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1. Introduction 

The underlying theory of hadrons and nuclei is presumed to be Quantum 

Chromodynamics (&CD). Its phenomenology is quite successful in the account 

of many experimental facets; a fact, however, which sometimes hides the funda- 

mental difficulty: One has not solved the relevant field equations. Thus far, they 

can be attacked efficiently by perturbative methods, but the region of validity 

of perturbation theory is not clear. These difficulties are not inherent to QCD 

alone. Even in Abelian theories, perturbative methods are useless for large cou- 

pling constants, as for example in toy models, which let the interaction between 

the fermions be mediated by either vector (QED) or scalar bosons. The problems 

become obvious even for simple questions such as how the invariant mass of a 

positronium-like structure changes as function of the coupling constant CL For 

sufficiently small values, it behaves like 2mcll- $1. But what happens for large 

values? Does the invariant mass ever go to zero, or will it increase again for 

sufficiently large values of a? 

The goal in this paper is to investigate and to develop methods, which can be 

used for strongly interacting fields. As a beginning and an illustrative step, we 

substitute gluons by scalar bosons. For the same reason, simplicity, we restrict 

ourselves to one space dimension. One can not imagine treating three dimensions 

without being able to solve first the one dimensional problem. Thus, we consider 

here one of the simplest field theoretic problems: Fermions interacting by scalar 

bosons in I+1 dimension. 

This allows also comparison with recent work. Brooks and Frautschi12’ have 

treated numerically the same problem in usual space-time quantization, by dia- 

gonalizing the amputated Hamiltonian matrix in the charge 0 and 1 sector. Serot, 

Koonin and Negele[” have calculated the spatial density and the binding energy 
- af one-dimensional nuclei by stochastic means. They generate the interaction be- 

tween nucleons by the exchange of scalar and vector mesons, treating the problem 

on the tree level in non-relativistic approximation. Because of the extensive nu- 
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merical work required for obtaining solutions, there has been little investigation 

of on the sensitivity of the solutions to the physical or non-physical parameters, 

like physical masses and coupling constants, or length scales and state cut-offs. 

The most recent approach[” to the same problem uses the very efficient tool of 

matrix diagonalization, and gives a detailed numerical analysis. Exact eigenval- 

ues and eigenfunctions for many nuclei are produced, both for the ground state 

and for exited states. 

As we discuss here, the problem of finding solutions becomes enormously 

easier, if the fields are quantized at equal light cone time t + x/c rather than at 

equal usual time t. [“I Light cone quantization was proposed originally by Dirac,151 

and rediscovered by Weinberg”’ in the context of covariant formulation of time- 

ordered perturbation theory. Sometimes called the infinite momentum frame 
apPrOaCh,[7~8~Q.lo~~~1 it continues to be an important tool for many applications. [Ill 

The formalism was thoroughly investigated and reviewed by Chang et al.li2’ The 

rules for quantizing QCD on the light cone are given in Refs. 14 and 15. 

It appears not to have been noticed that this method has a special feature, 

which allows a virtually exact solution of the bound state problem. In Fock space 

representation, the light cone Hamiltonian Is1 becomes block diagonal, character- 

ized by a new dynamic quantum number, the harmonic resolution K. K is closely 

related to the light cone momentum, when the theory is defined with periodic 

-boundary conditions in the light cone spatial coordinates. For each fixed value 

of K, the Fock space dimension in the block is finite, and finite matrices can be 

diagonalized numerically with unlimited precision. Eventually, the resulting field 

theoretical many body problem in one space and one time dimension becomes 

much simpler than its non-relativistic and non-covariant approximation. 141 

In l+l dimensions, the light cone formalism is particularly transparent. In 
- -section 2, we give a rather explicit presentation of both concepts and notation. 

Here we expand the fields into a complete set of functions with periodic boundary 

conditions and define our Fock space representation. The primary objects of in- 
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terest, the operators for charge, momentum, and energy are calculated in section 

3. Conclusions on the utility of the method are given in the final section. The 

explicit analytical-and numerical solutions are given in an accompanying paper. 

The possibility of finding exact solutions is not restricted to the simple case 

of a scalar theory; the conclusions hold as well for Abelian and non-Abelian field 

theories in l+l dimension. Work in this direction is under way. We restrict 

ourselves here to the bound state problem, i.e. to the calculation of invariant 

masses and their Fock-space eigenstates. Eventually one has to formulate a 

scattering theory with the now explicitly known eigenstates, 

perturbative methods. 

2. Quantization on the Light Cone 

The Lagrangian density for interacting fermion and scalar 

cp, respectively, is given by[1’31 

and without using 

boson fields, $ and 

mF and mg are the bare masses for the fermions and the bosons, respectively, 

to be determined below, and the bare coupling constant X is considered a free 

parameter. The Lagrangian density is manifestly hermitean, although only the 

total Lagrangian s drL: has to be so by physical reasons. The volume element 

dr denotes integration over all covariant coordinates xp. 

The metric tensors gpV and gPv, are defined as the raising and lowering oper- 

ators, xP = gpVxy and xP = gPVxV , respectively, such that the scalar product 

x~xcr E g~vxyxcr remains an invariant under Lorentz transformations. This 

implies, that they are inverse to each other, i.e. g~VgylE = 6;. As long as one 

does not write out the sums explicitly, the Lagrangian in four is the same as in 
- two dimensions. Henceforth we shall restrict ourselves to the latter case. In the 

usual parameterization with x0 = ct being the time and x1 = x being the space 

coordinate, g pV has the nonvanishing elements gl’ = -go0 = 1 . 

4 



There is no compelling reason, why the fields must be treated always as func- 

tions of the usual time and space coordinates. Any invertible parameterization 

of space and time is admissible as well. For example, one can consider them as 

functions like (p(x-, x+) = cp(x - t c , x + ct). If one transforms the coordinates to 

a rotated frame, the metric tensor becomes ( gii = az’/azj ) 

(2-2) 

Scalar products become, for example 

k/,x’l E k+x+ + k-x- = ;(k-x+ + k+x-) = 2(k-x+ + k+x-), (24 

or even simpler, k,kp = k+k- = 4k-k+. As shown in Fig. 1, the above transfor- 

mation corresponds to a real rotation in phase space by -45’, combined with an 

irrelevant stretching of scale. Upon rotation, time and space lose their meaning. 

Nevertheless, in line with familiar phrasing’11’121 , one refers to x+ = x0 + x1 

as the light cone time, and correspondingly, to x- = x0 - x1 as the light cone 

position. It is somewhat unfortunate, that this way of parameterization has also 

been described as the infinite momentum frame approach. In fact, the light cone 

formulation is frame-independent, the momentum is always finite, and it is not 

really correct to think of the above rotation as a Lorentz transformation which 

boosts the system to high momenta. Dirac’s original formulation seems to be 
151 more adequate . 

In a quantized theory, the Lagrangian does not completely specify the prob- 

lem, one has to know the commutation properties of the operators cp and $J. But 

-before one can formulate these, one must be clear about which of the field com- 

ponents may be considered as independent variables”” . This can be investigated 

through the equations of motion, as obtained by the canonical variation[” of the 
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Lagrangian, i.e. 

and 

iaP$7P + miJ = 0, i7pi3,$ - rn$ = 0 , 

with m(x) - mF + &o(x), 
(2.5) 

When transforming the frame, the differential equations change their struc- 

ture, as we shall demonstrat now for the Dirac equation (2.5). The Dirac matrices 

7p obey the relation 7prV + 7 ZJ 7 /J = 2gp”. In l+l dimensions they are 2 by 2 

matricesi21 ,i.e. 

7’=(: -1”) and 7l=(-y i). (2.6) 

and transform like coordinates 7+ = 7’ + 7’ and 7- = 7’ - 7’. Written out, 

the commutation relation become 7 + 7 + = 0,7-r- = 0, and 7+7- + 7-7+ = 4. 

Thus, the two operators 

+ and AC-1 = ! + - 
47 7 

have the property of projectors with A(+) + A(-) = 1; i.e. 

and A(-) = ! 
2 

(2.7) 

(2.8) 

Acting from the left with A(+) and A(-), Eq. (2.5) separates into a set of two 

coupled equations 

- _ 
d-?/J(-) = f yOm+(+) and (2-g) 
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a+$(+) = $ 7°m+(-), (2.10) 

where $(+I = A(+ , $(-I - Ai-)+ , a+ E d/ax+, and a- - d/ax-. Suppose, 

one has arbitrarily fixed both the fermion component tit+) and the boson field cp 

at some particular light cone time x+ = xi on the interval x- E (-L, L). Then, 

one can integrate Eq. (2.9), 

+(-)(X-,X,‘) = F(x~) + fyO ]‘dy-c(x- - y-)m(y-, xi)$(‘)(y-, x,‘), (2.11) 
-L 

with E being the antisymmetric step function; i.e. c’(x) = -26(x). The function F 

depends only on x0 , + but is otherwise arbitrary. A consistent boundary condition 
is I”1 

F(xo+) = 0. (2.12) 

Inserting Eqs. (2.11) and (2.12) into the second couple, Eq. (2.10), one obtains 

the time derivative as a functional of $(+I alone, i.e. 

d+q!J+)(x-, x+) = irn(x-, x+) IL dy-c(x- - y-)m(y-, x+)$(+)(y-, x+). (2.13) 

-L 

-A similar analysis can be given for the boson field. With cp and $(+) being fixed, 

and therefore also p = q$, the equation of motion (2.4), i.e. 43+8-p + Xp + 

m$p = 0, can be integrated 

+L 

3+p(x-,x+) = -1 
8 J 

W&- - x-)PP(Y-, x+) + m&W, x+)). (2.14) 

-L 
- - 

In other words, only +(+I and cp are independent variables. Neither tic-1 or its 

derivatives nor the light cone time derivatives a+$(+) or a+(~ are independent, 
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they must satisfy Eqs. (2.13) and (2.14) everywhere. These constraints are a 

consequence of first order partial differential equations, in sharp contrast with 

the second order equation in the usual space-time parameterization. 

The dependent components having been found, one can determine the canon- 

ical commutation relations. By means of Schwinger’s action principle,[“l one 

obtains’12’ 

i[p(x-,x+),(0(x-‘, x+)1 = $(x- - x-‘), and 

&+‘(x-, x+), t,$+‘+(x-‘, x+)} = A$+- - z-‘) . 

(2.15) 

(2.16) 

All other (anti-) commutators vanish. A more thorough discussion can be found 

in the literature.[“’ As an alternative, one can proceed canonically.[“14”51 Taking 

x+ as the time-like coordinate, one defines the momentum conjugate to the field 

‘pm II+ z * = @(p = 2~9-9 . The canonical procedure at equal time-like 

coordinate gives thus 

[(Q(x-, x+),(p(x-‘, x+)] = ;qx- - x-‘), 
which is identical to the space derivative of Eq. (2.15). The fermion fields behave 

in the same manner. 

3. The Free Field Solutions and the Fock Space 

At some initial time z+ = x0’ = 0, the independent fields $(+I and cp can be 

chosen arbitrarily, as long as they satisfy the commutation relations and Lorentz 

covariance. The former is easy to arrange, and the latter is enforced by letting 

them be solutions of the equations of motion with vanishing coupling constant, 

i.e. 

- - d+)(x-,O) = $~~~(x-,O) and c~(x-,O) = Pfree(x-30) (3.1) 

The free fields can be constructed easily, and in turn define the Hilbert space in 

which $J(+) and cp act as operators, the so-called Fock space. 
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The free fields obey 

Although Pfree is a real scalar and $&i a complex spinor, they obey the same 

equation. A particular solution to the latter is $J(+) - eik+‘, provided one 

satisfies 

k,kP-mgB= , 0 or k+k- = mgB. 9 (3.3) 

The relation between (k+, k-) and (k’, k’) is the same as for the covariant coor- 

dinates, and displayed in the Fig. 2. Because of the rotation, the usual meaning 

of energy and momentum gets lost, but it is justified to speak of a single par- 

ticle light cone momentum k+ = k” + k’ and a single particle light cone energy 

k- 3 k” - k’. But there is a distinct difference. For a fixed momentum k1 one 

has both a particle-state with energy (k”)P = +dw and a hole-state 

with energy (k’)h = -dm. B u in light cone parametrization, one has t 

only one value of the single particle energy, i.e. 

m; k- = - 
k+ 

for a fixed single particle momentum. Moreover, particles have only positive and 

-holes only negative values of k+ and k-. In line with field theoretic conventions,111 

one counts energies and momenta relative to a reference state, the Fock space 

vacuum. After a renormalization, particles and antiparticles have both positive 

momenta and energies. The positive-definite momenta are responsible for the 

great simplicity of the present approach. 

The single particle energy, Eq. (3.4), seems to have a singularity at k+ = 

- -0. But a free massive particle will actually never have a vanishing light cone 

momentum. Its (space-time) energy can become arbitrarily close, but is never 

identical to its (space-time) momentum, no matter how large its momentum is, 
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simply because (k’)” - (kl)’ = m2 # 0 [see also Fig. 2 for an illustration of this 

fact]. Th e construction 

k’+kz=Fn, 
L 

n-1,2,3 ,..., A, (3.5) 

accounts for this aspect. For the lowest possible value n = 1, L regulates the 

vicinity of k + = 0, while A determines the highest possible value of k+ for each 

fixed L. A glance at Fig. 2 reveals, that the left running states (k’ < 0, k+ 

small) have a different cut-off in space-time momentum than the right runners, 

as opposed to space-time where they are treated symmetrically.[21 

In their most general form the free field solutions can hence be written as 

(Pfree(x-, x+) = -& $ -$ (a,e-ik~‘z’ + afe+ik“z’) , and (3.6) 
n-l 

ik(“) P 
be- t ’ + df,.e+ k 

i ~)SJJP 
. (3.7) 

The spinor u is normalized to unity, u = -& 
0 

: , and is independent of the 

momenta. Fermions and antifermions are created by the operators bf, and d;, 

respectively, subject to the anti-commutators 

{bn, &} = &,m and {dn,dk} = &,m . (3.8) 

The boson creation and destruction operators obey the commutator 

- - [an,a!J = &,~Tz . (3-g) 

Boson and fermion operators commute. The quantization rules , Eq. (2.16) and 
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(2.15), are satisfied by means of the completeness relation for Fourier series, i.e. 

,,Fjm 
I 
-& + A-2 (eiQ(zsz’) + ,ifb’-Z) ,3 =6(x-x’). 

n=l 
(3.10) 

Choosing the fields according to Eq. (3.1), i.e. 

and 

(3.11) 

p(x-,o) E - 
1@“2- 

( > &ii L’ 

one can express the fields in terms of the scalar and dimensionless operator func- 

t ions 
A 

\k( 6) = c bn emine + dLe+ine , and 
n=l 

@(I) = 2 cn ewine + CL e+int, 

(3.12) 

n=l 

Because of the discretized momenta, Eq. (3.5), the operators \k and @ , and 

therefore also the fields T/J and cp are periodic functions with period 2L in the 

hght cone position x-. We define them on the interval x- E (-L, +L). On this 

interval, the plane wave states are orthonormal and complete, and the series, Eq. 

(3.11) and (3.12) can be understood as the special case of an expansion into a 

denumerable and complete set < x/n >. 

The operator part of this expansion, the creation and destruction operators 

act in Fock space, i.e. in the representation which diagonalizes simultaneously 

- the number operators at a n n, bkbn and dkdn. Since one has to specify exactly which 

momentum states are occupied and which are empty (c.f. also Refs. 2 and 16), 

denumerability seems compulsory, rather than only a formal trick. 
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All these advantages have the price of introducing into the formalism two 

at first non-physical, mathematical parameters, the cut-ofl A and the length L. 

Since they are redundant, one must be able to show at the end that the physical 

results do not depend on either of them. 

4. The Constants of Motion 

The Lagrangian, Eq.(2.1) , has two kinds of conserved currents, aPjp = 0 

and d,Jp” = 0. The first arises since L: does not depend explictly on the phase 

of II, and is j p = @+‘TJJ. The second, the energy momentum stress tensor, is a 

consequence of coordinate invariance and has the form 

Integrating the currents over a closed hypersurface s da, conjugate to the time- 

like coordinate z’, i.e. dr = dxada,, one generates conserved charges 

Q = do,ja and Pp = 
J 

(4-2) 

They are independent of xa. In a quantized theory, the total charge Q and 

the components of the energy-momentum vector Pp are operators, as well as 

the contraction of the latter, the Lorentz scalar M2 = PpPp. In space-time 

quantization, P1 is the operator for the total momentum, P” for the total 

energy , and M2 is the operator for the square of the invariant mass, i.e. M2 = 

(PO)” - (P’)“. They mutually commute.“’ In light cone quantization, P+ is the 

operator for the total light cone momentum, P- for the total light cone energy, 

and M2 again the operator for the invariant mass squared, 

P+=P’+P’, P-=P”-P1 and M2=P+P-. (4.3) 
- - 

The notation implies that M2 is a positive operator, i.e. one which has only 

positive eigenvalues. We shall come back to this question, below. Chang et 
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al . I”’ have shown that Q, P+ and P- mutually commute if the fields satisfy the 

commutation relations, Eqs. (2.15) and (2.16) . Thus, they can be diagonalized -. 
simultaneously, for example in Fock space representation which is equivalent to 

solving the equations of motion. 111 

Written out in light cone metric, the operators are 

+L 

Q = ; / dx-2[$(+)]t#+), (4.4 
-L 

+L 

P+ = ; / dx- [4i3-pbp + 2;([+(+)]t&+(+) - [a_&+)]t+(+))] , P-5) 
-L 

+L 

p- = f m&o + 2i([q!~(+)]tt3+$~ (+I - [a+y$+qt$(+))] . (4.6) 

The factor f arises from the Jacobian dx’dx’ = $dx+dx-. The momentum 

P+ and the charge Q are independent of the coupling constant X G g&, but 

P- depends on X through d+$(+). B y means of the dimensionless operators as 

defined above, one can extract the dependence on the box size L, 

P+=ff K and P-=-&H. P-7) 

After some algebraic manipulations, one obtains with t = F 

+r 

Q=$--d~~t~ and K= & 
aa aa . tds! 

- - zdE+2rQ x 
1 

. (4.8) 

The modified momentum operator K is dimensionless, while the modified energy 
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operator H carries the dimension of a mass squared, 

m% H=+iz 

-U -U -U 

The appearance of a term quadratic in the coupling constant reflects the instan- 

taneous, Coulomb-like interaction, which is not propagated by the exchange of 

bosons.[“’ 

The integrals over [ can be carried out in closed form. With the identity 

& s-‘,” dt time = S,e, the normal ordered operators Q and K become 

Q = c bib, - dtd,, and K = c n(aLa, + bib, + dkdn) . (4.10) 
n n 

Some of the most important conclusions can be drawn even without knowing the 

Fock space structure of H, the reader not interested in these details may skip the 

remainder. The terms quadratic in g with an even number of creation operators 

become most directly 

g2 c [ blcfdic; {+k + II+ m + n) + bLc:bmcn {+k + 11 - m - n) 
Wm,n 

+ bLcld;cn {+k - 21 + m - n) -I- bLqb,cL (i-k - 11 - m + n) 

+ dkCfdkCn (-k + II + m - n) + dkcfb,ct, (-k + II - m i- n) 

+ dkeldkc! {-k - I) + m + n) + dkclbmcn (-k - II - m - n}] . 
(4.11) 
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The matrix elements 

take upon calculation the values 

‘n’m) = ibm,-n 

if n = 0 and m = 0, 

if n # 0 and m # 0 . 

(4.12) 

(4.13) 

With the symmetry properties {nlm} = - {mln} = {-ml - n) = - {-nl - m> , 

the normal ordered product can be cast into the seagull part Hs of the Hamilto- 

man 

Hs=g2 C bLbmcfc,[(k-nil-m}+{k+II-m-n}] 
W,m,n 

+dLdmcfcn [{k-nil-m}+{k+lI-m-n}] (4.14) 

+(dkbmCfCL + bt,dLcncl) (1 - kin - m) . 

The nomenclature[“’ has its origin in the structure of the graphs of Fig. 3. 

The terms corresponding to a simultaneous creation of bosons and fermion- 

antifermion pairs do not contribute. They are kinematically suppressed in light 

cone quantization, “” because {+k + II + m + n} vanishes for positive values of 

the momenta. However, the time and the normal ordered product, Eqs. (4.11) 

and (4.14) , respectively, are not the same! Consider for example the fourth term 

in Eq. (4.11) , i.e. C k,l,m,n bLqb,cL {+k - 21 - m + n}. Using the commuta- 

tion relations to generate the normal ordered product bLbmckc[, leaves one with 

- Em+ $&b, (-f-m - nl - m + n). Contrary to a c-number,this operator can not 

be omitted. It represents instantaneous, self-induced inertias, which so far have 

apparently not been mentioned in the literature. These inertias are naturally 

. 15 



combined with the mass terms of Eq. (4.9) to yield the massive part HM of the 

Hamiltionian, i.e. 

HM=x ~[a!an(mL+g2Qn)+b!bn(mB+s2LL)+d~dn(m&+g2y,)], (4.15) 
n 

with the coefficients cr,p and 7 given by 

a, = 2 (n-mlm-n)-(n+ml-m-n), 
m=l 

and 7n= 2 ~(n+ml -m-n). 
m=l 

(4.16) 

The terms quadratic in g with an odd number of creation operators are computed 

in the same manner. The normal ordering does not induce new terms and one 

can cast them into the fork part HF of the Hamiltonian, i.e. 

HF = g2 C (bLbmC:Ci + bkbkCnCl) (k + lln - m) 
W,m,n 

+(dLdmCfCk + dt m dkCnCl) (k + lln - m) 
(4.17) 

+bLdLcfcn [ (k - nlm + 1) + {k + l(m - n}] 

+dmbkCLCl [ {k - n1r.n + 1) i- (k -I lim - n) 1 Y 

Graphical representations of HF and Hv are given in Fig. 3 . The vertex part 

Hv of the Hamiltonian includes all terms linear in the coupling constant, i.e. 

Hv =gmF c (btb k mcf+bkbkCl) [{k+ZI-m}+{kl+Z-m}] 
W,m 

(d:dmci + dkdkcl) [{k + II - m} + {kl + 1 - m}] (4.18) 

- - (bkdmcf + dkb;q) [{k - II + m} + {kl - 1 + m}] . 

For the same reason as above, the terms with only creation or only destruction 

operators vanish by the selection rules of the matrix elements. Collecting all 
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terms, the Hamiltonian H = HM + HV + HS + HF is the sum of four parts 

defined above. 

The self-induced inert& are the only parts of the Hamiltonian, which de- 

pend on the cut-off A [see Eq. (4.16)]. Approximating sums by integrals, this 

dependence can be worked out explicitly.“61 For vanishing l/A, the fermion and 

the antifermion inert& become independent of the cut-off, while the boson in- 

ertias diverge logarithmically; however, such that the divergence cancels in the 

differences on - om. In this limit, the eigenvalues and eigenfunctions of the 

Hamiltonian become strictly independent of the cut-off in the limit of vanishing 

l/A, as can be shown numerically, and for some of the cases even analytically. 

5. Conclusions: Finite Dimensional Representations, 
Labelled by the Harmonic Resolution. 

The discretization of the momentum eigenvalues k+ allows one to denumerate 

the momentum eigenstates. The price one has to pay is the appearance of two 

additional, formal parameters in the theory, i.e. the length L and the cut-off A. 

One must be able to show, that the physical results do not depend on either of 

the these, at least not in the limit L + 00 and A + 00. 

In light cone quantization, discretization has rather unexpected consequences, 

-which seem not to have been noticed so far. 

First, and perhaps most remarkably, the length cancels in the only Lorentz 

scalar of the theory, the invariant mass squared, i.e. M2 = P+P- = KH. The 

eigenvalues of I are independent of L for any value of L. 

The eigenvalues and eigenfunctions of the Hamiltonian H, or of the invariant 

mass squared M2, are also independent of the cut-off A and positive definite. 

This is shown in an accompanying paper in the context of mass renormalization. 

For sufficiently simple cases, i.e. for small g2 or for K = 1 and K = 2, it can be 

done analytically. 

17 



Second, the number operators of Fock space representation are diagonal and 

have positive or zero eigenvalues. Therefore, both the operators for charge and 

momentum are diagonal, with eigenvalues Q and K. The single particle momenta 

are positive by definition, and consequently K has only positive or zero eigenval- 

ues. But, by the same reason, only a finite number of Fock states can have the 

same eigenvalue K. Since Q, K and H commute, the latter can be arranged in 

block diagonal form. Each block is labelled by the eigenvalues K and Q and has 

a finite dimension: Since diagonalization is a closed operation, the eigenualue 

problem on the light cone can be solved exactly in l+l dimension. This aspect 

of light cone quantization is profoundly different from space-time quantization. 

There, too, charge and total momentum are diagonal, but the momentum op- 

erator has infinite degeneracy. The energy matrix must be truncated by brute 

force,“’ in order to become numerically tractable. 

Third, K is a dynamical quantum number. Its value characterizes a wave 

function as much as the charge Q. What is its physical meaning? Suppose one 

has diagonalized H for some charge, for a given value of K, and for some value 

of the coupling constant A, the bare fermion mass mF and the bare boson mass 

mg. Suppose, the lowest eigenvalue KH is identical with M2, the invariant mass 

squared of a physical particle. Can one go back to space-time representation and 

calculate the momentum P and the energy E of this particle? In a way one can, 

since E = $(P’ + P-) and Pm= $(P + - P-) . But actually one has to know 

the length L, since 

L M2 P+=FK and pm=-- 
27r K’ 

However, one can fix L by the requirement of vanishing center of mass momentum, 

_ P = 0, which implies P+ = P-. This in turn requires 

27rK/L = M2 L/(27rK) , 
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or upon restoring the correct units 

K2 2lrfi 
xc 

with XC = - 
MC ’ 

Thus in the rest frame the dynamical quantum number, the ‘harmonic resolution’ 

K becomes the ratio of the length L to the Compton wavelength of the particle. 

The larger one chooses the period of the wavefunction in phase space, the larger 

K becomes and therefore the dimension of the Hamiltonian matrix. Thus, K 

plays the role of a resolving power. Increasing K allows the observation of a 

more detailed and more complex structure of the eigenfunction in terms of Fock 

states. One must conclude, that the wavefunction of a particle in one space and 

one time dimension depends on the resolution, on the accuracy one imposes by 

the choice of L or, more precisely, by the value of the harmonic resolution K. 

The length L thus has apparently two aspects. One the one hand, for a 

particle a rest, it has to be a multiple of the Compton wave length. On the other 

hand, for a particle in motion, it can take any value required for the continuum 

limit K + oo and L ---) 00. 

Last but not least, these conclusions do not depend on the detailed structure 

of the Hamiltonian. They hold as well for other field theories. 
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FIGURE CAPTIONS 

1. The light cone in space-time (left) and in light-cone (right) representation. 

2. Particle and hole energies in space-time (left) and in light-cone (right) rep- 

resentation. 

3. Diagrams : (a) Vertices, (b) Seagulls and, (c) Forks. 
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