SUPER DISRUPTION (AND ITS USE IN LINEAR COLLIDERS) *

R. B. PALMER ${ }^{\dagger}$
Stanford Linear Accelerator Center
Stanford University, Stanford, California, 94305

Submitted for Publication

[^0]David Leith has suggested that the enhancement of luminosity due to disruption could be increased if the bunch consisted of two discrete short pulses. The first pulse would act as a lens to focus the second. The approach may be particularly helpful for a super high-energy collider for which the interacting bunch must be very short to avoid excessive quantum beamstrahlung.

In this analysis I will assume bunches with uniform charge density up to a radius a. I will, however, follow Tom Himel's convention of referring to the bunch size as σ where $\sigma=a / 2$. With this convention the luminosity relation remains as with a Gaussian bunch. Clearly some refinements will be needed to get correct values for the Gaussian case. This analysis may, however, be useful to give the orders of magnitudes.

Define

$$
\begin{aligned}
N_{1}=N= & \text { particles in bunch \#2 } \\
N_{2}=k N= & \text { particles in bunch \#1 } \\
\sigma_{1}=\sigma= & \text { half radius of bunch \#2 } \\
\sigma_{2}=b \sigma= & \text { half radius of bunch \#1 } \\
s= & \text { half bunch spacing } \\
f= & \text { focal length of bunch \#1 } \\
D= & \text { disruption parameter defined by: } \\
& D=\frac{s}{f}=\frac{r k N s}{2 \gamma b^{2} \sigma^{2}}
\end{aligned}
$$

where $r=$ classical electron radius $=2.810^{-15} \mathrm{~m}$.
Note that the 2 arises from the uniform current case. It is not present in the Gaussian focus.

Consider the sequence of events as the two bunches pass through one another. See Fig. 1. I will assume for the moment that $\sigma_{1} \gg \sigma_{2}$, i.e., $b \gg 1$. In this case bunch \#2 "sees" a perfect spherical lens. Only chromatic abberation will be present. I will also assume that the bunch length $\ll s$.

After the two \#1 bunches have passed through each other, they are converging to a point at a distance f from the center (Fig. 1b). After a further distance s they meet the \#2 bunches. At that time the \#1 bunches have decreased in size by a factor:

$$
\sigma_{1}^{\prime}=\sigma_{1}\left(\frac{f-s}{f}\right)
$$

and their focal lengths as seen by the \#2 bunches have decreased:

$$
f^{\prime}=f\left(\frac{f-s}{f}\right)^{2}
$$

What we require is that this new focal length is s so that the two second bunches collide at their respective foci, i.e.,

$$
s=f\left(\frac{f-s}{f}\right)^{2}
$$

from which we get

$$
f=\frac{3+\sqrt{5}}{2} s \approx 2.62 s
$$

and

$$
\begin{equation*}
D=.38=\frac{r N_{1} s}{2 \gamma \sigma_{1}^{2}}=\frac{r k N s}{2 \gamma b^{2} \sigma} \tag{1}
\end{equation*}
$$

We can note now that to avoid bunch \#2 being larger than the lens mode from
bunch $\# 1$, we require

$$
b=\frac{\sigma_{1}}{\sigma_{2}} \geq\left(\frac{f}{f-s}\right) \approx \sqrt{2.62} \approx 1.62
$$

For more Gaussian distributions we will need $b>1.62$, but I will take $b=1.62$ for the moment. From (1) we now get

$$
\begin{equation*}
s \approx 7.110^{14}\left(\frac{\epsilon \beta}{k N}\right) \tag{2}
\end{equation*}
$$

The half angle θ as the second bunches approach one another is

$$
\theta=\frac{\sigma_{2}}{s}
$$

and thus the new β^{*}, which I will call β^{\prime} is given by

$$
\beta^{\prime}=\frac{\epsilon}{\gamma \theta^{2}}=\frac{s^{2}}{\beta}
$$

and the enhancement factor for the second bunch collision is

$$
\begin{align*}
H_{2}=\frac{\beta}{\beta^{\prime}} & =\left(\frac{r}{.76 b^{2}}\right)^{2} \frac{k^{2} N^{2}}{\epsilon^{2}} \tag{3}\\
& \approx 210^{-30} \frac{k^{2} N^{2}}{\epsilon^{2}}
\end{align*}
$$

The overall enhancement must include the other collisions: 1 on 1 , two 2 on 1 and 2 on 2 :

$$
H_{t}=\frac{(k / b)^{2}+2 k+H_{2}}{(1+k)^{2}}
$$

but provided $H_{2} \gg 1$

$$
\begin{align*}
H_{t} & \approx \frac{H_{2}}{(1+k)^{2}}=\left(\frac{r}{.76 b^{2}}\right)^{2} \frac{N^{2}}{\epsilon^{2}} \cdot\left(\frac{k}{1+k}\right)^{2} \tag{4}\\
& \approx 210^{-30} \frac{N^{2}}{\epsilon^{2}}\left(\frac{k}{1+k}\right)^{2} \quad(m k s)
\end{align*}
$$

For SLC $\epsilon \approx 310^{-5},(1+k) N=510^{10}$. Take $k=1$ then

$$
H_{2} \approx .35
$$

which is not useful unfortunately. However, for future colliders we usually assume that far smaller emittances will be available. In these future colliders it is in general true that N will be limited by beamstrahlung and that in turn is dependent on how small the final spot is. We need, therefore, to solve for the correct N for a given beamstrahlung parameter δ.

From Himel and Siegrist SLAC-PUB-3572 we get:

$$
\begin{aligned}
\delta & =\left(\frac{r^{5} 16(m c)^{4}}{3^{7 / 2} h^{4}}\right)^{1 / 3}\left(\frac{\sigma_{z} N^{2}}{\epsilon \beta}\right)^{1 / 3} \\
& \approx 1.410^{-8}\left(\frac{\sigma_{z} N^{2}}{\epsilon \beta}\right)^{1 / 3} \quad(m k s)
\end{aligned}
$$

from which

$$
N \approx \delta^{3 / 2} \sqrt{\frac{\epsilon \beta^{\prime}}{\sigma_{z}}} \times 5.910^{11}
$$

substitute for β^{\prime} from Eq. (3)

$$
\begin{align*}
N^{2} & \approx\left(5.910^{11}\right)^{2} \delta^{3} \frac{\epsilon}{\sigma_{2}} \times \frac{\beta}{210^{-30}} \frac{\epsilon^{2}}{k^{2} N^{2}} \\
N & \approx 210^{13} \frac{\epsilon^{3 / 4} \beta^{1 / 4} \delta^{3 / 4}}{k^{1 / 2} \sigma_{z}^{1 / 4}} \tag{5}
\end{align*}
$$

and putting this back into Eq. (4)

$$
\begin{equation*}
H_{2}=.810^{-3} \delta^{3 / 2}\left(\frac{\beta}{\epsilon \sigma_{2}}\right)^{1 / 2} k^{3 / 2} \tag{6}
\end{equation*}
$$

Now we can see how much we have reduced the total beam power for a given luminosity. For round beams

$$
\begin{align*}
& L \approx \frac{1}{4 \pi} \frac{N^{2} f}{\sigma^{2}} H_{2} \\
& P=\left(m c^{2}\right) N f \gamma(1+k) \quad \text { per beam } \tag{7}\\
& P \approx 1.0210^{-12} L \frac{\epsilon \beta}{N H_{2}}(1+k) \quad(m k s)
\end{align*}
$$

Which with Leith's super enhancement gives:

$$
\begin{equation*}
P=6.410^{-19} \frac{\epsilon^{3 / 4} \beta^{1 / 2} \sigma_{z}^{3 / 4}}{\delta^{9 / 4}} \times L \times\left(\frac{1+k}{k}\right) \tag{8}
\end{equation*}
$$

where all units are $m k s$ except L is in $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$. For examples I take $L=$ $10^{34} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}, \beta=1 \mathrm{~cm}, k=1, \sigma_{z}=.1 \mu, \delta=.3$

Invariant $\epsilon \mathrm{m}$	10^{-6}	10^{-7}	10^{-8}	
N	4.610^{9}	$.8110^{9}$	1.510^{8}	$\epsilon^{3 / 4}$
H_{2}	41	130	410	$\epsilon^{-(1 / 2)}$
β^{\prime}	240μ	76μ	24μ	$\epsilon^{1 / 2}$
σ^{\prime} (for 5 TeV)	$49 \mathrm{~A}^{\circ}$	$27 \mathrm{~A}^{\circ}$	$15 \mathrm{~A}^{\circ}$	$\epsilon^{1 / 4}$
P (one beam)	10.8 MW	1.9 MW	.3 MW	$\epsilon^{3 / 4}$
s	1.5 mm	.8 mm	.5 mm	$\epsilon^{1 / 4}$

$c f$ without Leith double bunch

$$
p \approx 1.710^{-24} L\left(\epsilon \beta \sigma_{z}\right)^{1 / 2} \delta^{3 / 2}
$$

N	1.710^{10}	$.510^{10}$	1.710^{9}	$\epsilon^{1 / 2}$
P (one beam)	60 MW	20 MW	6 MW	$\epsilon^{-(1 / 2)}$
Power reduction	6	10	20	$\epsilon^{1 / 4}$

One notes that even greater power reduction results from accepting a larger δ, e.g., for $\delta=.6$ the beam power for $\epsilon=10^{-8}$ drops to only 63 kW ! This is significant since it allows us to think (at least allows Tom and I to think) of $50 \mathrm{TeV} * 50 \mathrm{TeV}$ and $L=10^{36}$!

(c)

6-85

5148A 1

Fig. 1

[^0]: * Work supported by the Department of Energy, contract DE-AC0376SF00515.
 \dagger Permanent address: Brookhaven National Laboratory, Upton, New York 11973

