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1. INTRODUCTION 

The Hamiltonian for QCD (quantum chromodynamics) has been widely stud- 

ied using the lattice and continuum formulations. In a remarkable paper by 

Drell,’ a derivation was given of the running coupling constant of QCD using the 

continuum Hamiltonian; this calculation used weak field perturbation theory and 

the Coulomb gauge. The mathematical treatment of gauge-fixing the Yang-Mills 

Hamiltonian goes back to Schwinger ;2 the more recent paper by Christ and Lee3 

gives a clear and complete treatment of gauge-fixing the continuum gauge field 

Hamiltonian. 

The continuum Hamiltonian has until now been given no regulation which 

preserves gauge invariance; for the one-loop calculation carried out by Drelll 

and Lee,3 a momentum cut-off is sufficient to ensure renormalizability. However, 

for two-loops and higher it is known that a momentum cut-off violates gauge- 

invariance and renders the theory non-renormalizable; for the action formulation 

it is known that dimensional regularization of the Feynmann diagrams4 is suf- 

ficient to renormalize the action. For the Hamiltonian, there is no analog of 

dimensional regularization and hence it is not clear how to regulate continuum 

QCD Hamiltonian to all orders. 

The lattice Hamiltonian516 is regulated to all orders and could be used for 

calculations involving two loops or higher. If we want to analyze the lattice 

Hamiltonian using weak coupling approximation, it is necessary to fix a gauge, 

for example the Coulomb gauge. Gauge-fixing the action of the lattice gauge 

- &eory has been solved,7 and in this paper we extend gauge-fixing to the lattice 

Hamiltonian. Gauge fixing essentially involves only lattice gauge-field and the 

quarks enter only through the quark color charge operator. So we will essentially 
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study only the gauge field and introduce the quark fields when necessary. 

Gauge-fixing the lattice Hamiltonian is very similar in spirit to gauge-fixing 

the continuum Hamiltonian; this similarity can be clearly seen in the action 

formulation.7l8 For the Hamiltonian we will basically follow the treatment given 

by Christ and Lee.3 There are, however, significant differences between the lattice 

and continuum Hamiltonians both for the kinetic operator and the potential term. 

The lattice gauge field is defined using finite group elements of SU(N) as the 

fundamental degrees of freedom whereas the continuum uses only the infinitesimal 

elements of SU(N). Th’ is d’ff 1 erence will introduce a lot of extra complications. 

Given appropriate generalized interpretation of the basic symbols, it will turn out 

however that the form of the gauge-fixed continuum and lattice Hamiltonians are 

very similar. 

In Sec. 2 we discuss the Hamiltonian and give a construction of the chromo- 

electric field operator. We then discuss Gauss’s Law for the system. In Sec. 3 

we perform a change of variable and eliminate the redundant gauge degrees of 

freedom. In Sec. 4 we evaluate Gauss’s Law for the new variables and find that 

the constrained variables decouple exactly from the Gauss’s constraint. In Sec. 

3 we evaluate the gauge-fixed lattice Hamiltonian, discuss operator ordering and 

introduce the quark charge operator. In Sec. 6 we discuss the main feature of 

our results. 
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2. DEFINITIONS 

Consider a d-dimensional Euclidean spatial lattice with spacing a; let Uni, i = 

192 , . . . . d, be the SU(N) link degree of freedom from lattice site n to n + i (2 is 

the unit lattice vector in the ith direction) and let &, $,, be the lattice quark 

field. The Hamiltonian for SU(N) lattice gauge field in the temporal axial gauge 

is given by5s6 

where 

H = HYM[U] + HF[& $3 u] 

H YM = - $ c v2 (Uni) 
n,i 

(2.la) 

- $ C Tr (U,i U,+;,juz+;,iU,G) 
n,ij 

and HF is the quark-gauge field part. Note V2 is the SU(N) Laplace-Beltrami 

operator. The Hamiltonian acts only on gauge-invariant wave-functionals @ . 

Gauge transformation is given by 

Uni + Uni (P) G  PnUni P;t+; (2.2) 

and the wave-functionals @  are invariant under (2.2), that is 

WI = wb)l P-3) - - 

By performing an infinitesimal gauge-transformation (and introducing the 
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quark field) we have from (2.3) Gauss’s Law’ 

[ 
2 {@(Uni) ’ E,L(“n-;S} - Pna 1 I@) = O  (24 

i 

The operators EF and E,” are first order hermetian differential operators 

with the commutation equation6 

[Ef, E;] = -icab, E,R 

E,R(U)=Rab(U) Et (U), Rob (U)= Tr(Xa UXb U+) 

E,R, - Ef -0 1 

(2.5a) 

(2.5b) 

(2.5~) 

(2.5d) 

where Rab is the adjoint representation, Xa the generators and C&c the structure 

constants of SU(N). 

The operator pna ($3 +, U) is the lattice quark color charge operator6 and 

satisfies 

[ ha, Ptnb] = icabc Pnc &a 

From (2.4) and (2.5~) we have 

0 = C { Rab(U,i)Ef’(U,i) - Ef(u,-I,i) 
i 

= - 
r 
c Dtni @(urni) - Pna IQ) 

m,i 1 
Pna 1 IQ> (2.6a) 

(2.5e) 

(2.6b) 
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where D~“,i is the lattice covariant backward derivative. Let In, a) be a ket vector 

of lattice site n and nonabelian index a; then, from (2.6) we have the real matrix 

Di given by 

D&i = (n, aIQlm, b) (2.7a) 

= Rob (uni)bam - bab6,-2,, (2.7b) 

We see from above that Di performs a finite rotation Rab on the ket vector and 

then displaces it in the backward direction. 

We write the Hamiltonian as sum of the kinetic and potential energy, that is 

H = K(U) + qJ, ?A q (2.8) 

where 

K = -c C V’(Uni) 
n,i 

(2.9) 

and P is the rest of (2.la). It is known that9 

-V2(U) = c Ek(U)E,L(U) 
a 

(2.10) 

In light of Gauss’s Law and (2.10) we identify E,L(Uni) as the chromoelec- 

tric operator of the gauge field corresponding to the link variable Uni. Choose 

canonical coordinates B~i such that 

Uni = eXp(iB$ Xa) - (2.11) 

Then we have, suppressing the lattice and vector indices and summing on 
- Tepeated nonabelian indices 

(2.12a) 
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Note 

(2.12b) 

e:b(“) = eii(“) (2.13) 

Explicit expressions for cab L(R) are given in (3.8). 

3. GAUGEFIXING 

We can see from Gauss’s Law that all the Uni’s are not required to describe 

the gauge-invariant wave-functional a. We gauge-transform Uni to a new set of 

variables Vni which are constrained; the constrained variables Vni will decouple 

from Gauss’s Law. 

Consider the change of variables from { Uni} to {pm, Vni}, with {Vni} having 

one constraint for each n. That is 

tin = (P&9 4n = GaPZ 

Uni = Pn Ki P+ n+; 

(3.la) 

(3.lb) 

and choosing the Coulomb gauge for the lattice gives 

xi(Vni) z Im C TrXa (Vni - Vn-;,i) = 0 (3.k) 
i 

In canonical coordinates we have 

Vni = eXp(i&Xa), pn = exp(i+iXa) (3.2) 

- --For small variation A” + dAa, we have 

V(A + dA) = V(A) I+ V+(A)sdA”] (3.3) 



= V(A) [l + iXajz(A)dAb] (3=4 
where 

Define 

&p)Aa = j,$@)(A)dAb 

then 

V(A + dA) = V(A)(l + iXa6RA”) 

= (1 + iXaGLA”)V(A) 

(3.7a) 

(3.7b) 

It can be shown that 

L(R) L(R) = (Ijab 
eaa ab f P-8) 

and hence matrix e can be determined from (3.5). Under the charge of variables 

(3.1) from Uni t0 Vni, the potential energy P in (2.8) can be expressed as a 

function of only Vnim For the kinetic energy K we need the expression for E:(U). 

Note, using the chain rule and formula (3.8) 

=C f,R,(Ani)z efp(Ani)$-+... 
n,i mi ni 

w-4 

(3.10) 

Therefore, from (2.12) and (3.10) 

- - Ef(umj)= ’ 
iSL B~j 

(3.11) 

We now evaluate the coefficient functions of above equation. The constraint 
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Eq. (3.1~) is valid under variations of A~i to Aa,i + Dali, i.e. 

0 = x;(A) (3.12) 

= x&i + dA) (3.13) 

Hence, from (3.12) and (3.13) 

C IT&i(A) 6RAki = 0 (3.14) 
m,i 

where, for constraint (3.lb) we have 

I? ab . = (n, alI’ilm, b) nma 

= ~X~I~LA~i 

= W$6,m - WlL; ibn-; m  , 9 

(3.15a) 

(3.15b) 

(3.15c) 

where from (3.1~) 

W$ = Tr (xavnixb + xbv$xa) (3.16) 

The constraint (3.14) on A~i determines 6p/6B. Consider from (3.lb), the 

following variation 

Jk(A + dA) = CP:(~ + d4)Uni(B + dB)pn+;(4 + d4) . (3.17) 

which yields from (3.7a) 

bRA:i = 6R4:+2 - Rab(VL)JR$f: + Rab(‘Pi+;)6RB%i (3.18) 

- - = - c D &i bR6fn + Rab (3.19) 
m 

From (3.18) and (3.19), we have the lattice covariant forward derivative operator 
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Di given by 

D ab . ='(n,alDilm, b) nmr 

= 6abb,,+; m 9 - Rob (V~)ham 

From (3.14) and (3.19), we have 

c (%alriDilm,b)6R&,, -I- c (n, alriRT[m, b)6RBki = 0 
m,i,b m,i,b 

where T stands for transpose and 

bvlRilm,b) = barn Rab (r~,+;) (3.23) 

Hence, from (3.22) we have 

(3.20) 

(3.21) 

(3.22) 

(3.24) 

where (I’ - D)- ’ is the inverse of operator Ci I'iDi. We also have from (3.19) and 

(3.24) 

‘RAii _ 1 

‘LBRj 
- - n,a 

( II 
Pi- I--D I’jRT - RT&j (3.25) 

Hence, from (3.11), (3.24) and (3.25) 

(3.26) 

- - 

Equation (3.26) provides the solution for expressing the unconstrained chro- 

moelectric operator 6/6~B in terms of the new constrained operator 6/6~A and 
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i the gauge transformation S/6,4. In essence, this solves the problem of guage- 

fixing the lattice Hamiltonian. 

Note that from (3.25) we have the identity 

C(L,cll?iln,a) $$$ =0 
n,i mi 

as expected. We have from (3.14) 

C(n,alWd$$-- = 0 
m,i mi 

Hence, from (2.12) and (3.28) 

(3.27) 

(3.28) 

6 
SL Aa,i ’ Ainj ] = (6mrnbijJac - (% a ( r? & rj( m, C)) efb (Amj) (3.29) 

4. GAUSS’S LAW 

_ We check that constrained variables Vni decouple from Gauss’s Law. Recall 

from (2.7) and (3.26), we have 

- - c( I 1 - r&-D? ec 6 
n,ij 

n,am 3 3 3 ’ I ) s,4; 

(4-l) 

. 

From the definitions of Di and Pi given in (2.7) and (3.21) respectively, we have 
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the crucial operator identity 

(4.2) 

where 

h alRIm, b) = Jnm Rab(%) 

Hence, from (4.2) we see that the first term in (4.1) is zero and we have 

-- 
= 6R4; 

(4.3) 

(44 

(4.5) 

We see that Vni has decoupled from Gauss’s constraint, and we have from 

(2.6) and (4.5) 

6 
ibR4; 

Solving (4.6)) we have from (13.1)~ 

qih $9 U) = 

since, using (2.5e) 

+ Pna IQ> = O  
1 

(4.6) 

e -E,pn.4= cp(<,f,V) (4.7) 

& w-$4%) = Pa exp(i4%.J 

The change of variables from {Uni} to {Vni, pn} has a Jacobian given by the 

Faddeev-Popov determinant, and can be shown to be equal to7 

- - 

J-l [VI = n dpn n 6 (x",(~nVni P:+;)) 
n J n,a 

For weak coupling, J[V] has been evaluated to O(A2) in Ref. 7. Hence we 

have (suppressing the fermion variables) for some gauge-invariant operator G and 

_ -. 
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i gauge-invariant state I@), from (3.1) and (4.7) 

dUni Q*[U] G[U,6/6U] Q[U] (4.10) 

= I-J J dVni n 6 (xi(Vni)) (@*[VI J”2[V] e.i~n”pna) 
n,i n,a 

(J112[V] & [V, 6/W] Jm1i2[V]) (e-iCn”pna Pi2[V] Q[V])(4.11) 

Hence, effective wave-functional with no Jacobian is3,1ov11 

i[V] = J1/2[v] (P[V] (4.12) 

and effective operator is 

($ = J1/2[V] ,i~,,&bha G e-i~n&baJ-l/2[V] (4.13) 

such that 

(fDlGl@) = (i@li) (4.14) 

5. GAUGEFIXED LATTICE HAMILTONIAN 

We need to evaluate the kinetic operator given from (2.9), (2.10) and (2.12b) 

as (summing on all repeated indices) 

6 6 K=-- 
ill B~i ill B~i 

- - Let us symbolically write the transformation (3.26) as 
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Then from (5.1) and (5.2) 

K = LP9 iGLCq .LL (LP.?&-$) 

1 6 
( 

6 =-- 
L ibLCq L LZLpq’ i&LCq, > 

where 

L = det II Lab II (5.5) 

For the transformation given by (3.26) we have 

L = J[V] (5.6) 

and the Jacobian J is given by (4.9). The choice of operator ordering given by 

(5.4) allows for further simplifications. Recall that from (3.28) that ~/~LAO,i is 

“transverse” ; using this equation and Eq. (5.4), we have 

J( I 1 r.rT 1 
n,a r.D 3 i DT.p 

(5.7) 

The effective Hamiltonian, using (4.13), is given by 

Note that 

- - ,iG ho 6 e-i4~PRa = -Pmb 
ib4k 

(5.8) 

(5-g) 

We hence have the final expression for the gauge-fixed lattice Hamiltonian given 
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pTbb’ 6 

mm’k “JLAklk 
-pmb J > 1 --v2 + P(C, (,V) 

(5.10) 

The wave-functionals depend on only the constrained variables Vni, i.e. 

i = i(s, s,V) . 

Recall we have from (3.29) the commutation equation 

(5.11) 

rTLr. 
’ r.rT 3 &(&j) (5.12) 

Equations (5.10), (5.11) and (5.12) completely define the gauge-fixed Hamil- 

tonian for the SU(N) lattice gauge field. The redundant gauge degrees of freedom 

{cpn) have completely decoupled from the system, as expected. The expression 

for H in (5.10) is exact, and is equally valid for strong and weak couplings. 

Comparing (5.1) and (5.7), we see that the coordinates (Uni} are analogous to 

Cartesian coordinates for the gauge field whereas coordinates {Vni} are analogous 

to curvilinear coordinates.3 

The quark color charge pna has the instantaneous non-local non-Abelian lat- 

- tice Coulomb potential (I’. D)-'l?. rT ( DT. lYT)-l. As pointed out by Gribov,12113 

in the continuum theory the operator I’ . D develops a zero eigenvalue for strong 

gauge field configurations Aii >> 0, and which is due to the existence of multiple 
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gauge-equivalent transverse gauge field configurations. For the lattice, presum- 

ably the same phenomena exists, and hence the gauge-fixed lattice Hamiltonian 

is at least valid for weak gauge field configurations.3 

One can also choose the spatial axial gauge for the lattice, but this still leaves 

a residual gauge-invariance which is difficult to impose.14 

6. SUMMARY 

We exactly gauge-fixed the non-abelian lattice Hamiltonian, and obtained a 

theory which is regularized to all orders and hence the eigenenergies and eigen- 

functionals can be renormalized order by order using weak coupling perturbation 

theory.15 The gauge-fixed form is particularly suited for weak coupling pertur- 

bation theory. We can also study the Gribov problem on the lattice using the 

gauge-fixed lattice Hamiltonian. 

The gauge-fixed (Coulomb) lattice Hamiltonian can be used to study non- 

pertubative” properties of the gauge field. In particular we have obtained the 

non-Abelian Coulomb potential regularized to all orders, and it should contain 

information as to how the theory confines quarks.l 
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