand, let me denote 

the action of ctR) by writing this index as gz. The physical S-matrix 

S(7T(LL,I*)B(Ri,s,) + n(L’L:I:)B(R’+:)) (15) 

is given by the matrix element of (13) between states (14). 

I will give only the most important steps in the evaluation of this matrix element. 

Write the matrix element as an integral over A, and project the initial and final states 

onto definite total isospin. This gives an expression of the form 

(16) 

The matrices A act in reducible representations of isospin which are then projected onto 

irreducible representations I’, I. We could, alternatively, reduce first and then rotate. This 



converts (16) to 

/ 
dA (AQ~~)~~~~(I’~: 1 s”:fl). . . 

’ 
(17) 

(&r. 1 11,) (A;-,>I I s * 
Now only two A’s appear, and so we can use orthogonality to perform the integral. This 

procedure yields the structure 

The first two delta functions impose isospin conservation in the reaction; this conservation 

law was not manifest at any earlier stage of the calculation. 

Now project the initial and final states onto definite total angular momentum. The 
resulting expression has three Clebsch-Gordan coefficients for each side of the reaction. 

For the initial state, these are: 

(KG 1 L&(&l, 1 If&L 1 JJz); (19) 

the first factor comes from (13)) the second from (17). (19) is of exactly the right form to 
be reassembled into a 6-j symbol and one remaining Clebsch-Gordan coefficient: 

(20) 

Since K, K, are the same in the initial and final states, the sum over I=, r::, constrained by 

the third Kronecker delta of (18), b ecomes the orthogonality sum for the remaining two 

3-j symbols. This produces 

bJJJ 6J:JI, (21) 

the reflection of angular momentum conservation, which was also not obvious at the early 
stages of the calculation. The final result is 

SL’R’LRZJ = x(-l)R’-R4(2R’ + 1)(2R + 1)(2K + 1) 
K 

(22) 

This expression has the form one might have expected from a nonrelativistic SU(6) (actu- 

ally SU(4)) analysis, except that the SU(4) Clebsch-Gordan coefficients have been replaced 

by SU(2) 6-j symbols. The pattern of combination of the 6 angular momenta is illustrated 

in Fig. 2. 
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Fig. 2. Relation of the 6 angular mo- 
menta in the initial or final state of pion- 
Skyrmion scattering. 

Model-Independent Results 

We have now derived the general structure of the pion-nucleon elastic scattering am- 

plitude, and of the amplitudes for some related quasielastic processes, to leading order 

in l/N. Though I have presented this analysis in the language of the Skyrme model, it 

actually applies to any description of the nucleon as a soliton which is invariant to motions 

generated by d but not by r’ and .? separately. Had we taken the model of eq. (4) as 

our starting point, we would have reached the same conclusion. The result (22), then, 

can be viewed as a consequence of the validity of the l/N expansion for the description of 

baryons, independently of the details of any particular model. It is therefore interesting 

to ask if there is experimental evidence for the structure displayed in (22). 

Let us write (22) more explicitly for the special case of pion-nucleon elastic scattering. 

For each value of L, there are four possible channels (I, J), corresponding to I = $, 4 

and J = L f i. These channels couple, in general, to all three possible values of K: 

K = L, L f 1. Parity and angular momentum conservation insist that L is conserved in 

pion-nucleon elastic scattering. Thus, the full set of equations involves only three reduced 

S-matrix elements: S~L,L for K = L, L ziz 1. Let us abbreviate this quantity as SK, with 

the correct value substituted for K. Then the four channels have partial-wave amplitudes 

given by: 

9 



&L-i = g+SL-l -I- ++L 

(23) 
&PL + &$L+l 

S;L-+ = ~Q&g+L-l + +bL + g-$SL+1 * 

S $L+$ = I 
2L-1 
-SL-1 .. + g&L + {gf&L+l 

Since there are four equations in three unknown SK’S, there should be a model-independent 

linear relation among the SZJ’S. Actually, there are two, and they allow us to express both 

isospin-8 amplitudes in terms of energy-independent linear combinations of the isospin-fr 

amplitudes: 

S 
L-l 

+f = -&,+ -I- - 4L+2 2 
3L+3s 
4L+2 ;L+lhalf 

S$L+f 
3L L-k2 s 

= US;,-+ + - 4L+2 iL+i 

The relations (24) can be checked directly against experimental data, or, rather, against 

sets of partial wave amplitudes extracted from experiments on pion-nucleon elastic scat- 

_ tering. The most complete compilation and analysis of the data for this reaction has been 

done by Hiihler, Kaiser, Koch, and Pietarinen.‘* Using their partial wave amplitudes to 

give the values of S;J and StJ, we can directly compare the left and right-hand sides of 

these two relations. Some representative results are shown in Figs. 3-5. (The complete 

set of comparisons, up to K-waves, is presented in ref. 5.) In these figures, the solid lines 

represent the isospin-i amplitudes and the dotted lines represent the particuIar linear com- 

binations of isospin-$ amplitudes dictated by eq. (24). In these figures, and henceforth, I 

refer to the partial wave amplitude S;i~(L) as Ljk (e.g., S;;(L = 1) = P3l). 

Clearly, the linear relations do not work especially well for the P waves. They actually 

are comparably bad for the S and D waves. A sign of what is wrong can be seen from the 

P33 comparison: The true P33 amplitude includes a complete tour of the Argand circle; 

this is the A. In the amplitude as reconstructed from I = f amplitudes, there is a small 

bump at relatively low energy, which is the Roper resonance N(1410) trying feebly to 

simulate the A. In the F and H waves, however, the reconstructed curve traces out every 

nuance of the true isospin-g amplitude. The only major difference between the two sets 

of curves is a small (A 200 MeV) dispalcement of the energy scale. But this is actually to 

be expected: This dispIacement presumably comes from the rotationa energy term which 

produces the N-A mass splitting; like that splitting, such a contribution would be of order 
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Fig. 3. Test of eq. (24) f or TN elastic scattering in the P waves. The solid 
and dotted lines represent the evaluation of the left- and right-hand sides of (24), 
respectively, using the partial wave amplitudes of Hijhler, et. al., ref. 18. Each 
result is expressed as a T-matrix (T = (S - 1)/2i). 
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N-l and thus beyond the level of the leading-order analysis I have presented. Comparably 

good results hold for all the higher partial waves. A similar set of comparisons can also be 

made for the process ?rN --+ zA; this is also presented in ref. 5. 

Can we trust the good agreement found in the F and higher waves if the lowest partial 

waves are so problematic ? This could make sense if the Skyrme model itself predicts 

difficulties in the S, P, and D waves which do not occur in the higher partial waves.. An 

example of such a difficulty would be a bound state near threshold. A pole of the S-matrix 

in the complex energy plane is accompanied by a zero at the complex conjugate point. If 

the pole occurs at or just below threshold, but on the real axis, the pole and zero coalesce. 

A problem can occur if the pole lies on the real axis only in the leading order of the l/N 
expansion; then higher-order corrections can push the pole either to the right, into the 
physical region, where it produces a dramatic resonance, or to the left, where it might 

produce a strong repulsion near threshold. This precise difficulty actually arises directly 

from the chiral soliton picture.6 It is well-known that symmetries of the underlying theory 

which do not leave the soliton invariant lead to zero-energy eigenstates of the stability 

matrix f22[Uo] defined in eq. (8). These states correspond to pion modes which have 

exactly zero energy in the leading order in l/N. The Skyrmion has 6 such zero modes, 

corresponding to 3 translational and 3 rotational (in space or isospace separately) motions. 

The translational zero modes form a K = 1 multiplet mixing L = 0,2; these couple to the 

S and D waves. The rotational zero modes form a K = 1 multiplet with L = 1 and couple 
to the P waves. There are no such zero modes which couple to the F or higher waves. 

We know already that the A appears as a resonance in zN scattering in precisely this 

way. At the level at which we have been working, the N and A are degenerate, and so 

the A resonance should decouple from the P33 scattering amplitude. Small corrections, 

though, c,an push the A above the N and make it a strong resonance. Mattis and Karliner6 

have’ suggested that the other relatively low-lying zN resonances-the Roper resonance 

&(1410), the &(1526), and the &(1519)- a so arise from this mechanism. It is in- 1 

teresting that the other channels in low partial waves-the Srs, Prs, Par, and &-are 

the only channels in ?rN scattering which show repulsive behavior near threshold. In this 

picture, that would correspond to a small displacement of these poles in the opposite di- 

rection. One can, in principle, check this picture by making more detailed calculations in 

the Skyrme model. I will discuss the technique, at least, a bit later. 

By adding a very .simple bit of model-dependent information to the relations (23), one 

can extract an additional, rather striking, result. Let us assume that, for given L, the 

reduced T-matrix is larger for the lower values of K. This would coincide with the insight 
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one obtains from the study of, for example, the scattering of fermions from magnetic 
monopoles, all the interesting action takes place in the modes of lowest combined angular 

momentum J’. In particular, I would like to assume that the reduced T-matrix associated 

with sK=L+l is negligible compared to the reduced T-matrices associated with SK&-r 

and SK=& To use this information, notice that the coefficients in each row of (23) sum 

to 1. Thus, if the coefficient of SL+~ is’.large, the important terms in the T-matrix will be 

small. Checking the values of these coefficients, we predict the pattern:5 

(S - l)iL-; > (S - l)gL+; >> (S - l)$+Q - (S - l);L-;, (25) 

which one might call the big-small-small-big rule. This rule is actually quite visible in the 

Hiihler, et. al., partial wave amplitudes, as is shown in Fig. 6. This behavior was noted 

in the classical period of the study of TN scattering, and Donnachie, Hamilton, and Lea 19 

showed how it followed from a particle exchange model. It is striking, however, that, in 

chiral soliton models, this rule follows very simply from the structure of the nulceon itself. 

Model-Dependent Results 

Thus far, I have discussed results which follow from K symmetry alone, without mak- 

ing reference to any particular Lagrangian. If one assumes a particular form for the 
Lagrangian, however, one may compute the reduced S-matrix elements directly by a nu- 

merical calculation of the eigenstates of f ~[UO]. Most of the calculations of this sort done 

to date make use of Skyrme’s Lagrangian 

L: = $tr(apUt@U) + &tr( [t3pUUt,&UUt])2. 

Breit and Nappi14 and Zahed, et. a1.,15 studied the specific case of the breathing mode 

K = 0, L = 1. Hayashi, et. a1.,4 and Mattis and Karliner’ have presented quite general 

analyses of the structure of SKL’L. I will not discuss these calculations in detail, especially 

since the actual equations which must be solved numerically are rather lengthy. Suffice it to 

say that these two latter groups have obtained all the information necessary to completely 

construct predictions for the TN elastic partial wave amplitudes from the formulae (23). 

Hayashi, et. al., have presented their results for the F wave amplitudes; Mattis and 

Karliner have .presented predictions for all the partial waves considered in the data com- 

pilation of Hijhler and collaborators. ‘* These calculation fail badly for the S, P, and D 

waves (presumably for the reasons discussed above), but do reproduce the general form of 

15 



-0.2 0 0.2 
0.0 
0.6 

0.4 

0.2 

0.0 
1.0 

D15 q D33 E#Ill D35 E#lIl vll 
s 

F35 Ll F3’7 EJ H F15 0.5 

0.0 
-0.1 0 0.1 

G39 FITI G19 FazJ 
0.2 

0.1 
vll 
5 0.0 

-0.1 0 0.1 

r--l--l Hill H39 F.Il H311 Ll 
0.2 

H19 D 0.1 

0.0 

0.15 

0.10 

0.05 

0.00 
0.15 

-0.05 0 0.05 
F I"' I "'T-l 

1113 Ll 1311 EslIl 1313 FYI 
K313 D K315 Ll 

Fig. 6. Motion of the various TN elastic scattering amplitudes in the unitarity 
circle, over a range of energy W  from threshold through the first major resonance 
in that channel. 

. 

16 



the true amplitudes for F waves and above. As an illustration, I have reproduced in Figs. 

7 and 8 the predictions of Mattis and Karliner for the isospin-$ F and H wave amplitudes. 

These can be compared directly to the solid curves of Figs. 4 and 5. Since the quantity 

being computed is of order No, the results depend only on the combination et, and this 

one parameter serves only to set the overall energy scale. The shapes of the curves are 

completely parameter-independent, though they do, of course, depend on the particular 

choice for the Lagrangian, eq. (26). Note that the big-small-small-big rule is properly 
reflected: One sees pronounced resonances in the higher-J, but not in the lower-J, partial 
waves. Note also that this direct calculation does very poorly in predicting the elasticity 

of the higher partial waves. This result is not unexpected, since very few inelastic channels 

are included in the calculation. The scheme does allow TN to turn into ?rA or even a 
heavier baryon; however, direct multiple pion emission is ignored as being of higher order 

in l/N, an approximation valid only at low energies. Ignoring the effects of elasticity, how- 

ever, one would say that the phenomenologically determined amplitudes are reproduced 

fairly well by this simple scheme. 

Using the language of these model-dependent calculations, it is possible to indicate 

what is missing from the analysis of the partial waves of low angular momentum and what 

might be added to describe the threshold region more accurately. In the whole previous 

- discussion, I assumed that the pion moved quickly compared to the rate of rotational or 

translational motion of the soliton. This allowed one to solve separately the differential 

equations for each K mode, extract a reduced S-matrix from the asymptotic behavior 

of the eigenfunctions 7r~, and then reconstruct the physical S-matrix elements by the 

prescription (23). Let us refer to these differential equations schematically as: 

DKTK = 0, (27) 

and denote the reconstruction (23) by: 

sIJ - - c PiJsK. 
K 

The assumption that the pion moves quickly was justified earlier in this paper on the basis 

of the l/N expansion; however, for that argument, the energy of the pion was taken to 

be of order 1. The argument breaks down for pion energies close to threshold. When the 

pion energy is of order .1/N, which might be relevant in practice when the pion energy is a 

few hundred MeV, then one must take into account the rotation of the soliton during the 

scattering process. 

17 



Plon Energy 

F35 

Plon Energy 

F3-7 

Fig. 7. Skyrme model predictions for the F35 and F37 pion-nucleon elastic scat- 
tering amplitudes, from ref. 6. 
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Fig. 8. Skyrme model predictions for the H39 and H311 pion-nucleon elastic 
scattering amplitudes, from ref. 6. 

19 



Let us examine how this can be done in the limit of low pion energies, by assuming 

that the soliton is rotating rapidly compared to the time the pion takes to interact. One’s 

first guess would be to average the effective Hamiltonian, or equivalently, the differential 

equations (27), before computing the S-matrix. That is, one might try to solve 

(29) 

However, this is not quite correct. In putting the nucleon into rotational eigenstates, 

we have assigned some deformations of the pion field to be parametrized by collective 

coordinates. If one implements this reassignment by a canonical transformation, 20-22 one 

must consider the new canonical pion field to be orthogonal to these motions. Since the 

infinitesimal rotations are zero modes of the DK, our original procedure gave finite-energy 

pion eigenstates which were automatically orthogonalized to these zero modes. But our 

new equation (29) does not necessarily possess zero modes. We must, then, impose this 

orthogonality by hand, by adding to the Hamiltonian a term 

;v * (J > 
2 

d3r6w’(z)Z’(z) , 

_ where Zi(z) is the form of the zero mode and V is a parameter to be taken to infinity. Let 

us consider for definiteness the L = 1 partial waves; then the zero modes have the form: 

2(z) = P#F(r), (31) 

where & is a fixed unit vector and F(r) is the Skyrmion profile defined in eq. (5). This 

adds a new term to the equation for 6~‘~; eq. (29) should then properly be written: 

[ 1 c PkJ DK ~6~‘~ + w -F(r) = 0, (32) 
K 

where 

w = PAJ’V. 
/ 

dr r2 ?r(r)F(r). (33) 

V must be taken to infinity. This presciption can make sense only if the integral in eq. (33) 

vanishes in the same limit. Thus, W in (32) is an unknown constant, to be determined self- 

consistently so that the radial pion wavefunction is always orthogonal to F(r). The correct 

treatment of collective coordinates, then, does introduce extra attraction or repulsion in 

the region just near threshold. It remains to be seen, however, whether these terms can 

account quantitatively for the structure of the low-lying resonances in low partial waves. 
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Conclusions 

. I have argued that the Skyrme model, and, more generally, the picture of the nucleon as 

a chiral soliton, can give a qualitatively correct picture of pion-nucleon scattering. Clearly, 

many aspects of this description need to be understood better. These include the treatment 

of nonleading corrections near threshold and the inclusion of inelastic channels. One would 
also like to extend this analysis to the case of three flavors. But the model already succeeds, 

at the first level of calculation, in producing many of the features of this process which are 

revealed by experiment. It will be instructive to see how precise a picture of this reaction 

one can eventually build from the basic ingredients of solitons in quantum field theory. 
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