
SLAC - PUB - 3680
May 1985
WI)

THE3081/~ PROCESSORANDITSON-LINEUSE

P. RANKIN, B. BRICAUD, M. GRAVINA, P.F.KuNz,G.OXOBY, AND Q.TRANG

Stanford Linsar Accclcmtor Center
Stanlord University, Sranfoni, Cdijornia, 94305

and

P. M. FERRAN, A. Fuccr, R. HINTON, D. JACOBS,
B. MARTIN, H. MASUCH, AND K.M. STORR

CERN, CH-1311 Geneva 33, Switzerland

ABSTRACT

The 3081/E is a second generation emulator of a main-
frame IBM. One of it’s applications will be to form part of
the data acquisition system of the upgraded Mark II detector
for data taking at the SLAC l inear collider. Since the proces-
sor does not have direct connections to I/O devices a FAST-
BUS interface will be provided to allow communication with
both SLAC Scanner Processors (which are responsible for the
accumulation of data at a crate level) and the experiment’s
VAX 8600 mainframe. The 3081/~‘s will supply a signifi-
cant amount of on-lime computing power to the experiment (a
single 3081/~ is equivalent to 4-5 VAX 11/780’s). A major
advantage of the 30811~ is that program development can be
done on an IBM mainframe (such ss the one used for off-line
analysis) which gives the programmer access to a full range of
debugging tools. The processor’s performance can be contin-
ually monitored by comparison of the results obtained using
it to those given when the same program is run on an IBM
computer.

1. INTRODUCTION
The 3081/~ is a second generation emulator of a main-

frame IBM. One of the applications of such a processor is to
increase the on-line computing power available to ucperiments
and 3081/E’s will form part of the data acquisition system of
the upgraded Mark II detector for data taking at the SLAC
linear collider. Since the introduction of the 168/E’, much
experience has been gained in making efficient use of such pro-
cessors, and their value has been well established over a wide
range of applications’ including off-line event reconstruction ,
Monte Carlo studies, on-line triggering ,and filtering. This type
of processor, unlike computers or commercial microprocessors,
does not run an operating system nor is it directly connected to
I/O devices. For the Mark II application a dual-ported FAST-
BUS interface will be provided to allow communication with
SLAC Scanner Processorss(SSP’s) which accumulate data at
the crate level and the experiment’s VAX 8600 mainframe.
The 3081/~ will appear to be a slave device.

This paper will describe the 3081/~, concentrating on those
features relevant to ita use in high energy physics applications.
The interfacing of the processor to a FASTBUS sy+em and its
use on-line will also be discussed.

* Work supported by the Department of Energy, contract
DE-AC03-76SFOO515.

2. THE PROCESSOR
The 3081/E project was formed to build on the experience

gained with 168/E% and to produce a much improved IBM
mainframe emulator. The style of simple,flexible interfacing to
the host system has been retained. The new processor, how-
ever, has much more memory space, incorporates more m M
instructions, and has full double precision floating point arith-
metic. Execution times have been substantially reduced. The
time scale of the project was chosen to allow the use of recent
electronic developments while making the processor available
for use by LEP and SLC experiments. The design is very conser-
vative and uses only off-the-shelf, multiple sourced TTL com-
ponents, however, the processor has a modular architecture to
make it easily upgradable.

The details of the processor and its architecture can be
found in reference four so only a brief summary will be given
here. There are two 64 bit wide operand buses, the ABUS and
the BBUS(with associated 8 bit wide odd parity buses), which
are connected to four utecution units (integer,divide,multiply
and floating point add/subtract), and also to the control and
register unit, data memory, program memory, and an interface.
The control and register unit serves four functions: it contains
the microprogram address counter, conditional branching logic,
the data memory address logic, and the register files. A mi-
croinstruction can transfer two operands simultaneously on the
ABUS and BBUS from data memory and/or registers to an exe-
cution unit. The results from an execution unit are transferred
on the BBUS to a register, to memory, or along with a new
operand on the ABUS to another execution unit. Instructions
are fetched on a third, 32 bit wide bus, the PMD bus.

The choice of a modular architecture helped tremendously
in reaching the design aims of simplicity,reliability and ease
of debugging. The first prototype was ready to run real pro-
grams in three weeks. FORTRAN simulations of each execution
unit have made a valuable contribution to the designing and
debugging. For example, only one design error was found in
the Add/Subtraction execution unit when it was debugged,
although this unit contains over 200 MSI circuits. This error
was due to a single signal which had the opposite polarity in
the hardware due to a mistake in the simulation. The divide
board, which was the most difficult board to debug, initially
took a week to get running. The second divide board only
took a day to debug. In fact, it has taken far longer to develop
the diagnostic software than to use it to successfully test the
hardware.

Presented at the Conference on Real Time Computer Applications
in Nuclear and Particle Physics, Chicago, Illinois, May 20-24, 1985

I

2.1 MEMORY

Memory is one of the most important aspects of any com-
puter or processor. ln the high energy physics field, both the
size of analysis programs and the quantity of data per event
have grown so that the memory space needed is measured in
units of Megabytes.

The memory of the 3081/E consists of static memory cir-
cuits which were chosen for their speed. Today they have 55
nsec maximum access and cycle time, come in packages of 16
Kbits, and cost about US8 5,000 per Megabyte. The speed is
important due to the fact that the performance of a processor
tends to be dominated by its memory access time. This is be-
cause even with the best of compilers, a processor still obtains
one operand (of the two used for an arithmetic instruction)
from memory over 75% of the time. The fast memory and 64
bit data path to it is also the best solution for on-line applica-
tions which must support FASTBUS I/O rates.

A 3081/~ memory board at present contains one half Mega-
byte of either program or data memory with byte parity. The
processor can accept a maximum of fourteen memory boards
or 7 Megabytes. 64K static memory circuits were introduced
in 1984 and so will become reasonably priced during this year.
Their use will lower the cost of the processor’s memory and
make it possible to have a processor with a 28 Megabyte stor-
age capacity.

2.2 EXECUTION UNITS

For high energy physics code, good floating point perfor-
mance is essential, especially because of the heavy use of trigono-
metric functions in most analysis codes for solenoidal detectors.
Attempts to use commercially available microprocessors with
their floating point c*processors have led to disappointingly
poor performances.

The following sections give a short description of each of
the 3081/~ execution units. It will be possible to upgrade any
of these units, if technological advances warrant the change, in
order to achieve a better performance and/or lower costs.

Floating point add/subtract

A REAL*4 or REAL*8 add/subtract is done in 360 nsec
(three clock cycles), including the reading of one operand from
memory. The floating point compare instruction is one cycle
shorter because it is necessary only to generate the condition
codes and not a result. In addition, this execution unit can do
an integer to floating point conversion in 360 nsecs.

Multiply

The multiply execution unit was designed to optimize the
execution time of single precision instructions. 16 by 16 mul-
tiplier circuits are used so that INTEGER*4 and REAL*4 multi-
plies take 360 nsec including reading one operand from mem-
ory. Double precision multiplication is performed using an iter-
ative technique which is reasonably fast (the result is available
after only 4 internal cycles for an overall t ime of 720 nsecs
including the reading of one operand from memory).

Divide

The divide execution unit does division iteratively, 2 bits
per cycle which leads to a INTEGER*4 divide in 2.28 psecs , a
REAL*4 divide in 1.68 psecs , and a REAL*8 divide in 3.6 psecs.
As will be seen later, pipelining of the instructions allows op-
erations not dependant on the result of the divide to proceed
during this time.

Integer

All integer instructions except multiplication and division
are handled by the integer execution unit including the instruc-
tions with one-byte operands (LOGICAL*1 and CHARACTERen)
which are especially important for implementation of the in-
structions required by the FORTRAN 77 compilers. Both single
word (32 bit) and double word (64 bit) shifts by any number of
places are done in one cycle. Shift instructions are important
for many on-line applications, when information often needs to
be packed or expanded .

Optional units

Since there are PROM’S on each board to decode the micro-
instructions, it is possible to add other execution units to the
3081/~ buses. These may duplicate existing units for debug-
ging purposes or to increase the hardware available to do di-
vides (for example). In addition, boards such as a matrix
multiplier/accumulator for lattice gauge calculations may be
specifically designed to match an application. For the moment
special units are beyond the scope of the 3081/E project. They
may also be unnecessary as the processor is inherently very
fast.

2.3 THE MICROCODE, THE TRANSLATOR,
AND INSTRUCTION PIPELINING

The processor’s instruction set is not that of the IBM, but
is its own microcode, which resembles that of a Reduced In-
struction Set Computer (RIs@‘. One could in principal write a
compiler to generate the microcode, as was done with IBM’s 801
project’, instead it is generated by a program, called the Trans-
lator. This program reads IBM object code modules, translates
them to object microcode, and links them together to form an
absolute load module for the processor, thus using the IBM ob-
ject code as an intermediate language. The source of the IBM
object code could be the output of a FORTRAN compiler from
any IBM compatible vendor or that of a l inkage editor on either
the VM/CMS, MVS, or MVT operating systems. For all practi-
cal purposes the translator step has little impact on the user.
It can be looked on as a modified compile or link step. The
user will be no more concerned with the 3081/~ microcode
than he would be about the object code from the compiler and
he need not recompile his code before translating it.

In addition to converting the object code into 30811~ mi-
crocode the translator may also optimize the order of the in-
structions, pipelining them to yield faster execution times.
This instruction pipelining is possible since each of the exe-
cution units is capable of operating on its operands internally
so microinstructions may affect more than one board allow-
ing parallel operations. There are several types of pipelining.
Firstly there is pipelining of memory address calculations on
the Control and Register board. Secondly, the Add/Subtract
and Multiply execution units are capable of pipelining inter-
nally. That is, they can accept a new operand pair every cycle,
then output the results in the next two cycles. Thirdly, one
cycle can send an operand pair to say the add/subtract unit,
and the next cycle can send an operand pair to the multiply.
Fourthly, in the same cycle an execution unit can output re-
sults and another execution unit, or memory, can accept the
results, thus overlapping input and output cycles. ln addition,
the separation of program and data memory and the separate
program data bus means that program and data memories are
accessed simultaneously.

2

Typically, a string of up to 100 or more IBM instructions
may be microcoded and pipelined by the Translator. A string is
defined as all the instructions between branch-in or branch-out
points. In pipelining a string, the Translator may optionally
use a number of the following techniques:-

1) Allocating extra floating-point registers. The 3081/E
has 8 extra registers each of which may be allocated either for
floating-point or integer usage.

2) Allocating extra integer registers. For example if the
same (base+index) combination is used twice or more, it pays
to add the base + index one time only and keep the result in
a temporary register.

3) Optimal sequencing of Divides. Divides require many
cycles and only one divide may be performed at a time. In
the case of two or more independent dividee, the Translator
sequences them in such a manner as to produce the shortest
overall pipelined string.

4) Critical Path Analysis of strings. The Translator ana-
lyzes which IBM instructions could logically be performed con-
currently, and may optionally reorder the IBM instructions in
a string, so that those instructions on the ‘critical path’ get
selected first for being moved as high as possible during the
pipelining operation.

5) Combining certain IBM instruction pairs into a single
3operand pseudo instruction, before pipelining. for example:-

LE REG,MEM2
DER REG,SREG

may be changed to:-
DERX REG,MEM2,SREG

The effect of this is that although the result of the divide
must be stored in REG the dividend does not need to be stored
there initially. This means that any operations involving the
prior contents of REG do not need to be completed before the
divide is started but may be done in any cycle preceding the
end of the divide.

6) Optional deletion of NOP instructions, ie branches on
condition zero.

7) Recognition of special sequences. For example the
3081/E has a hardware fix-telloat capability, which can re
place the several instructions used on the IBM machine.

The microcode does require more memory space than the
original object code. However, the expansion factor depends
on how well the code pipelines, and is typically under two and
never more than three.

2.4 PERFORMANCE
It is difficult to predict the execution speeds of code on the

3081/E in advance of actually running it. This is because not
only do different instructions take different numbers of cycles
to complete, leading to a dependence on instruction mix(in
common with many other processors), but also the extent to
which the code can be pipelined varies (IF statements break
the pipelining for example). If no pipelining occurs a lower
bound can be put on the processors performance; in this case
it is equivalent in processing power to an IBM 370/168. If,
alternatively, it is assumed that pipelining occurs to such an
extent that every instruction takes effectively 1 cycle, then this
implies execution times 2.5 times faster than an IBM 370/168;
an upper limit on processor performance that can not be real-
istically expected.

In addition to these theoretical estimatee we have also
run some tests directly comparing the processor to an mM
3081Kx. We require that the emulator also gets exactly the
same results as the mainframe. Performance factors of about
50% of the IBM 3 08 1Kx are typical (for example , for a calcula-
tion involving finding the sum of squares of sines and cosines),
and have reached 65% (for a large numerical analysis program).
It is worth emphasizing that these numbers may well be im-
proved upon . The translator program is still under develop-
ment and the microcode can be expanded to include more of
the pipelined instruction combinations discussed above.

One can conclude, therefore, that the performance of the
3081/E is at least that of an IBM 370/168 (or about four times
that of the VAX 11/780). For typical high energy physics event
reconstruction code, in which most of the execution time is
spent in floating point loops, it is frequently 50% faster .

3. ON-LINE USE

A multiple 3081/E system is being planned to form part
of the Mark II upgrade’s data acquisition system. Initial plans
call for the introduction of two processors into the system by
Fall 1985, when the detector is to be checked out at PEP. The
need for further processors for SLC use will be determined by
their performance during this PEP run. Much expertise in us-
ing such multiple processor systems has been gained with the
168/E* and the 3081/E system will build on this by using the
same overall philosophy with only the few changes which ex-
perience has shown to be necessary. The bus interface to the
processor will be FASTBUS.

The 3081/E’s represent a significant amount of the on-line
computing power available to the Mark II upgrade. They will
be used to reduce processing intensive loads on the experi-
ment’s VAX 8600 computer. One function that the 3081/E’s
can perform is to combine the two sets of data coming from
the Drift chamber’ to form one output record. Drift t ime mea-
surements will be made using four FASTBUS crates of TDC'S the
TDC modules will be readout by SLAC scanner processors which
will process the data and order it. Information on the energy
deposited by tracks in the drift chamber will be obtained us-
ing 18 FASTBUS crates of dB/dX modules. These modules will
also be readout using SSP’s. The SSP’s will also do some pre
cessing of the dB/dX data, but, in order to extract as much
information as possible from it, the more complex pulses will
be processed by the 3081/E taking full advantage of its large
memory and its floating point instruction set. The aim will
be to find the areas of pulses, extract timing information, and
to flag possible double hits which cannot be separated by the
TDC system (and if possible resolve them), before the data is
transferred to the VAX.

In addition, the 3081/E’s can take over from the VAX
8600 the heavy processing load associated with on-line track-
ing. An important characteristic which particularly suits them
for use in tracking is their emulation of the IBM instruction
set. The off-line tracking programs run on an IBM which means
programs can quickly be moved from the off-line to the on-line
environment. Once the program development has be done on
the IBM 308 IKX, making full use of the debugging tools and
diagnostics available, the program can easily be converted for
on-line use.

Consider an off-line tracking program . The input data is
read off a tape, processed, and the results output to tape or

3

disk. Most of the processing time is involved in finding hits and
doing the associated tracking This stage may well not involve
I/O unless it is necessary to print warning or error messages.
The tracking code can easily be isolated by forming it into a
stand-alone subroutine. A skeleton main program is needed to
do the event read-in, call the tracking subroutine, and output
the final results. In the on-line environment the data is read-in
directly from the data acquisition system. In the Mark II case
the raw data will be collated in system scanners and transferred
into the memory of a 3081/E processor. In order to do the
tracking in a 3081/E the following steps are necessary.

1. The subroutine which does the tracking must be set up
so that any information it uses is transferred to it via
common blocks. The warning and error messages should
be modified to store an error code and any associated
information in a common block, since all print state-
ments must be deleted. The results of the subroutine
must also be put into common blocks. These modifica-
tions are usually made with little difficulty by anyone
with some knowledge of the program, the requirement
for data to be input and output via common blocks, for
example, is usually already met.

2. The subroutine must be translated on an IBM computer.
This converts the program into 3081/E microcode and
sets up a set of ylocal” constants used by the program
for downloading into the data memory of the 3081/E.
In addition the translator fixes the location of common
blocks and provides a header containing this information
which can be used by the host computer to load and read
these common blocks. (This is why information used by
the host computer needs to be in common blocks, oth-
erwise minor program changes would change the address
of these variables requiring programs which used them to
be edited as well). The translator output must then be
transferred to the host computer.

3. Before data taking begins the program and data mem-
ory of the 3081/E must be loaded with the translated
files. This can be done once/shift, whenever a new run
is initialized, or whenever the program is changed. The
program and data memory are loaded in the same way
except for the setting of an invert bit to determine which
is loaded. During data taking the program memory can-
not be over-written (unless the invert bit is set by error),
and the interface is designed so that an attempt to write
data into a protected region of 3081/E data space will re-
sult in a FASTBUS error response being sent to the master
device.

4. The host computer supervises the transfer of raw data
into the processor. In the Mark II case, a FASTBUS maa-
ter, the SSP must determine which processor, if any, is
available to receive data. The 3081/E will then be loaded
and a command issued to start program execution.

3. When execution is completed the results are transferred
out of the 3081/E into the host computer. They may
then be outputed onto tape or used by the host computer
in monitoring the performance of the detector. The in-
terface used by the Mark II system is designed so that
the FASTBUS master device has access via the interface to
status registers and can check for normal program com-
pletion. The user has the option, for example, of either

stopping program execution on errors such as division
by zero or of latching such errors and checking for their
occurrence following program completion.

Continual monitoring of the processors performance can be
made by directly comparing results running the same program
on the 3081/E and the mainframe.

4. INTERFACE

Since the processor does not run an operating system or
have direct connections to I/O devices an interface is needed.
For Mark II use a FASTBUS interface will be provided to al-
low communication with SLAC Scanner Processors(which are
responsible for the accumulation of data at a crate level) and
the experiment’s VAX 8600 mainframe. This interface will be
dual-ported allowing each 3081/E to be a slave on two FAST-
BUS cable segments. The two ports are symmetrical, neither
having higher priority.

The Mark II interface to the 3081/E processor is of the
same style as 168/E interfacesg. That is, either the CPU or
the interface has control of the internal buses. Any 3081/E
interface can be thought of as comprising of two parts. The
first of these takes signals from the external bus, eg FASTBUS,
and is application specific. This part of the interface converts
external signals into a predefined form for input into a second
board. This board communicates with the internal buses of the
3081/E. One of the design aims of the FASTBUS interface group
has been that this board should be capable of forming part
of any 3081/E interface. During hardware debugging when
it may be useful to interface to an IBM PC rather than the
FASTBUS SYSTEM only the first board of the interface needs to
be changed.

The interface can be used both in an on-line and in an
off-line multi-processor environment. The dual-porting allows
for the simultaneous loading of one processor and unloading
of another. The loading and unloading will not necessarily
be done by the same FASTBUS master. A FASTBUS master
wishing to attach to the processor, either to read it or to load
it, therefore needs to know not only if the processor is executing
a program but also if another master has attached the 30811~.
For this reason, one register (CSRO) is provided in the interface
which is accessible from each cable segment regardless of the
connection state and processor status.

When the processor is not running, all of the processor’s
memory is directly addressable through the interface. The
design aims to minimize the time needed for FASTBUS block
transfers. The transfer rate to or from the processor could
be over 32 Megabytes per second if FASTBUS cable segments
were sufficiently fast. The memory cannot be accessed when
the processor is running. During data acquisition areas of dat-;
memory can be given a protected status by setting an allowed
address range in interface control registers.

Some features are incorporated into the interface to make it
easier to debug the processor and/or programs. The interface
can halt the processor if there is a parity error on the ABUS,
BBUS, or PMD bus. It also has registers to allow one to halt the
processor when certain conditions arise in a way similar to the
Program Event Recording (PER) registers of IBM mainframes.
For example, there is a stop on a store within an address range,
and a stop on modification of certain registers.

4

5. CONCLUSION

The 3081/E project was formed to prepare a much im-
proved IBM mainframe emulator for the future. The time scale
was chosen to allow it to use recent electronic developments
but to still be available for LEP and SLC experiments. It has a
modular architecture to make it easily upgradable. The design
is based on a large amount of experience in using the 168/E
processor to increase available CPU power in both on-line and
off-line environments. The processor is at least equal to the
execution speed of a 370/168 and up to 1.5 times faster for
heavy floating point code. A single processor is thus at least
four times more powerful than the VAX 11/780, and five pro-
cessors on a system would equal at least the performance of
the IBM 3081Kx. With its large memory space and simple but
flexible high speed interface, the 3081/E is well suited for the
on-line and off-line needs of high energy physics in the future.
Prototype wire-wrap processors are running at SLAC and CERN.
The first multiwire boards are now being debugged, and the
processors are becoming available for general use.

6. ACKNOWLEDGEMENTS

We would like to thank David Leith for his support, and
Don McShurley and Richard Bacon for their work on the pro-
cessor. We would also like to thank Loy Barker for his work on
the FASTBUS interface and Andy Lankford and Leo Paffrath
for their contributions to the design discussions. The 3081/E
project is being carried out as a collaboration between SLAC
and CERN DD division and the work has been divided equally
between them.

REFERENCES

1. Paul F. Kunz, “The LASS hardware processor”, Nucl.
Instr. Meth. 1;L5, 435 (1976).

2. P. F. Kunz, Ylse of Emulating Processors in High Energy
Physics”, Phys. Ser. x, 492 (1981).

3. H. Brafman et al., “The SLAC Scanner Processor”, IEEE
transactions in Nuclear Science, February, 1985.

4. P. F. Kunz et d., =The 3081/E Processor”, Proc. of the
Three Day In-Depth Review on the Impact of Specid-
iced Processors in Elementary Particle Physics, Padova,
Italy, March .83-.65,1983. P. F. Kunz et al., “The 3081/E
Processor”, SLAC PUB-3332, April 1984. CERN
DD/84/4, April 1984.

5. D. A. Patterson and C. H. Sdquine, “RISC-l: A Re-
duced Instruction Set VLSI Computer”, Proc. Eighth
Ann. Sym. on Computer Architecture, May, 1981.

6. G. Radin, “The 801 Minicomputer”, IBM J. Res. Develop.
22, 237 (1983).

7. G.Hanson et al. “A New Drift Chamber for the Mark II
at the SLC”, SLAC PUB 3317, April 1984.

8. J. T. Carroll, M. DeMoulin, A. Fucci, B. Martin, A. Nor-
ton, J. P. Porte and K. M. Storr, u Data Acquisition using
the 168/E”, Proc. of the Three Day In-Depth Review on
the Impact of Specialized Processors in Elementary Par-
ticle Physics, Padova, Italy, March 23-25, 1983.

9. D. Bernstein, J. T. Carroll, V. H. Mitnick, L. Paffrath
and D. B. Parker, “SNOOP module CAMAC Interface
to the 168/E Microprocessor”, IEEE Trans. Nucl. Sci.
NS-27, $jJ (1980).

5

