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1. INTRODUCTION 

Extensive data on two-body Cabibbo-Angle favored decays now exist’ for 

the channels D + PP and D + VP. The data confirm that Do + iir”ro is not 

color suppressed and that there is evidence of perhaps a larger degree of color 

suppression in the modes Do + ii-‘pO and Do + K*‘x’. The relevant ratios 

are1y2p3 ( h t ese are 1984 numbers; new MARK III numbers should be available 

soon) : 

I&,,, 3 I’(D” + iir”?r”)/I’(D” + K-n+) = 0.35 f 0.07 f .07 

(1) 
&+ E I’(DO + K-r+)/r(D+ + ROT+) = 3.7 f 1.0 f 0.08 

r(D” + K”pO)/r(DO + K-p+) = 0.16 f 0.06 f 0.04 

(2) 
Ji’(DO + K-p+)/I’(D+ + iir”p+) = 2.16 f 0.7 f 0.37 

r(D” + lT*07ro)/r(Do + R’-7r+) = 0.11 f 0.04 f .05 

(3) 
I’(DO + K*-r+)/I’(D+ + Fc*O?T+) = 6.66 f 4.3 f 3.4 

We have used r~+/r~~ = 2.5 f 0.6 (all statistical) in (l), (2) and (3). A 

model independent analysis4 of the D + KT data has shown that (i) complex 

amplitudes are needed to fit the data and (ii) non-spectator processes play an 

important role. With the latter point in mind the problem of D -+ Kr decay 

was investigated5 in a vector pole-model constrained by current algebra. A near- 

fit to the data was obtained with real amplitudes. After unitarization of the 

amplitudes through final state interactions the authors of Ref. 5 obtained a fit to 

the data6. In contrast the data on D + pK and D + K*r are not yet accurate 

enough to require complex amplitudes. D + PV decays will be the subject of a 

future publication. 

In the present paper we have studied the two-body Cabibbo-angle favored 

D + PP decays from a dispersion view point, including the flavor-annihilation 
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(W-exchange process) which is usually argued to be helicity suppressed. We 

investigate the role of these channels and the circumstances under which the 

annihilation channel could become important. The reader is referred to earlier 

investigations, similar in spirit, by Fakirov and Stech’, Milosevic, Tadic and 

Trampetic’ and Rucklg. . 

Section 2 of this paper deals with D + K?r decays. It is pointed out that 

if the hadronic matrix element of the divergence of the weak current satisfies a 

once subtracted dispersion relation then the flavor-annihilation amplitude could 

become large. This, then, lifts color-suppression of Do --) K”7ro giving a near- 

fit to the data with real amplitudes. Sections 3 and 4 deal with Do + l?Oq 

and Do + x0$ decays respectively. In Section 5 we unitarize D + KT decay 

amplitudes through final state interactions and obtain a fit to the data. The 

prescription for unitarization used here is the simplest one can think of. The 

conclusions follow in Section 6. 

2.D -+ Kr 

The hard gluon corrected Hamiltonian for the Cabibbo-angle favored charm 

decays is, 

Hw = 5 cos2 8, [a (C, + C-) (ad)(a) + ; (C+ - Cm) (ae)(bd)] (4 

where (ad) etc. represents the left handed hadronic current, 0, is the Cabibbo- 

angle an C+ and C- are taken to be 4 

C+ = 0.69, C- = 2.09, C$- = 1 (5) 

Sandwiching the Hamiltonian (4) between the initial and the final states and 

linking up the quark lines in all color-singlet combinations, one obtains the decay 
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amplitudes in the factorization approximation (details are provided for Do + 

K-r+ channel only), 

A (Do + K-T+) = C,(r+I(tid)lO)(K-I(sc)jD”) 

+ C&+K-I(sd)lO)(Ol(iic)ID”) 
(6) 

where 

Cl = ; (2C+ + c-) 
(7) 

c2 = f (2C+ - c-) 

The first term in (6) is the usual spectator (and color-suppressed spectator) term 

while the second term is the flavor-annihilation term. 

To proceed further we use 

(vr+I(iid)]O) = -idifirp: 
(8) 

and 

~~il~~l~k) = ifijk [(Pk + PiYf+(q2) + (Pk - Piyf-(q2)] (9) 

where i, j, k are the SU(4) indices and qp = (pk - pi)p. 

In evaluating the matrix elements in (6) one encounters the hadronic matrix 

element of the divergence of the vector current, 

(10) 
q,(~ilVj’ll~k) = ifijk [b-4 - mZ)f+(q2) + q2f-(q2)] 

f ifijkf0(q2) 

The scalar form factor, fo(q2), is normalized such that 

fo(0) = (4 - ml)f+(O) 

fo(q2) appearing in the first term in (6) gets contribution from a O+ state with 
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flavor content SC, i.e., F8, while the second term gets contribution from a O+ state 

with flavor content ad, i.e. IC (kappa)“. 

The final result for the D + KT decay amplitudes, up to an overall constant 

is8 , 

A (Do ---) K-r+) = (Gf,f$(m:) - GfDf;(&)) 

A (Do + K”ro) = 3 (fxfD’(&) + f~f,+&)) (12) 

Note that the AI = 1 isospin sum rule 

A (Do -+ K-T+) + &A (Do + K”xo) = A (D+ --) K”x+) (13) 

is identically satisfied. 

The naive spectator model results are obtained from (12) in the limit fir = 
fK, f$(mi) = f,“‘(mk) and th e neglect of terms proportional to f$(m&), the 

flavor-annihilation channel contribution. 

Let us next assume that f,-,(q2) sa IS t’ fi es an unsubtracted dispersion relation, 

which would require f-(q2)to decay faster than l/q2 asymptotically, then 

fc(q2) = f+(y+-;h) 
* 

and 

foF’ (mi) * f+(O) (43 - m%) 

Similarly, 

(14) 

(15) 

(16) 



and, 

f,n(mg) = f+y&-Jl.) 
D n (17) 

-. N -1.1 f+(O)(mk - m3> 

with” m, = 1.35 GeV. 

The factor (m& - rn:) in (17) signals helicity suppression. Clearly ft (m&) 
is helicity suppressed relative to fc (mi) or f,“#(m&). Hence, if we assume 

an unsubtracted dispersion relation for fo(q2), and further assume that it is 

dominated by a single particle pole, then helicity suppression is not lifted and 

the non-spectator processes are not important. 

It is clear from (10) that in an exact SU(4) limit, f-(q2) = 0, helicity sup- 

pression will always operate. However, SU(4) symmetry is broken and since 

ft (q2) is required at q2 = m&, it is quite possible that f+(m&) and f-(m&) are 

comparable ll. Since f-(q2) app ears multiplied by rn& in ft(q2), it is also quite 

possible that rn& f-( m&) would dominate over (m& - mi) f+(m&). We have 

just shown, however, that so long as fo(q2) satisfies an unsubtracted dispersion 

relation helicity suppression is unlikely to be lifted. 

Let us assume, next, that f-(q2) decays no faster than l/q2 asymptotically. 

fo(q2) then satisfies a subtracted dispersion relation. Let us assume further, that 

fo(q2) satisfies a once-subtracted dispersion relation such that, 

foF.(q2) = f+(O)(mL - mk) + q2A:;, 
. 

(18) 

and 

f,F.(mi) = f+(O)(mk - mk) (19) 

unless, of course, XF* is unusually large. Notice that (19) has not changed from 

the unsubtracted value (15). 
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Similarly, 

i 

and 

foD’(q2) = f+(w& - 49 + (20) 
l 

f:’ (mi) M f+(O) (4 - 4) (21) 

which is also the same as in (16). 

However, 

if? (rr2) = f+(O) b-4 - 4) + q2 xp”,, 
n (22) 

and 

fl(m$) = f+(O) (mR - m2,) + mir’m2 
n (23) 

If we look for solutions with the condition (A stands 

(22) 1 

IN m&C<- m%mk* 
f+(O) K 7% 

for any X in (18), (20) or 

(24 

then (19) and (21) will remain unaltered; however, for (23) we will obtain, 

fam?l) = ?I m;” m2 n (25) 

It is now possible to lift the helicity suppression of the annihilation process. 

The decay amplitudes are then, 

A(DO --+ K-T+) = Clfrf+(0)(m& - m&) - c2fD Xm L 
m$-m2, 1 

c2 A(D” -+ E”7ro) = z fKf+(o)(m& - mi) + 1 (26) 

A@+ --+ ROT+) = [clfTf+(0)(& - m&) + c2fKf+(o)(m$ - mf)] 

Note that in the limit fn = fK and rn& - rnz B rn$ - rn& N m$, and the 
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neglect of flavor-annihilation terms, signalled by the parameter A, the usual color 

suppression occurs, I’(D” -+ K”no)/I’(Do + K-r+) w -1/2C,2 M l/50. However, 

X > 0 raises both A(D” -+ iir”ro) and A(D” + K?r+). The percentage rise in 

A(D” + z”zo) is larger since the two terms appear with equal weights. In 

contrast, the annihilation term ‘in A( Do --) K-r+) is proportional to Cz while 

the spectator term is proportional to Cr. Since Cz/Cr M - l/5, the percentage 

rise in A(D” ---) K-r+) is smaller. 

In Table I we have compiled the ratios &o and &+ as functions of fD/fT 
and A/ f+(O). Clearly, though one does not expect to fit both the ratios Ruu and 

Ru+ with real amplitudes, one comes close to fitting the data. The important 

point being that helicity-suppression of the flavor-annihilation process is lifted. 

In turn, this lifts the color-suppression of Do + l?“~o decay. 

We assume that r] is a pure SU(3) octet i.e. ?j = $(ua + dd - 2sS) = p8, in 

SU(4). In the factorization approximation, 

A(D” + E”q) = C2 [(~“l(ad)~O)(~l(.lic)D”) + (I?“~~(sd)~O)(O~(iic)~Do)] . (27) 

Relating (ql(t~c)IDO) to (T~~(~c)~D”) through the SU(4) rotation (9), one 

obtains, up to an overall constant, 

c2 A(D” + x07) = &fKfo ( Ds mk) - 3fDf[(&)] . (28) 

It is worth noting that the flavor-annihilation term is larger than in Do + 

E”7ro by a factor of a. This is due to the fact that r] has a SB component while 

r” does not. 



However, the flavor-annihilation term may not be significant for two reasons. 

First, one expects that it is harder to excite a s&pair from the vacuum” and 

second, kappa does not appear to couple to iirq channel13. If the latter state- 

ment is taken seriously then one does not expect the kappa structure in ft(q2) 
appearing in (28): fg(q2) will b’ e essentially structure-free and approximated by 

it’s value at q2 = 0, 

fo”(q2) = fo”(O) = f+(w& - 7-G) (29) 

Notice that due to the closeness of the K-mass to the q-mass the mass- 

suppression is rather strong. 

This argument will apply regardless of whether s&pair is excited or not so 

long as kappa does not couple to R”q. If the arguments made here apply then 

flavor-annihilation will not contribute significantly to Do + K’Q and one will 

obtain, 

A(D” + E”7j) II $ fKf+(O)(m& - mg) (30) 

Since A(D+ -+ K”r+) does not depend on the flavor-annihilation amplitude 

either, one can calculate: 

B(D” + K”rj),B(D+ + iiT07rr+) = 0.7 x 1o-2 (31) 

where we have used rD+/TDo = 2.5 and fK/fT = 1.2. In the naive spectator 

model one expects the ratio of (31) to be 2.2 x 10F2. The difference is due to 

fT # fK and the inclusion of the pseudo-scalar masses. 

If the flavor-annihilation term in (28) is not suppressed, and n couples to K”q 

through SU(3), th en the ratio in (31) could be larger by as much as two orders 

of magnitude. A measurement of B(D” ---f Kv) will be quite a sensitive test of 

non-spectator contribution to Do -+ K”v. In Table II we have tabulated B(D” + 

l?“v)/B(D+ + K”r+) as a function of fD/fT and x/f+(O). In anticipation of 

9 



the results of Section 5 we have allowed X/f+(O) to be of order 10 GeV2. We 

notice from this Table that B(D” + j?‘“q) - (1 - 2)% signals a large flavor- 

annihilation contribution. The reader is reminded that B(D+ + iz’“~+) is (2 - 

3)%. -. 

We assume q’ to be an SU(3) singlet, 7’ = -&(uii+dd+s~) = *(&PO+&), 

in SU(4). We obtain, in a fashion analogous to the analysis of the last section, 

A(D” --) K’q’) = Cz( (~“I(ad)lO(rj+k)~D”) + (~“~‘~(ad)~O)(Ol(ae)lDo)} 

= ~fKf+(O)(& - m$) 

(32) 

The flavor-annihilation term vanishes due to the vanishing of the SU(4) struc- 

ture function fijk, as one would expect from the appearance of dd and ss with 

equal weights in the v’. However, the same reasons which allow us to argue 

away the flavor-annihilation terms in Do ---+ K”q conspire to resurrect the flavor- 

annihilation term in Do + K’q’. For example, if a s&pair could not be excited 

from the vacuum with the same probability as the d&pair then the cancellation 

of the flavor-annihilation term would not be complete. 

In the approximation that the s&pair is not excited from the vacuum and 

kappa does not couple to the closed channel K”$, such that f$(q2) M f{(O), one 

obtains, 

c2 
A(D” 4 K’?j’) = z [fKf+(O)(mg - ,;I) -t fDf+(O)(m$ - m$)] . (33) 

If the flavor-annihilation is absent in A(D” + EOq’), that is, the amplitude 

10 



is given by (32), then one obtains (using fD m fK), 

B(D” + K’,‘),B(D+ + l?‘?r+) = 0.58 x 1O-2 (34 

On the other hand using (33), with the flavor-annihilation terms present, one 

gets 

B(D” -+ ~“$),B(D+ --+ KO?Tr+)= 0.93 x 1o-2 . (35) 

Thus this ratio is not a very sensitive test of the presence of annihilation 

term, unless it can be measured very accurately. 

5. FINAL STATE INTERACTIONS 

Re-scattering in the final state endows the weak decay amplitudes with 

phases. A number of authors l4 have studied the problem of final state inter- 

actions in D -+ Kr decays. 

Let us introduce the decay amplitudes, Al and Al, for decays into I = l/2 

and 312 states and their phases 61 and 6s as follows: 

A(D” + K-T+) = $(A3eiJ3 - &Alei6’) 

A(D” --+ ft”~lTo) = -$(&A3e”63 + Alei61) (36) 

A(D+ + fiOm+) = fiA3eib3 . 

If the scattering in the final state is elastic then the phase of the weak decay 

amplitude is the scattering phase shift in the relevant two-body channel. The 

effect is to generate a complex amplitude (i = 1,3), 

Ai(s)ei6’(s) = Ai exp {'" ;so) J ww } , (37) 
(s' - so)(s' - s + iE) 

through the solution of Muskhelishvili-Omnes integral equation15. SO is a nor- 

malization point and, in our case, we eventually set s = rng. 
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If one parametrizes the partial wave scattering amplitude in the N/D form16, 

then the Muskhelishvili-Omnes function, the exponential in (37), is proportional 

to D-l(s). A real decay amplitude, A!‘)(s), may then unitarized by final state 

interactions through, 

Ai(s)eibi(s) = A!‘)(,)# 
is (38) 

we choose se, the normalization point, to be the zrK threshold so = (m~+m,)~, 

such that the phase vanishes at this point, as it indeed should, and Ai = 

A!‘)(so). a 

We begin by switching off the final state interactions and evaluate A!‘)(s) 

using (12) and (36) with Si = 0. We obtain (eventually we set s = m&) 

where 

fgD”(s, m2,) = f+(O)(s - 42 (40) 

fon(s, m2,) = 
AS 

s-m: 

We make a simplifying assumption for Do. We assume that there is very 

little re-scattering in the non-resonant I = 3/2 channel. Thus &(s) = 0 and 

OS(s) = 1. I = l/2, 0 + channel, on the other hand, resonates13. The simplest 

way to unitarize At)(s) would be by the prescription (38) where D1 (s) is chosen 

to have a resonance structure. The unitarized form of (39) is then, 

i&(s) _ A(,O)(s)(so - 4) Al(s)e - (s - rnz + i7k) 
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A3(s)ei63(8) w At)(s) (42) 

where 7 is the reduced width of kappa and k, the S-momentum in the zrK center- 

of-mass. We have chosen the subtraction point to be the rrr.K threshold, so = 

(mK + mn)2, and‘ . 

D(s) = (s - rni + iyk) (43) 

Roe and Ro+ are then calculated by using, 

R _ (1+2?+2fircos6) 

O”- (2+r2-2fircos6) 

R ( 243 ,+=; 1+$-T cos 6 
> 

(44 

(45) 

where 6 = 61 - 63 = 61 (in our case) and r = Al/Al. 

The results are summarized in Table III. We chose rather a broad kappa, 

7 = 1.4 GeV, to generate 61 = 144’ at s = m$,. m, was chosen to be 1.35 GeV”. 

We get a fit to the data with X/f+(O) in the vicinity of 10 GeV2, well within the 

limits of (24). 

A word about the effect of final state interaction of Do + J?‘v and Do --+ 

iir’q’ is in order. Since these decays involve only one isospin amplitude and 

thus only one overall phase, their rates are unaffected by final state interactions. 

-Further, since D + jir”7rIT+ also depends on a single isospin amplitude, the ra- 

tios B(D’ ---) K”q)/B(D+ --+ Ron+) and B(D’ + pq’)/B(D+ + l?“r+) a~ 

also B(D’ + l?‘q)/B(D’ + K’q’) are insensitive to the details of final state 

interaction. 
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6. CONCLUSIONS 

In this paper we have paid attention to Cabibbo-angle favored D + PP 

decays only. The decay amplitudes were written down in terms of the matrix 

elements of the hadronic weak currents in a factorization approximation. Single- 

particle dominated dispersion relations were postulated for these hadronic matrix 

elements. The naive spectator model results are recovered from this analysis 

in the limit fir = f~ and fc(rni) = f,“‘(m&) and the neglect of the flavor- 

annihilation term proportional to ft (mf,) in (12). 

We showed that if ft(q2), which appears in the flavor-annihilation chan- 

nel only, satisfies an unsubtracted dispersion relation then color-suppression of 

Do + K”zo is not lifted. On the other hand if ft(q2) satisfies a once-subtracted 

dispersion relation then it is possible to find a value of the new parameter, X, 

introduced in (22) within the range required by (24), such that color-suppression 

of Do + KOzo is lifted. Another way to see this result is that in the flavor- 

annihilation channel f+ ( q2), introduced in (lo), appears multiplied by a mass- 

suppression factor of (mk - rni) while j-(q”) appears with a large factor of m&. 

Thus if f-(m&) = f+(mk) then obviously ft(rn$) will be large and helicity- 

suppression of flavor-annihilation process will be lifted. This, in turn, lifts the 

color-suppression of Do + iiron’. 

Experimentally, f- (q2) is not accessible in D + ELv due to the small 

charged lepton mass. However, theoretical model calculations8p11 favor f-(m&) 

comparable to f+ (m&). Thus the conjecture that m&f-(m&) might dominate 

b-4-c - mi)f+(m&) is very likely to be true. 

We have also studied Do --+ K”q and Do --+ K”q’ decays. Theoretically 

these are, surprisingly, not very clean channels. For example, in Do -+ l?‘r] 

a straight forward SU(4) rotation applied to D --) Kr amplitudes generates a 

large annihilation term. This is due to the additional sg content of q. However, 

SU(3) breaking makes the excitation of a s&pair from the vacuum less likely12 

than, say, a d&pair. This alone would reduce the annihilation term by a factor 
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of 3. Further, since kappa does not appear13 to couple to E”q channel, one 

expects fc ( q2) not to have any structure. If so, then fc(q2) M f;(O) N (mk - 

m$f+(O), h h w ic is vanishingly small due to the closeness of K-meson and kappa 

masses. This uncertainty in handling the annihilation term can give rise to an 

uncertainty of two orders of magnitude in the rate for (Do -+ E”q). The ratio 

B(D’ --) ~“r@l(D+ ---) Ei”zr+) will test the presence of annihilation term in 

A(D” + l?‘q) since A(D+ + K”zlr+) does not have an annihilation contribution. 

We have shown that with X/f+(O) in the region of 10 GeV2 one can generate 

B(D’ + l?“rj) - (1 -i)%. If ex eriments would measure the branching ratio at p 

this level, it would be an indication of a large flavor-annihilation contribution to 

Do + x”rj. 

Similar uncertainties apply to the flavor-annihilation term in A(D” --) K’q’). 

However, in this channel one would be surprised if B(D’ + KO$)/B(D+ + 

ii’“~+) turned out very different from w 10w2. 

Finally we unitarized D + Km decay amplitudes through final state inter- 

actions and showed that it is possible to fit the data with the assumption of a 

broad kappa meson in O+, I = l/2 ch annel. The method of unitarization used 

here is the simplest one we can use (certainly not the last word on final state 

interactions) and shows that once a mechanism for lifting color suppression is 

found, it is possible to fit D --) Kz data with final state interactions. 

The approach employed in this paper is complementary to that used in Ref. 

5 but couched in different, and hopefully more familiar, language. The approach 

of Ref. 5 was largely algebraic where current algebra was used to constrain the 

decay amplitudes. The approach adopted in this paper is analytic in nature 

where dispersion relations are invoked for the hadronic matrix elements. The 

particles are always kept on mass-shell. 

Lastly, we treated Ci/Cz as parameter. The values of C+ and C- used in 

this paper imply Cr/C2 N -5. If C-/C+ is allowed to rise (‘sextet dominance’) 

then Ci/Cz moves towards -1. The precise relationship between C-/C+ and 
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Cl/C2 is 

C- 
-= 
C+ 

2 (G/C2 - 1) 

(Cl/C2 + 1) 
(46) 

In Table IV we have listed Roe and Ro+, computed with final state interactions 

(kappa parameters as in Table III) and fo/fir = 1.2, as functions of Cl/&. It is 

evident that the effect of lowering the magnitude of Cr/C2 (equivalent to raising 

the ratio C-/C + is to simulate the flavor-annihilation term, since less and less ) 

of it is needed (X decreases) to fit the data. 
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Table I 

Roe and Ro+ without Final State Interactions 

X/f+ (0) 
(in’ GeV2) RCJO RTJ+ 

1 

1 

1.1 

1.1 

1.2 

1.2 

1.3 

1.3 

1.4 

1.4 

5 

6 

5 0.16 5.36 

6 0.18 6.30 

5 

6 

4 

5 

4 

5 

0.15 4.96 

0.17 5.78 

0.17 

0.19 

0.16 

0.18 

0.16 

0.19 

5.78 

6.84 

5.12 

6.21 

5.44 

6.66 
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Table II 

B(D’ --) I?“q)/B(D+ --f ROT+) as a function of fo/fT and 
X/f+(O). Larger values of X/f+(O) are used in anticipation of 
the results of Section 5. 

fD/f* 

Vf+P) B(D’ + ir-‘,) / 

(in GeV2) B(D+ + Eon+) 

1 6 0.10 

8 0.20 

10 0.33 

12 0.51 

1.2 

1.4 

6 0.15 

8 0.30 

10 0.51 

12 0.76 

6 0.22 

8 0.43 

10 0.71 

12 1.06 
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Table III 

Roe and Ro+ with Final State Interactions. Parameters used: 

m, = 1.35 GeV, 7 = 1.4 GeV (61 = 144’). 

fD/fr 

VfdO) 
in GeV2 ROO Ro+ 

1.0 7 0.18 3.38 

8 0.19 3.85 

9 0.20 4.34 

10 0.21 4.86 

1.2 7 0.19 4.04 

8 0.21 4.65 

9 0.22 5.30 

10 0.23 6.00 

1.4 7 0.21 4.75 

8 0.23 5.53 

9 0.24 6.36 

10 0.25 7.25 
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Table IV 

&o and &+ as functions of Cl/C2. Final Stake Interactions 
included. fD/f= = 1.2. Kappa Parameters as in Table III. 

Cl/C2 

Vf+‘P) 
(in GeV2) Roe R0-t 

-5 7 

8 

9 

10 

-4 5 0.20 4.30 

6 0.22 5.17 

7 0.24 6.13 

-3 3 

4 

-2 0.5 0.23 5.60 

0.6 0.23 5.96 

0.7 0.24 6.34 

0.19 4.04 

0.21 4.65 

0.22 5.30 

0.23 6.00 

0.21 4.9 

0.24 6.4 
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