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ABSTRACT 

We study the theoretical uncertainties associated with higher order singular- 

ities and hadronic contributions in the photon structure function. We find that 

they give negligible contributions for x 2 0.15. Therefore, the second order QCD 

analysis still provides a reliable prediction in rr-scattering. 

Submitted to Physics Letters B 

* Work supported in part by the Department of Energy, contract DEAC03-76SF00515, and 
by the National Sciences and Engineering Research Council of Canada. 

+ One leave of absence from Centre de Physique Thdorique, Ecole Polytechnique, 91128 
Palaiseau, France. 

* Address after June 1, 1985: DCpartement de Physique, Universitd Laval, Quebec, P.Q., 
Canada GlK 7PA. 



The analysis of deep-inelastic photon-photon scattering has, in the past few 

years, generated a great deal of enthusiasm and hope as a most incisive test 

of QCD predictions. “A The important feature here is that QCD predicts not 

only the Q2-evolution, as in most other processes, but also the normalization 

and shape of the photon structure function Is1 up to second order in the strong 

coupling constant oS (Q) ,‘I1 in terms only of the QCD scale parameter A. How- 

ever, the naive treatment of next-to-leading order corrections gives a negative 

structure function at small x, even at large values of Q.[““’ This negative piece 

comes a simple pole singularity in the “point-like” contribution at the n = 2 

moment leading to a -l/x behavior in the structure function. This singular- 

ity is cancelled [6’71 by corresponding term in the perturbatively noncalculable 

“hadronic” contribution which becomes important only in the second moment. 

It is possible to write a simple parametrization of the real photon structure 

function, free of the l/z singularity, using an explicit separation of the singular 

terms.“’ The method consists of a proper regularization of the singularity with- 

out loosing the predictive power of perturbative &CD. It introduces an additional 

parameter X (besides Am) associated to the noncalculable constant term in the 

second moment. For reasonable values of A, the structure function remains posi- 

tive and the perturbative expansion is well behaved. Furthermore, the structure 

function turns out to be sensitive to the values of this parameter only in the 

region of small x’s (x 5 .2). 

The experimental data appear to be nicely compatible with such a picture.12’ 

The analysis gives Am = 230 f 70 MeV (including systematical errors) which is 

in good agreement with results from other processes. The experimental accuracy 

in the determination of A,s compares favorably with other measurements which 

suggest that deep-inelastic 77-scattering is best suited for an accurate measure- 

ment of the QCD scale parameter. The corresponding value of X turns out to be 

around 10. 



However, the success may be premature since there are theoretical uncertain- 

ties that seem to be even larger than experimental errors. On one hand, higher 

order singularities are expected’ to appear as poles at the n > 2 moments.[8’D1 

Although, in principle, similar regularization techniques could be used, such sin- 

gularities might give important contributions’“’ since they lead to more singular 

x-behavior, i.e. l/xP with p > 1. On the other hand, beyond next-to-leading or- 

der, the shape of the structure function is no more predictable as the “hadronic” 

part becomes significant. A conservative approach consists in pretending that 

only the Q2-evolution of the structure function can be successfully predicted by 

QCD but then all sensitivity to A is lost.1101 

In this work, we do a systematic study of the aforementioned theoretical 

uncertainties and we show that, under very reasonable assumptions, these un- 

certainties are constrained to a region of small x (x 2 .15) giving negligible 

contribution for large values of x. We thus find the “regularized” second order 

QCD analysis is sufficient to describe accurately the theoretical feature of QCD 

in 77-scattering and can be used for comparison with experiment. 

ANALYSIS OF HIGHER ORDER SINGULARITIES 

Using operator product expansion and renormalization group methods, the 

moments of the photon structure function Fz(x, Q2) can be written as:13’ 

5 M;I(Q2) E 5 j dx xn-’ F,r(x,Q2) 

0 

47r a, =- po a,o+bn+cn $$+... 

+ c 
i=+,-,NS 

A; [cY~(Q)]~? (I+ r; T + . . .) 

(1) 

where a! is the e.m. coupling constant, a,, b,, cn, . . . and rf, . . . are calculable 

quantities while Ai are hadronic coefficients and finally, din = $/2p. (i = 
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+, -, NS) with 7; being the eigenvalues of the one-loop anomalous dimension 

matrix and PO, the one-loop coefficient of the p-function. 

The term b, is known ‘41 to have a singularity at n = 2, i.e. b, - ---A, 

which leads to a negative structure function [“” in the region of small x 

b(x) - -; 

Fortunately, this singularity is cancelledL6’ by a corresponding term in A,.“’ 

The remaining piece is finite and of order O(1) in o8 (Q). However, since only b,,. 

is calculable, it is best to separate the singular terms prior to regularization. We 

use the following procedure: “I we expand around n = 2 

r 
n 

A, = - -& Ad’ + A; 

d? = d(n - 2) + 0 [(n - 2)2] 

(24 

w 

(24 

where bk is regular and X is a hadronic parameter defined such that ALIn= = 0. 

Thus, the moments of Fz take the form: 

; M;(Q2) = ; --$& + b; + & (1 - b(Q)id') + 0 [(a(Q))sn] (3) 

where 6, > 0 for n 2 2. Notice that the above expression is now well behaved at 

n = 2: 

$ Mi(Q”) = 2 & + bi - bd In [Aa,( . (4 

When X is zero, one recovers the singularity. However, for X not too small M; 

as well as Fz(x, Q2) are positive. 
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Similar singularities appear at higher orders in CY~ (Q) .[“” They are generated 

by the mixing between the hadronic and photon components and arise in the 

solution of the renormalization group equations: 

ff, 

J 
da’, al,-dl-2 (& + q; CY’B + q; (II? + . . .) 

cr. 
(5) 

= c (zp 
t!>O 

dr+pq_cI’- (z)dlil-‘} , n,ras(Q) 

Each of the two terms in the curly bracket has precise meaning: they are the 

point-like and hadronic parts respectively. Although the total expression is per- 

fectly regular, both contributions become singular when the denominator dr+l-e 

is zero. We see that for each value of .J? = 0, 1, . . . the simple pole singularity in 

the point-like part appearing at the moment ni (such that dFln=nL = l!- 1) gives a 

contribution to the structure function at least of order [cY~(&)]~-‘. This singular 

term is cancelled by a corresponding term in the hadronic part and leads to an 

expression proportional to ln[a, (Q)] besides powers. 

Adopting the same regularization technique as in the n = 2 case, we expand 

b; = & + (b’,)r (64 

d;+l--tT 

dl=.t--I+&(n-n;) +O [(n-n:)‘] 

w 

(64 

where bL,, .f. = 0, 1,2,. . ., stands for an, bn, cn, . . . [?I; = b, XL = X and (z; = d 

defined in eq. (2)]. In table I, we present the numerical values of ni, i = +, -, NS, 

for 4! = O,l, 2,3 together with the coefficients 4. 

5 



In principle, there is no reason why Xi’s should not depend on n. However, 

for the purpose of studying the effect of the singularities no loss of generality 

results if we take them as constants. The contribution of the regular parts of the 

hadronic piece in (6b) will be discussed in the next section. Moreover, (bk,i)r for 

!! > 2 are the regular parts of ck, . . . which give contributions at least of order 

O[(adQ>]. Th Y P e re resent small corrections to (3) and will not be discussed 

here. Instead, we consider the regularization of the most singular pieces which 

take the form [see eq. (5)]: 

3 { 1 _ [&,(Q)]d’+l-() [a$f’)](L (7) 

It is instructive to look at this expression by approximating dl by its form near 

n = ni. Then 

(8) 

In that form the moments Af, i are analytically invertible and the contribution 9 
to F2(x,Q2) is 

= & 8 x - [&y.(Q)]’ 
x%--l { 

-1 

(9) 

When we do not take into account the O-function, this expression blows up 

as x goes to zero and, as !!. increases, the singular behavior becomes more severe 

and affects the photon structure function from zero to larger and larger values 

of x, despite the presence of higher powers of crS(Q).“’ However, the O-function 

acts as a cutoff procedure and Af vanishes in the interval of x running from 

zero to [Ai as(Q)] “i d . Moreover, considering larger values of !! (or ne), 2; decrease 

significantly (see fig. 1) and the O-function cuts off contributions for larger and 

larger values of x. Assuming that the hadronic contributions are all of the same 
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order of magnitude, it is reasonable to consider the parameters Xi as independent 

of i (= +,-,NS) and !. (= 0,1,2,.. .). Then, as ni become very large, (ii + 0 

and [ Xcr, (Q)]G tends to one, more or less rapidly depending on X and os (Q) . 

In general however, Af is not given by eq. (9) but rather by a “smooth 

e-function” . We take advantage of this fact in the parametrization we need to 

assume to invert the complete Ai i , in (7) since it is otherwise impossible to 

perform analytically; we choose the form 

1 _ (1 _ x)-d: ln[Aja.(Q)] 
(10) 

where di is defined by 

lim din - di In n 
n--co (11) 

and for 4 flavors 

d; = 
16125 i = -, NS 

’ 36125 i = + (12) 

In (lo), the behavior at x + 1, which corresponds to the large n limit, is explicitly 

factored out. The coefficients f& are fitted using first six moments given by eq. 

(7). The constants bf are calculable in perturbation theory, but require higher- 

’ loop calculations of b,. We assume, they are of the order O(1). 

To determine the numerical importance of Af(x, X), we use the regularized 

second order QCD results, Fz”, as a basis for comparison and compute 

F:(x, Q2) = F,r%@) + Atw) 
Q o! 4lr (13) 

where Fztr is given by the inverse Mellin transform of the first two terms of 

eq. (3). In the results we will present below, we use ~~(9) = 0.2; then, X = 5 

corresponds to Af(x,x) = 0 while for X = 0 we recover the singularity of the 

point-like part. 

. 
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We begin by examining the case e = 1 since we are most familiar with the 

singularity appearing in Ai,- at n = 2. The results are shown in fig. 2 where 

Fz(x, Q2)/a is plotted for X = 5,. 1 and 0. Then, for e = 2, three new singularities 

appear in the cn coefficient of eq. (l), t wo of which occur very near each other at 

n N 5.3 and correspond to the (NS) and (-) components of cn and a third one 

which arises around n = 2.4 in cz (see table I). Since the first two singularities 

are very similar in all respect, we show only the results related to A?, for X = 5, 

0.1, 0.01 and 0 (fig. 3). Th e contributions of A? are very small compared to 

those of Al for corresponding values of X. Even for X = .l the result is hardly 

distinguishable from Fzsr (x, Q2). We h ave to consider very small values of X 

(A 5 .Ol) in order to get appreciable deviations. For completeness, we also 

present the results associated with At for X = 5, 0.1 and 0 (fig. 4). Finally, we 

give an example for e = 3, for the singularity at n N 4.4 in the (+) component 

(see table I). Figure 5 shows the results for X = 5, 0.1, 0.01 and 0. 

Two facts are worth noticing: First, when .f. increases, for fixed i and X, 

the contributions from Af(x, X) d ecreases significantly. This is of course due to 

the additional powers of as(Q) which suppress higher order contributions but, 

more importantly, to the fact that 2; decreases in the argument of the smooth 

e-function [see eq. (9) and the discussion below]. Furthermore, the contribution 

from Al (x, X), i.e. from the regularization of the lowest pole, is clearly the largest 

for a given value of X. 

HADRONIC CONTRIBUTIONS 

In the previous analysis, we did not consider the nonsingular hadronic con- 

tributions of the form 

(A;,+)’ [a8(Q)ld’ (1 + r; % + . . .) . (14 

In the following treatment we shall assume that the regular hadronic piece, 

(A: Jr, has no additional singular behavior. Then we see that expression (14) , 
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becomes important compared with the second order QCD prediction of (3) and 

(4) when din < 1. It even dominates the point-like part for n very small n < 1.6 

where d!! < -1. But these values of n correspond to very small x’s, or the Regge 

region, where perturbative QCD does not apply. We concern ourselves to the 

region of x controlled by moments larger than n = 2. 

In fig. 6, dp (i = +,-, NS) are plotted as functions of n, where we have 

analytically continued for noninteger n’s. We see that for n > 2 the contribution 

of type (14) can be discarded. However, for n 2 4, din are smaller than one 

and the contributions might not be negligible. We will now examine how such 

contributions may affect the theoretical accuracy of (3) and (4). 

We proceed as follows: The magnitude of (14) decreases fast as n increases 

assuming (A:,,) r are smooth functions of n. To investigate the region of x where 

such terms may have a significant effect, we replace them by a smooth O-function, 

( > A;,i r [G(Q)]~’ + A, e” (no - n) (15) 

and invert to get the x-behavior; here, no is indicative of the value of n at which 

the damping CQ dY becomes significant (no - 4). 

We choose an appropriate function e” which is analytically invertible: 

ik(nO - n) = 
1 - tanh k(n - no) 

2 (16) 

In the limit k + 00, e”k reduces to e(nu - n). Its inverse Mellin transform is 

ik(x) = -$& &(-)m+l 6 (ink-2mk) . 
- 

Using the convolution property 

1 

i J 
dx xn-' 

0 2 

(17) 

one finds that the inverse Mellin tranform of the product A,B”(no - n) [see eq. 
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(15)], f(x), is 

_ 1 

f( I=/ X 1 (-)m+l 6 

0 ml1 

WeI = c (-)m+l e2mk(no-l) A (xe-2mk) 
m=l 

where [t] stands for the integer part of t. 

2mk 
> 

(19) 

Clearly, no contribution arises from (19) for x > e-2k. In our attempt to use 

a smooth e-function, (?k, we introduce the parameter k which indicates how fast 

the contributions of higher moments are suppressed near n = no. It is determined 

by, among other things, o,(Q) and the rate of growth of din. Clearly at very high 

energy, only contributions associated to din N 0 will be important and k will be 

relatively large. But even for k = 1, the smooth e-function leads to nonzero 

effects only in a region where x 5 .14. A closer look to expression (19) reveals 

that f(x) starts to oscillate rapidly as x approaches zero, due to the alternating 

signs which appear in the sum, and although the amplitude of these oscillations 

grows exponentially with k, they contained to smaller and smaller x’s where in 

any case the perturbative treatment is no longer valid. 

We end with a brief discussion of contributions that can be attributed to 

vector dominant processes. From jet analysis, there is evidence that such con- 

tributions are negligible for Q2 > 10 GeV2.[” We argue that at least part of 

the VDM contribution to the structure function is included through the hadronic 

parameter X and, on theoretical grounds alone, no significant VDM contribution 

for x 2 0.15 and large Q can be found. This is substantiated by an experimen- 

tal analysis, which consists of fitting simultaneously Am, X as well as a “VDM 

coupling constant ,” that finds the VDM part to be consistent with zero.[21 

In conclusion, we find that the theoretical uncertainties associated with higher 

order singularities and hadronic contributions can be estimated and are shown 

10 



to be important only in a restricted region of 5, x 2 .15. Therefore, the “reg- 

ularized” second order QCD analysis provides a reliable prediction that can be 

used for comparison with experiment and as an accurate tool to determine the 

scale parameter A. 

We would like to thank P. M. Zerwas for useful discussions. 
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Table I 

Numerical values for nf and 4 for i = +, -, NS and .t = 0, 1,2,3 

0 1.596 0.310 

1 2.000 1.000 

e 4 ne 
NS ne d”+ e 2; d”NS 

e 

2 2.386 5.326 5.251 0.6801 0.1176 0.1144 

3 4.403 26.579 26.572 0.3467 0.0237 0.0237 

1.4143 
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FIGURE CAPTIONS 

1. 2; (analytically continued’ by & din) in the region 2 5 ne 5 20, for i = 

+, -, NS (dotted, solid and dot-dashed line respectively). 

2. Fz(x, Q2)/a corresponding to Al(x, X) for X = 5 (solid), 1 (dot-dashes) 

and 0 (dots) [see eq. (13)]. 

3. Fz(x, Q2)/a! corresponding to A?(x, X) for X = 5 (solid), 0.1 (dot-dashes), 

0.01 (dashes) and 0 (dots). 

4. Fl(x, Q2)/a corresponding to At(x, X) for X = 5 (solid), 0.1 (dashes) and 

0 (dots). 

5. .F’;(x, Q2)/a corresponding to At(x, X) for X = 5 (solid), 0.1 (dot-dashes), 

0.01 (dashes) and 0 (dots). 

6. din for i = + (dots), - (solid) and NS (dot-dashes). 
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