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ABSTRACT 

The vanishing of the cosmological constant at the quantum level is achieved 

by considering it as the physically irrelevant scale of a spontaneously broken 

and anomaly free, global, noncompact U(1) symmetry. This symmetry is 

naturally contained in the SU(N,l) no-scale supergravity model, which may 

be interpreted as the effective four dimensional limit of superstring theories. 

A firm prediction of such a mechanism is the unavoidable existence of a 

physical massless Goldstone boson. 

Astrophysical observations on the cosmological constant value indicate that 

the vacuum energy density in our universe is extremely small [l]. Actually 

it is about 120 orders of magnitude smaller than the gravitational scale 

(M = (~KG~)+ . N 2 4 x 1018 GeV) raised to the appropriate power: 

A N Vi < 10-12’ M4 1! (3 x lo-l2 GeV)4. 

Any observed massive particle has a mass hierarchically larger than A1j4 5 

3 x lo-l2 GeV and therefore a hard-to-understand scale problem appears in any 

theory with massive states. Indeed, any individual massive degree of freedom 

induces an infinite contribution to the vacuum energy density as well as a net 

finite one at least of order (mass) 4. In the absence of a relevant symmetry reason 

and even if the infinities are disregarded, it is hard to imagine how such an 

accurate cancellation among unrelated individual contributions could occur. 

In the presence of supersymmetry the cosmological constant problem is in 

much better shape due to some miraculous cancellations between the bosonic 

and fermionic contributions. Although the cosmological constant vanishes auto- 

matically in the exact limit of global supersymmetry [2], this is not the case in 

any realistic model where the supersymmetry is spontaneously broken. When 

supersymmetry (either local or global) is broken, the vacuum energy density is 

in general different from zero and gets unacceptably large contributions propor- 

tional to the supersymmetry breaking scale. However, this is not a general feature 

in supergravity; there is an interesting class of N = 1 supergravity models [3-61 
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where the vanishing of the cosmological constant occurs naturally at the classical 

level of the theory, whether supersymmetry is spontaneously broken or not, and 

this is due to the flatness properties of the scalar potential. The main feature of 

these supergravity models is the nonminimality of the kinetic terms of the scalars 

which form a noncompact symmetric Kahler manifold; namely SU(l,l)/U(l) in 

the less symmetric case [3,4] and SU(N,l)/SU(N) @I U(1) in the maximally sym- 

metric case [5] (N being the number of complex scalars in chiral supermultiplets). 

Recently, N = 2 spontaneously broken supergravities with flat potentials 

have been proposed in the literature [7]. I n all these models, as in the former 

[SU(l,l) and SU(N,l)] N = 1 supergravity, the cosmological constant is zero and 

the scalar manifold always forms a noncompact symmetric structure. We found 

this as an evidence for an interplay between the vanishing of the cosmological 

constant and the underlying noncompact symmetries which is the unifying thread 

of these theories. 

Realistic and physically relevant models based on SU(1,l) and SU(N,l) 

no scale supergravity have been constructed [8,4,5]: they are known in the 

literature as no-scale models. They were mainly proposed as a solution to 

the scale hierarchy problem, by means of the dynamical determination of the 

hierarchical ratio Mw/M N Msusy /M N lo- le. It is worth noticing that the 

maximally symmetric no-scale models are found as a four dimensional limit [9] of 

the ten-dimensional Es x Eg superstring theory [lo] which, in turn, is claimed to 

be a finite theory successfully unifying all known interactions, including gravity. 

When supersymmetry is spontaneously broken, the underlying SU(l,l) 

symmetry of the no-scale models is not respected by the supersymmetry break- 

ing terms, like for instance the gravitino mass term. In the absence of the 

SU(1,l) symmetry (which guaranteed the vanishing of the cosmological constant), 

one might expect a nonzero vacuum energy at the quantum level of the theory. 

However, there is a remaining U(l)~c noncompact [4] global symmetry which is 

spontaneously broken simultaneously with supersymmetry. 
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In the present work we will show that the cosmological constant remains 

zero at the quantum level of the theory due to the presence of this particular 

anomaly-free u(l j NC symmetry: A firm prediction of such a mechanism is the 

unavoidable existence of a physical massless boson: “the plation,” the Goldstone 

mode of the above symmetry. 

The main points of our proof are the following:The SU(1,l) transformations 

are linearized in a simple way by introducing an unphysical chiral 

superfield (~$0, ~0); the scalar component 40 acts as an “unphysical dilaton” 

field and restores the Weyl invariance of the theory as well as a U(l)-local and 

S-supersymmetry [ll]. We then show that the remaining noncompact U(l)~c 

global symmetry implies the spontaneous breaking of the local Weyl invariance 

which, in turn, guarantees [12] the stability of Minkowski space-time at the quan- 

tum level of the theory. Of course, the whole mechanism makes sense in the 

context of a quantum theory of gravity whose existence is our basic assumption. 

At this point, let us stress that this mechanism is more general and in prin- 

ciple can be applied to any theory which exhibits a suitable noncompact and 

anomaly-free global symmetry. The advantage of supersymmetry in the no-scale 

models is that it implies naturally the relevant U(l)~c and gives A 3 0 at the 

classical level of the theory; also, the presence of supersymmetry in the effec- 

tive theory stabilizes the scalar masses to hierarchically smaller values than the 

gravitational scale. 

For the sake of simplicity we will present the proof of our mechanism in the 

simplest SU(1,l) model, when only one chiral multiplet is coupled to supergravity. 

The extension to more general cases is straightforward. In fact, we will show that 

the presence of U(l)~c c SU(l,l), leads to the vanishing of the cosmological 

constant as a consequence of the following identity: 

minimum 
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where $D and 4p are the scalar and pseudoscalar fields which form the SU( l,l)/U( 1) 

manifold and CD, Cp are constants related to the (4~) vacuum expectation value. 

The pseudoscalar‘field $p is a massless physical state corresponding to the Gold- 

stone U(l)~c mode and we will refer to it as the “plation” field. The scalar $D 

is a physical “dilaton” field and couples naturally to the trace of the energy mo- 

mentum tensor. The magnitude of the supersymmetry breaking scale is defined 

by the vacuum expectation value of 40. At the classical level, the potential is 

flat in both directions (4~ and qSp> and identity (1) is automatically satisfied 

(V z 0). Wh en supersymmetry is spontaneously broken, there is no symmetry 

to protect the flatness of the potential in the $D direction and therefore (4~) 

is dynamically determined [8,4]. The relevant information which should be ex- 

tracted from eq. (1) is that at the minimum of the potential (aV/ad~ = 0), the 

vacuum energy is zero because of the presence of the massless plation. 

The SU(1,l) no-scale supergravity is defined [3,4] by the Kahler potential 

G(Z,Zt) = -3.h (2 + Zt) + tn IFI (2) 

where F = c is a constant “superpotential.” In what follows we will work in units 

of M = 2.4 x 101* GeV. The tree level scalar potential in this model vanishes 

identically for all values of the scalar field 2 

V = eG 

GZ z (a/aZ)G and Gzzt = (a/32) (d/dZt) G; when c # 0, the supersym- 

metry breaking scale (gravitino mass) does not vanish, but it is undetermined 

due to the flatness of the potential. 

m3/2 = eG12 undetermined . 
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The scalar Kahler manifold is defined by the metric G,,t and one can easily 

see that it forms an Einstein space with a constant curvature RM = 2/3. 

R 
zzt = dzdzt enGzzt = 3 ZG Zzt 

R 
zzt 2 RM = ____ = _ 

G 
zzt 

3 

(5) 

The isometries of the space form a noncompact SU(1,l) group and leave the 

bosonic part of the Lagrangian invariant 

Lbosons 
SU(l,l) = -$ 6 R + 6s’“” Gzzt c3,Z&Zt 

where R is the space-time curvature scalar. 

Furthermore the SU( 1,l) Mobius transformations 

z --+ az+ip 
with 

cY6+p-/ = 1 

i-/Z+6 Q,P,G real 

(6) 

(7) 

leave the whole Lagrangian, except the gravitino-goldstino mass terms, invariant 

after simultaneous chiral rotations on the fermionic fields. By setting the super 

potential F = c = 0, all SU(l,l) b reaking terms disappear from the Lagrangian 

-and supersymmetry remains unbroken (m3i2 E 0). When c # 0, the super- 

symmetry is spontaneously broken and the SU(1,l) symmetry breaks down to a 

U(l)~c defined by the imaginary translation [4] 

2 -+ Z+ip (8) 

obtained from eq. (7) with (Y = 6 = 1 and 7 = 0. The corresponding Goldstone 

boson (plation) of the spontaneously broken U(l)~c symmetry is identified with 



ImZ - dp and appears in the Lagrangian only through its space time deriva- 

tives. In terms of 2 and Zt fields, the two physical fields dp and 4~ are given by: 

Plation: Cpp = &(2-d) 

(9) 

Dilaton: c$D = -5 en (2 + Zt) 

In this unitary representation the scalar kinetic terms take the form 

bosom 
lKT = 6 gpu ; d,dD&hD + ; e (10) 

while the supersymmetry breaking parameter, m3j2, depends only on the physical 

dilaton vacuum expectation value 

m3/2 = cXexp (11) 

To better examine the consequences of the U(l)~c symmetry of the model, 

it is convenient to use a field representation where the SU(1,l) approximate 

symmetry of the model is linearly realized. This can be easily done due to the fact 

that the SU(l,l) model with RM = 2/3, accepts a very simple superconformal 

representation. Indeed, the ly$y;, of eq. (10) can be given by the following 

-superconformal structure 

-!- “$‘$;$ = - ; ( Idol2 - 1411~) R 6 
- s”’ [(D&o)’ D&o - (D,h>t WI] 

with D, = d, + iA,, where the analytic field redefinition 

02) 

z = 1 fi+h 

2 a-41 
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and a suitable Weyl resealing of the metric 

t 

s,uu + s/w 
3 - 4141 

3 W) 

have been performed. We also introduced the unphysical compensator ~$0 and 

the auxiliary vector field A, of the graviton supermultiplet. In the presence of 

~$0 and A, the Weyl invariance and the U(l)-1 ocal symmetries are restored while 

the SU(1,l) t ransformations become linear. More specifically: 

a) Weyl invariance: 

6, spu = 244 QpJ 

6w (;;) = -44 (p) 

p) U( I)-local invariance: 

6, (zr) = ie,(x) (;I) 

SA, = -id,OO(z) 

r) SU(Ll) t ransformations: 

hql,l) 
40 ( ) = (hl + e2a2 + ia303) 

40 

41 ( 1 41 

(154 

W) 

06) 

where w(x) and 8 0 x are real local infinitesimal parameters and Bi, i = ( ) 

1,2,3 global ones; ai are the Pauli matrices: 

ol = (y ;) ) cr2 = (p -J , o3 = (:, :1) . (17) 
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&al and 8zaz define the two noncompact SU(l,l) transformations and ias& the 

compact one. Notice that the SU(l,l) Lagrangian and particularly its bosonic 

part (12) is uniqtiely determined by the requirement of local superconformal in- 

variance and the global SU(l,l) symmetry. Terms like X(l&12 - /&1”)” in the 

potential are forbidden by supersymmetry. 

The relevant global U(l)~c symmetry of the model leaves the supersymme- 

try breaking terms invariant. These terms, triggered by a nonzero value of the 

constant c are 

1 
SUSY breaking = 2 C (40 - 4d3 tip HU (1 - 75) lltu 

+ 3iJ * 7 (1 - 75) (x0 - Xl) (40 - 41)2 (18) 

- 6 [ Zo (I- 75) xo - Xl (1 - 75) XI ] (40 - h)} + h.c. 

where +,, is the spin-3/2 gravitino and xi are the spin-l/2 superpartners of c&. 

Simple inspection of eq. 18 indicates that the remaining symmetry is defined by 

a combination of the SU(l,l) t ransformations which leave the form (~$0 - 41) 

invariant: 81 = 0, 82 = 8s = eNC in eq. (16). Indeed, the whole supergravity 

Lagrangian remains invariant under the transformation: 

‘hc (z:) = e~~QP(zj ) hC (:I) = eNd.h(~~) , (19) 

with 

Qp = a2 + ia, = i 
Under U(l)~c the fermions ~0 and x1 transform nontrivially although this is 

not required by eq. 18). Terms like qP (~$0 CY ~0 - ~$1 W xl) in the rest of the 

Lagrangian imply the transformation (19). As we will see later, it is of crucial 

importance for the vanishing of the cosmological constant to keep U(l)~c free of 
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any possible anomaly. It is amazing that the U(l)~c generator Qp satisfies the 

anomaly cancellation condition 

TrQ> = 0, n = 1,2,3,. . . . (20) 

The absence of U(1) NC anomalies can be also understood by observing that 

~0 is unphysical and can be eliminated by fixing the S-supersymmetry gauge. 

On the other hand, x1 is the goldstino field and it is absorbed by the gravitino 

(superhiggs mechanism) [13]. In th e superunitary gauge of the anomalous free 

Q-supersymmetry ~0 and x1 do not appear in the Lagrangian. In that gauge, 

the U(l)~c transforms only the scalar fields and therefore no anomaly is present. 

When 40 and 41 take nonzero vacuum expectation values, U(l)~c and the 

local supersymmetry will be broken spontaneously. ~0 E (~$0) and TJ~ 5 (&) 

can be chosen real without loss of generality. Indeed, by performing a U(l)~c 

transformation with 8NC chosen as: 

(p, = Irn ((40) d,) 
IMO) - bh)12 

(21) 

one can identify the (40) and ($1) phases. The remaining phase can be rotated 

away by a U(l)local rotation. 

We are now in a position to prove the identity (1). To do that it is sufficient to 

assume that the effective SU(l,l) supergravity model makes sense at the quantum 

level, by embedding it in a more fundamental theory where quantum gravity 

makes sense. Under those circumstances, the generating functional W(Ji) of the 

theory exists and can be written as usual 

.C + c Jicpi 
i 

(22) 
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where Ji denote the sources of the quantum fields cpi. Performing a standard 

Legendre transformation we define the generating functional of the l-particle 

irreducible Green ‘functions as . 

r (a) = W (Ji> - / d4x c cpi Ji (23) 
i 

where now cpi are the classical fields defined by 

pi = & W ( Ji) . 
i (24 

In terms of I (cpi) th e relevant U(l)~c Ward-identity (INC) takes the form: 

&C = $ &c & •F fermionic contribution = 0 (25) 
i 

where 4j = 4f-t i4; , j = 0,l . Using eq. (25) together with [see eq. (19)] 

&NC 40 R =&NC@ = - (&4:) 

(26) 

6Nc& =6Nc4: = (vo-v1+&@) 

and taking derivatives with respect to & and c#$, we obtain: 

SIN, o=-...-.- 
0: 

SIN, o=-.-.-.- 
640’ 

6r 6r b2r b2r 
= z# + &+q - + (‘uo - Vl) - 

@f2 + #@i o-momentum > 
(274 

F=O 
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where F denotes collectively all classical fields of the theory. These identities, 

as they stand, are not useful. They relate some Green functions between phys- 

ical and unphysical fields. However, using the U(l)local and Weyl invariance 

[see eqs. (15a,b)] we will be able to eliminate the unphysical degees of freedom. 

The U( l)local Ward identities IC are obtained using eq. (15b) in a similar way 

as before. One finds: 

A- 
F=O = &# + O" 

SIC 6r o=- -- 
640' F=O = cJ# + " 

. (28b) 

Finally, the Ward-identities of the Weyl invariance [see eq. (15a)] give: 

6r 6r 
2%.? 6h,, = 

6r 
v. &f + vl jq ’ (29) 

where h,, is the graviton field defined by g,, = nPu + h,,. The above identity 

is derived in ref. [K?] and takes this simple form when the gauge conditions 

dV h,, = 0 and hc = 0 are used to fix the local coordinate and Weyl invariance 

respectively. Because of the 40 - $1 - h; mixing, it is convenient to define: 

(z;) =-(I:: :L) (;:) (304 

where &, is the unphysical field whose real part couples to the trace of the energy 

momentum tensor (unphysical dilaton) and 4: E 4~ + ;~$p is the physical field 

(physical dilaton and plation). The “Lorentz rotation” is dictated by the relative 

sign difference of the kinetic energies of ~$0 and $1. The parameter w is given by 
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Combining eqs. (27-30) and eliminating the unphysical 4; we obtain the promis- 

ing identity (1) 

--rlpv Sh,, 
Jr = JG -j-& + $ (vo" -vi) $ ~o~momentum * (31) 

P 

This equation shows clearly that the vanishing of the vacuum energy, 

V((qSi)) N n/l’ U/(6h,,), at the physical ground state, JZ/(&$o) = -6V/(6rjo) 

= 0, follows as a consequence of the existence of a massless plation, 

[m$ = -b21’/(6&) = 01, the G Id t o s one mode of the anomaly free U(l)~c 

symmetry. 

It is important to note that the above identities can be preserved by the reg- 

ularization procedure in a consistent quantum theory of supergravity (if such a 

theory exists). In fact one needs a regularization which preserves the general co- 

ordinate and Weyl invariance as well as supersymmetry. In a nonsupersymmetric 

theory such a regularization exists and consists of constructing an n-dimensional 

conformally-invariant theory by replacing any scale p by the unphysical dilaton 

field raised to an appropriate number of dimensions [ 141. In supergravity theo- 

ries this regularization can be easily extended using the compensating superfield 

instead of the unphysical dilaton [15]. In the present case, in order to respect 

the additional U(1) NC symmetry, one has to use as a superconformal regulator 

the superfield combination ($0 - $1). Let us note here that the minimization of 

the effective potential should lead to different VEV’s for the fields $0 and 41 to 

avoid the conformally symmetric point (40 - $1) = 0. This condition must be 

satisfied in any realistic model. Using the above regularization one can easily 

verify the validity of the derived Ward identities order by order in the loop ex- 

pansion [16]. In the effective theory, in the superunitary gauge, when no such 

regularization is used, the derived identity (1,31) has to be respected by the renor- 

malization conditions. Otherwise spurious and ambiguous contributions to the 

vacuum energy will be introduced from the inconsistent regularization. Of course 

if the final theory is finite, the question of a consistent regularization becomes 

much simpler. 
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There is a U(1) compact analogue of the proposed mechanism, namely the 

Peccei-Quinn U(1) symmetry [17]. Th ere, the corresponding Goldstone boson, 

“the axion,” is used to rotate away the 8 parameter (6 Fpy FpV) and therefore 

to explain its almost vanishing value. In our case, the symmetry is noncom- 

pact (complex rotations) and the corresponding Goldstone boson, “the plation,” 

eliminates the cosmological constant. The difference with the axion case is that 

our U(l)~c is anomaly free symmetry and therefore without any explicit break- 

ing. The plation is a real Goldstone boson. Note that the “plation” is not a 

“Brans-Dicke” type massless scalar field [see eq. (lo)] and therefore there is not 

any cosmological problem following from its existence [18]. In the SU(l,l) model 

without matter fields, the proposed mechanism seems to be realized in a trivial 

way without any interesting minimum with ~0 # ~1. 

In the more interesting cases where matter fields are present, the identity 

of eq. (31) remains valid provided their couplings respect the U(l)~c symmetry. 

Also the absence of anomaly creating terms like dp Fpy FpV must be requested. In 

the presence of such terms U(l)~c will be explicitly broken because of instanton 

effects [ 191. 

The SU(N,l) no-scale model is based on the following Kahler potential G [5]: 

G = -3ln (Z+Z49 +ln IF(q+)I (324 

where the superpotential F depends only on the gauge nonsinglet fields &, 

F = C + dijk 4i&$k . W) 

The gauge singlet field 2 plays a similar role, as in the simple SU(1,l) case and 

the parameter c breaks supersymmetry spontaneously. The scalar fields form an 

Einstein-Kahler manifold with curvature RM = (N + 1)/3, 

R: G d’d&DetG (33) 
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In eq. (33)) G: = d’ dJ G is the metric and R$ is the Kahler-Ricci tensor; 

qSI E (x27,&). Th e p h ysical dilaton and the plation in that case are given by 

ZpD = --$ e?a (“,“iL!q 

(34 

$p = 6 i (2 - 2’) 

and the scalar part of the Lagrangian in this unitary representation is 

-b 1 

J-s 
scalars = 9 

CLU 5 a,b&qb+; ef14D I& 

+ef14D Dpc$Dy# -em4D i 
> 

x lF4i12+:g&uT~2 
2 

i#D,P 

with Ip = acL q5p + (i/d) di EP & and Da = q5: (Ta)z @. 

The scalar potential is positive semidefinite and flat in the c$D and $p direc- 

tions. The supersymmetry is spontaneously broken when c # 0 [msi2 ((~$0)) = 

c exP{@ ($D)) 1. B ecause of the specific value of the curvature RM = 

(N + 1)/3, th e model has a simple superconformal representation: 

’ lbosons 
fi SU(N,l) = - 14012 - 1411~ - c l+i12 R 

i 

- lRdo12 - lDp$112 

2 
- ; F;v F[’ - 

I I 
F4 i 

c IPA2 
) 

(36) 
i 
1 
5 &UT D2 
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and the introduction of the compensator r$u and the gravitation auxiliary field 

A, inside the covariant derivatives Dp linearizes the relevant SU(l,l) symmetry 

as previously. L 

The connection of the SU(N,l) model with the ten-dimensional Es x Es 

superstring is manifest after the compactification of the extra 10-4 dimensions 

on a Ricci flat manifold [20]. The obtained effective potential is given by [9] 

.$ = - 3172 (z+zt-?q 

+ fh 1 [W(S) + dijk&&$k] /? - fh (S + St> 

(37) 

where W(S) = a + hers is an effective S-dependent superpotential of the 

“hidden” field S which is generated by the “hidden Eg” gaugino condensation, 

and a, b and 7 are some condensation parameters. a, b are different from zero 

at energies smaller than the condensation scale A, inducing a nonzero supersym- 

metry breaking parameter 

ceff = w ((S)) EC& , 

where (S) is determined by the minimization condition 

ii $I(,) = O - 
By integrating out the S-field one finds 

G = @(N,l) for E < A, , 
W((S)) E c 

(38) 

(39) 

(40) 

with EB as the grand unification group. 
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It is of great importance that in the effective (E < A,) SU(N,l) model 

obtained from superstrings, dangerous terms like q5p Fiv F/v are not allowed. 

It is also important to note that for energies larger than A, there are two 

SU(l,l) symmetries corresponding to the 2 and S fields. However, SU(l,l)s 

is explicitly broken from the condensation mechanism and the instanton effects, 

due to the presence in the Lagrangian of terms like (S + St) F$ FE” and also 

i(S-St) Fzu FL”. No similar Z-field depending terms appear in the gauge kinetic 

terms and none will be generated by radiative corrections because the Z-field is 

gauge singlet; therefore the anomaly requirement is automatically satisfied. 

Because of eq. (39) the gaugino mass terms are not present classically. 

[m gauginos - ta2 Ss/i5J(S + st)l = I 0 . The only supersymmetry break- 

ing scale at the tree level is the undetermined gravitino mass [m3i2 = W((S)) 

XeXP {@ @D)}] - H owever, through higher order corrections the supersym- 

metry breaking will be communicated to the gauge interacting sector of the the- 

ory (squarks, sleptons, gauginos, . . .) creating an effective global SUSY breaking 

boson-fermion (mass)2 splitting m~,sy [21]. The latter will be determined dy- 

namically and simultaneously with the electroweak scale Mw, as usually in the 

no-scale models [8, 4, 51. The essential difference now is that the cosmological 

constant is identically equal to zero at the SU(2) x U(1) breaking minimum [16]. 

In the framework of superstring theories all requirements of the A = 0 

mechanism are automatically fulfilled. However, as we have already stressed, 

the proposed mechanism for the vanishing of the cosmological constant is more 

general and can be implemented in any consistent theory of gravity assuming the 

existence of a noncompact and anomaly-free global symmetry. 

The present experimental limit on A 5 10-r2’ M4 - (Mw/M)~ M4 gives 

us the possibility for a very small residual vacuum energy or equivalently, a 

very small plation mass, mp _ < 10d6’ M 11 3 x 1O-42 GeV, which could be 

cosmologically interesting [22]. 
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We end by noting that candidate plation fields are naturally present in 

D > 4, N = 1 supergravity theories. They correspond to some antisymmetric 

tensor fields which reduce, after’compactification in four dimensions, to “axion” 

or “plation” type pseudoscalar fields. 
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