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ABSTRACT 

The 3081/E is a second generation emulator of a main- 
frame IBM. One of it’s applications will be to form part of 
the data acquisition system of the upgraded Mark II detector 
for data taking at the SLAC l inear collider. Since the proces- 
sor does not have direct connections to I/O devices a FAST- 
BUS interface will be provided to allow communication with 
both SLAC Scanner Processors (which are responsible for the 
accumulation of data at a crate level) and the experiment’s 
VAX 8600 mainframe. The 3081/~‘s will supply a signifi- 
cant amount of on-lime computing power to the experiment ( a 
single 3081/~ is equivalent to 4-5 VAX 11/780’s). A major 
advantage of the 30811~ is that program development can be 
done on an IBM mainframe (such ss the one used for off-line 
analysis) which gives the programmer access to a full range of 
debugging tools. The processor’s performance can be contin- 
ually monitored by comparison of the results obtained using 
it to those given when the same program is run on an IBM 
computer. 

1. INTRODUCTION 
The 3081/~ is a second generation emulator of a main- 

frame IBM. One of the applications of such a processor is to 
increase the on-line computing power available to ucperiments 
and 3081/E’s will form part of the data acquisition system of 
the upgraded Mark II detector for data taking at the SLAC 
linear collider. Since the introduction of the 168/E’, much 
experience has been gained in making efficient use of such pro- 
cessors, and their value has been well established over a wide 
range of applications’ including off-line event reconstruction , 
Monte Carlo studies, on-line triggering ,and filtering. This type 
of processor, unlike computers or commercial microprocessors, 
does not run an operating system nor is it directly connected to 
I/O devices. For the Mark II application a dual-ported FAST- 
BUS interface will be provided to allow communication with 
SLAC Scanner Processorss(SSP’s) which accumulate data at 
the crate level and the experiment’s VAX 8600 mainframe. 
The 3081/~ will appear to be a slave device. 

This paper will describe the 3081/~, concentrating on those 
features relevant to ita use in high energy physics applications. 
The interfacing of the processor to a FASTBUS sy+em and its 
use on-line will also be discussed. 

* Work supported by the Department of Energy, contract 
DE-AC03-76SFOO515. 

2. THE PROCESSOR 
The 3081/E project was formed to build on the experience 

gained with 168/E% and to produce a much improved IBM 
mainframe emulator. The style of simple,flexible interfacing to 
the host system has been retained. The new processor, how- 
ever, has much more memory space, incorporates more m M  
instructions, and has full double precision floating point arith- 
metic. Execution times have been substantially reduced. The 
time scale of the project was chosen to allow the use of recent 
electronic developments while making the processor available 
for use by LEP and SLC experiments. The design is very conser- 
vative and uses only off-the-shelf, multiple sourced TTL com- 
ponents, however, the processor has a modular architecture to 
make it easily upgradable. 

The details of the processor and its architecture can be 
found in reference four so only a brief summary will be given 
here. There are two 64 bit wide operand buses, the ABUS and 
the BBUS(with associated 8 bit wide odd parity buses), which 
are connected to four utecution units (integer,divide,multiply 
and floating point add/subtract), and also to the control and 
register unit, data memory, program memory, and an interface. 
The control and register unit serves four functions: it contains 
the microprogram address counter, conditional branching logic, 
the data memory address logic, and the register files. A mi- 
croinstruction can transfer two operands simultaneously on the 
ABUS and BBUS from data memory and/or registers to an exe- 
cution unit. The results from an execution unit are transferred 
on the BBUS to a register, to memory, or along with a new 
operand on the ABUS to another execution unit. Instructions 
are fetched on a third, 32 bit wide bus, the PMD bus. 

The choice of a modular architecture helped tremendously 
in reaching the design aims of simplicity,reliability and ease 
of debugging. The first prototype was ready to run real pro- 
grams in three weeks. FORTRAN simulations of each execution 
unit have made a valuable contribution to the designing and 
debugging. For example, only one design error was found in 
the Add/Subtraction execution unit when it was debugged, 
although this unit contains over 200 MSI circuits. This error 
was due to a single signal which had the opposite polarity in 
the hardware due to a mistake in the simulation. The divide 
board, which was the most difficult board to debug, initially 
took a week to get running. The second divide board only 
took a day to debug. In fact, it has taken far longer to develop 
the diagnostic software than to use it to successfully test the 
hardware. 
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2.1 MEMORY 

Memory is one of the most important aspects of any com- 
puter or processor. ln the high energy physics field, both the 
size of analysis programs and the quantity of data per event 
have grown so that the memory space needed is measured in 
units of Megabytes. 

The memory of the 3081/E consists of static memory cir- 
cuits which were chosen for their speed. Today they have 55 
nsec maximum access and cycle time, come in packages of 16 
Kbits, and cost about US8 5,000 per Megabyte. The speed is 
important due to the fact that the performance of a processor 
tends to be dominated by its memory access time. This is be- 
cause even with the best of compilers, a processor still obtains 
one operand (of the two used for an arithmetic instruction) 
from memory over 75% of the time. The fast memory and 64 
bit data path to it is also the best solution for on-line applica- 
tions which must support FASTBUS I/O rates. 

A 3081/~ memory board at present contains one half Mega- 
byte of either program or data memory with byte parity. The 
processor can accept a maximum of fourteen memory boards 
or 7 Megabytes. 64K static memory circuits were introduced 
in 1984 and so will become reasonably priced during this year. 
Their use will lower the cost of the processor’s memory and 
make it possible to have a processor with a 28 Megabyte stor- 
age capacity. 

2.2 EXECUTION UNITS 

For high energy physics code, good floating point perfor- 
mance is essential, especially because of the heavy use of trigono- 
metric functions in most analysis codes for solenoidal detectors. 
Attempts to use commercially available microprocessors with 
their floating point c*processors have led to disappointingly 
poor performances. 

The following sections give a short description of each of 
the 3081/~ execution units. It will be possible to upgrade any 
of these units, if technological advances warrant the change, in 
order to achieve a better performance and/or lower costs. 

Floating point add/subtract 

A REAL*4 or REAL*8 add/subtract is done in 360 nsec 
(three clock cycles), including the reading of one operand from 
memory. The floating point compare instruction is one cycle 
shorter because it is necessary only to generate the condition 
codes and not a result. In addition, this execution unit can do 
an integer to floating point conversion in 360 nsecs. 

Multiply 

The multiply execution unit was designed to optimize the 
execution time of single precision instructions. 16 by 16 mul- 
tiplier circuits are used so that INTEGER*4 and REAL*4 multi- 
plies take 360 nsec including reading one operand from mem- 
ory. Double precision multiplication is performed using an iter- 
ative technique which is reasonably fast (the result is available 
after only 4 internal cycles for an overall t ime of 720 nsecs 
including the reading of one operand from memory). 

Divide 

The divide execution unit does division iteratively, 2 bits 
per cycle which leads to a INTEGER*4 divide in 2.28 psecs , a 
REAL*4 divide in 1.68 psecs , and a REAL*8 divide in 3.6 psecs. 
As will be seen later, pipelining of the instructions allows op- 
erations not dependant on the result of the divide to proceed 
during this time. 

Integer 

All integer instructions except multiplication and division 
are handled by the integer execution unit including the instruc- 
tions with one-byte operands (LOGICAL*1 and CHARACTERen) 
which are especially important for implementation of the in- 
structions required by the FORTRAN 77 compilers. Both single 
word (32 bit) and double word (64 bit) shifts by any number of 
places are done in one cycle. Shift instructions are important 
for many on-line applications, when information often needs to 
be packed or expanded . 

Optional units 

Since there are PROM’S on each board to decode the micro- 
instructions, it is possible to add other execution units to the 
3081/~ buses. These may duplicate existing units for debug- 
ging purposes or to increase the hardware available to do di- 
vides (for example). In addition, boards such as a matrix 
multiplier/accumulator for lattice gauge calculations may be 
specifically designed to match an application. For the moment 
special units are beyond the scope of the 3081/E project. They 
may also be unnecessary as the processor is inherently very 
fast. 

2.3 THE MICROCODE, THE TRANSLATOR, 
AND INSTRUCTION PIPELINING 

The processor’s instruction set is not that of the IBM, but 
is its own microcode, which resembles that of a Reduced In- 
struction Set Computer (RIs@‘. One could in principal write a 
compiler to generate the microcode, as was done with IBM’s 801 
project’, instead it is generated by a program, called the Trans- 
lator. This program reads IBM object code modules, translates 
them to object microcode, and links them together to form an 
absolute load module for the processor, thus using the IBM ob- 
ject code as an intermediate language. The source of the IBM 
object code could be the output of a FORTRAN compiler from 
any IBM compatible vendor or that of a l inkage editor on either 
the VM/CMS, MVS, or MVT operating systems. For all practi- 
cal purposes the translator step has little impact on the user. 
It can be looked on as a modified compile or link step. The 
user will be no more concerned with the 3081/~ microcode 
than he would be about the object code from the compiler and 
he need not recompile his code before translating it. 

In addition to converting the object code into 30811~ mi- 
crocode the translator may also optimize the order of the in- 
structions, pipelining them to yield faster execution times. 
This instruction pipelining is possible since each of the exe- 
cution units is capable of operating on its operands internally 
so microinstructions may affect more than one board allow- 
ing parallel operations. There are several types of pipelining. 
Firstly there is pipelining of memory address calculations on 
the Control and Register board. Secondly, the Add/Subtract 
and Multiply execution units are capable of pipelining inter- 
nally. That is, they can accept a new operand pair every cycle, 
then output the results in the next two cycles. Thirdly, one 
cycle can send an operand pair to say the add/subtract unit, 
and the next cycle can send an operand pair to the multiply. 
Fourthly, in the same cycle an execution unit can output re- 
sults and another execution unit, or memory, can accept the 
results, thus overlapping input and output cycles. ln addition, 
the separation of program and data memory and the separate 
program data bus means that program and data memories are 
accessed simultaneously. 
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Typically, a string of up to 100 or more IBM instructions 
may be microcoded and pipelined by the Translator. A string is 
defined as all the instructions between branch-in or branch-out 
points. In pipelining a string, the Translator may optionally 
use a number of the following techniques:- 

1) Allocating extra floating-point registers. The 3081/E 
has 8 extra registers each of which may be allocated either for 
floating-point or integer usage. 

2) Allocating extra integer registers. For example if the 
same (base+index) combination is used twice or more, it pays 
to add the base + index one time only and keep the result in 
a temporary register. 

3) Optimal sequencing of Divides. Divides require many 
cycles and only one divide may be performed at a time. In 
the case of two or more independent dividee, the Translator 
sequences them in such a manner as to produce the shortest 
overall pipelined string. 

4) Critical Path Analysis of strings. The Translator ana- 
lyzes which IBM instructions could logically be performed con- 
currently, and may optionally reorder the IBM instructions in 
a string, so that those instructions on the ‘critical path’ get 
selected first for being moved as high as possible during the 
pipelining operation. 

5) Combining certain IBM instruction pairs into a single 
3operand pseudo instruction, before pipelining. for example:- 

LE REG,MEM2 
DER REG,SREG 

may be changed to:- 
DERX REG,MEM2,SREG 

The effect of this is that although the result of the divide 
must be stored in REG the dividend does not need to be stored 
there initially. This means that any operations involving the 
prior contents of REG do not need to be completed before the 
divide is started but may be done in any cycle preceding the 
end of the divide. 

6) Optional deletion of NOP instructions, ie branches on 
condition zero. 

7) Recognition of special sequences. For example the 
3081/E has a hardware fix-telloat capability, which can re 
place the several instructions used on the IBM machine. 

The microcode does require more memory space than the 
original object code. However, the expansion factor depends 
on how well the code pipelines, and is typically under two and 
never more than three. 

2.4 PERFORMANCE 
It is difficult to predict the execution speeds of code on the 

3081/E in advance of actually running it. This is because not 
only do different instructions take different numbers of cycles 
to complete, leading to a dependence on instruction mix(in 
common with many other processors), but also the extent to 
which the code can be pipelined varies (IF statements break 
the pipelining for example). If no pipelining occurs a lower 
bound can be put on the processors performance; in this case 
it is equivalent in processing power to an IBM 370/168. If, 
alternatively, it is assumed that pipelining occurs to such an 
extent that every instruction takes effectively 1 cycle, then this 
implies execution times 2.5 times faster than an IBM 370/168; 
an upper limit on processor performance that can not be real- 
istically expected. 

In addition to these theoretical estimatee we have also 
run some tests directly comparing the processor to an mM 
3081Kx. We require that the emulator also gets exactly the 
same results as the mainframe. Performance factors of about 
50% of the IBM 3 08 1Kx are typical (for example , for a calcula- 
tion involving finding the sum of squares of sines and cosines), 
and have reached 65% (for a large numerical analysis program). 
It is worth emphasizing that these numbers may well be im- 
proved upon . The translator program is still under develop- 
ment and the microcode can be expanded to include more of 
the pipelined instruction combinations discussed above. 

One can conclude, therefore, that the performance of the 
3081/E is at least that of an IBM 370/168 (or about four times 
that of the VAX 11/780). For typical high energy physics event 
reconstruction code, in which most of the execution time is 
spent in floating point loops, it is frequently 50% faster . 

3. ON-LINE USE 

A multiple 3081/E system is being planned to form part 
of the Mark II upgrade’s data acquisition system. Initial plans 
call for the introduction of two processors into the system by 
Fall 1985, when the detector is to be checked out at PEP. The 
need for further processors for SLC use will be determined by 
their performance during this PEP run. Much expertise in us- 
ing such multiple processor systems has been gained with the 
168/E* and the 3081/E system will build on this by using the 
same overall philosophy with only the few changes which ex- 
perience has shown to be necessary. The bus interface to the 
processor will be FASTBUS. 

The 3081/E’s represent a significant amount of the on-line 
computing power available to the Mark II upgrade. They will 
be used to reduce processing intensive loads on the experi- 
ment’s VAX 8600 computer. One function that the 3081/E’s 
can perform is to combine the two sets of data coming from 
the Drift chamber’ to form one output record. Drift t ime mea- 
surements will be made using four FASTBUS crates of TDC'S the 
TDC modules will be readout by SLAC scanner processors which 
will process the data and order it. Information on the energy 
deposited by tracks in the drift chamber will be obtained us- 
ing 18 FASTBUS crates of dB/dX modules. These modules will 
also be readout using SSP’s. The SSP’s will also do some pre 
cessing of the dB/dX data, but, in order to extract as much 
information as possible from it, the more complex pulses will 
be processed by the 3081/E taking full advantage of its large 
memory and its floating point instruction set. The aim will 
be to find the areas of pulses, extract timing information, and 
to flag possible double hits which cannot be separated by the 
TDC system (and if possible resolve them), before the data is 
transferred to the VAX. 

In addition, the 3081/E’s can take over from the VAX 
8600 the heavy processing load associated with on-line track- 
ing. An important characteristic which particularly suits them 
for use in tracking is their emulation of the IBM instruction 
set. The off-line tracking programs run on an IBM which means 
programs can quickly be moved from the off-line to the on-line 
environment. Once the program development has be done on 
the IBM 308 IKX, making full use of the debugging tools and 
diagnostics available, the program can easily be converted for 
on-line use. 

Consider an off-line tracking program . The input data is 
read off a tape, processed, and the results output to tape or 
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disk. Most of the processing time is involved in finding hits and 
doing the associated tracking This stage may well not involve 
I/O unless it is necessary to print warning or error messages. 
The tracking code can easily be isolated by forming it into a 
stand-alone subroutine. A skeleton main program is needed to 
do the event read-in, call the tracking subroutine, and output 
the final results. In the on-line environment the data is read-in 
directly from the data acquisition system. In the Mark II case 
the raw data will be collated in system scanners and transferred 
into the memory of a 3081/E processor. In order to do the 
tracking in a 3081/E the following steps are necessary. 

1. The subroutine which does the tracking must be set up 
so that any information it uses is transferred to it via 
common blocks. The warning and error messages should 
be modified to store an error code and any associated 
information in a common block, since all print state- 
ments must be deleted. The results of the subroutine 
must also be put into common blocks. These modifica- 
tions are usually made with little difficulty by anyone 
with some knowledge of the program, the requirement 
for data to be input and output via common blocks, for 
example, is usually already met. 

2. The subroutine must be translated on an IBM computer. 
This converts the program into 3081/E microcode and 
sets up a set of ylocal” constants used by the program 
for downloading into the data memory of the 3081/E. 
In addition the translator fixes the location of common 
blocks and provides a header containing this information 
which can be used by the host computer to load and read 
these common blocks. (This is why information used by 
the host computer needs to be in common blocks, oth- 
erwise minor program changes would change the address 
of these variables requiring programs which used them to 
be edited as well). The translator output must then be 
transferred to the host computer. 

3. Before data taking begins the program and data mem- 
ory of the 3081/E must be loaded with the translated 
files. This can be done once/shift, whenever a new run 
is initialized, or whenever the program is changed. The 
program and data memory are loaded in the same way 
except for the setting of an invert bit to determine which 
is loaded. During data taking the program memory can- 
not be over-written (unless the invert bit is set by error), 
and the interface is designed so that an attempt to write 
data into a protected region of 3081/E data space will re- 
sult in a FASTBUS error response being sent to the master 
device. 

4. The host computer supervises the transfer of raw data 
into the processor. In the Mark II case, a FASTBUS maa- 
ter, the SSP must determine which processor, if any, is 
available to receive data. The 3081/E will then be loaded 
and a command issued to start program execution. 

3. When execution is completed the results are transferred 
out of the 3081/E into the host computer. They may 
then be outputed onto tape or used by the host computer 
in monitoring the performance of the detector. The in- 
terface used by the Mark II system is designed so that 
the FASTBUS master device has access via the interface to 
status registers and can check for normal program com- 
pletion. The user has the option, for example, of either 

stopping program execution on errors such as division 
by zero or of latching such errors and checking for their 
occurrence following program completion. 

Continual monitoring of the processors performance can be 
made by directly comparing results running the same program 
on the 3081/E and the mainframe. 

4. INTERFACE 

Since the processor does not run an operating system or 
have direct connections to I/O devices an interface is needed. 
For Mark II use a FASTBUS interface will be provided to al- 
low communication with SLAC Scanner Processors( which are 
responsible for the accumulation of data at a crate level) and 
the experiment’s VAX 8600 mainframe. This interface will be 
dual-ported allowing each 3081/E to be a slave on two FAST- 
BUS cable segments. The two ports are symmetrical, neither 
having higher priority. 

The Mark II interface to the 3081/E processor is of the 
same style as 168/E interfacesg. That is, either the CPU or 
the interface has control of the internal buses. Any 3081/E 
interface can be thought of as comprising of two parts. The 
first of these takes signals from the external bus, eg FASTBUS, 
and is application specific. This part of the interface converts 
external signals into a predefined form for input into a second 
board. This board communicates with the internal buses of the 
3081/E. One of the design aims of the FASTBUS interface group 
has been that this board should be capable of forming part 
of any 3081/E interface. During hardware debugging when 
it may be useful to interface to an IBM PC rather than the 
FASTBUS SYSTEM only the first board of the interface needs to 
be changed. 

The interface can be used both in an on-line and in an 
off-line multi-processor environment. The dual-porting allows 
for the simultaneous loading of one processor and unloading 
of another. The loading and unloading will not necessarily 
be done by the same FASTBUS master. A FASTBUS master 
wishing to attach to the processor, either to read it or to load 
it, therefore needs to know not only if the processor is executing 
a program but also if another master has attached the 30811~. 
For this reason, one register (CSRO) is provided in the interface 
which is accessible from each cable segment regardless of the 
connection state and processor status. 

When the processor is not running, all of the processor’s 
memory is directly addressable through the interface. The 
design aims to minimize the time needed for FASTBUS block 
transfers. The transfer rate to or from the processor could 
be over 32 Megabytes per second if FASTBUS cable segments 
were sufficiently fast. The memory cannot be accessed when 
the processor is running. During data acquisition areas of dat-; 
memory can be given a protected status by setting an allowed 
address range in interface control registers. 

Some features are incorporated into the interface to make it 
easier to debug the processor and/or programs. The interface 
can halt the processor if there is a parity error on the ABUS, 
BBUS, or PMD bus. It also has registers to allow one to halt the 
processor when certain conditions arise in a way similar to the 
Program Event Recording (PER) registers of IBM mainframes. 
For example, there is a stop on a store within an address range, 
and a stop on modification of certain registers. 
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5. CONCLUSION 

The 3081/E project was formed to prepare a much im- 
proved IBM mainframe emulator for the future. The time scale 
was chosen to allow it to use recent electronic developments 
but to still be available for LEP and SLC experiments. It has a 
modular architecture to make it easily upgradable. The design 
is based on a large amount of experience in using the 168/E 
processor to increase available CPU power in both on-line and 
off-line environments. The processor is at least equal to the 
execution speed of a 370/168 and up to 1.5 times faster for 
heavy floating point code. A single processor is thus at least 
four times more powerful than the VAX 11/780, and five pro- 
cessors on a system would equal at least the performance of 
the IBM 3081Kx. With its large memory space and simple but 
flexible high speed interface, the 3081/E is well suited for the 
on-line and off-line needs of high energy physics in the future. 
Prototype wire-wrap processors are running at SLAC and CERN. 
The first multiwire boards are now being debugged, and the 
processors are becoming available for general use. 
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