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LINEAR ACCELERATORS FOR TeV COLLIDERS 

P. B. WILSON 
Stanford Linear Accelerator Center 

Stanford University, Stanford, CA 94905 

I. INTRODUCTION 

This paper summarizes four tutorial lectures on linear electron accelerators 
which were presented at this Workshop: - 

1. “Electron Linacs for TeV Colliders” (P. B. Wilson) 
2. “Emittance and Damping Rings” (P. M. Morton) 
3. “Wake Fields: Basic Concepts” (R. K. Cooper) 
4. “Wake Field Effects in Linacs” (K. L. F. Bane) 

The first of these lectures was intended to introduce the general require- 
ments for electron linacs capable of delivering beams for very high energy linear 
colliders. Material from this lecture is presented in the next three sections. 
Section II introduces the basic scaling relations for important linear collider 
design parameters. In Sec. III some basic concepts concerning the design of 
accelerating structures are presented, and breakdown limitations are discussed. 
In Sec. IV RF power sources are considered. 

The fact that two of the four lectures were concerned with wake fields and 
their effects emphasizes the importance of this topic for high energy collider 
design. Several tutorial papers which give extensive coverage to wake field con- 
cepts and wake field effects have been published recently. No attempt will be 
made to duplicate this material here. Some key concepts will be discussed, and 
some examples of wake fields for typical linac structures will be presented in 
Sec. V. The reader is referred to the referenced literature for further study. The 
importance of emittance in linear collider design is also underscored by the scal- 
ing relations in Sec. II. Some general concepts concerning emittance, and the 
limitations on the emittance that can be obtained from linac guns and damping 
rings are discussed in Sec. VI. 

In connection with Lectures 3 and 4, computer generated movies were shown 
at the Workshop which illustrated how wake fields arise as an electron bunch 
moves through typical structures, and how these wake fields in turn act on the 
bunch to produce emittance growth. Viewing such movies greatly enhances ones 
physical understanding of wake fields and their effects, but unfortunately this 
process cannot be reproduced on the printed page. 

_ Finally, the author takes full responsibility for the manner in which the 
material presented by the other three lecturers has been condensed, summarized, 
or rearranged, and for all omissions and errors. 
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II. SCALING RELATIONS FOR LINEAR COLLIDERS 

A. BEAM-BEAM PARAMETERS 

Three parameters which characterize the interaction between two colliding 
bunches in a linear collider are the luminosity C, the disruption D and the 
beamstrahlung 6. In the following, head-on collisions between tri-Gaussian 
bunches are assumed. The possibility of flat bunches crossing at a slight angle 
in the horizontal plane will be taken into account. The expressions given here 
for the three beam-beam parameters in the “classical” regime ‘are taken from 

-Refs. Land 2, where a more detailed discussion and additional references can 
be found. 

LUMINOSITY 

The luminosity (in cmF2 set-r) times the cross section (in cm2) gives the 
event rate (per second) for any physical process taking place in the colliding 
bunches. Along with the beam energy, it is a primary design parameter for a 
linear collider. Assume identical e + - e linacs, each with energy Eo = eVo = 
ymc2, pulsed at a repetition rate f and producing trains of b bunches per linac 
pulse. The luminosity is given by 

L = N2bfHD N2bf $b 
47TUzBy = 47rcn (p;p;y2 * 

Here N is the number of particles per bunch, oY and 0% = Ra, are the bunch 
height and bunch width (at the interaction point, unless otherwise indicated), 
En = ye, = 7~ is the normalized emittance (assumed equal for each dimen- 
sion), and pi and ,f3: are the vertical and horizontal beta functions produced at 
the interaction point by the optics of the final focus system. If the disruption 
parameter is sufficiently large, the beams will pinch together as they pass 
through each other, producing an enhancement in the luminosity by a factor 
Ho. In practical units the luminosity is given by 

~(~~32~~-2 s-l) = 8.o ",'"-" b [N (1010)12 I HD 

hb412 
(lb) 

DISRUPTION 

The focusing effect produced by one beam acting on the particles in the 
other beam depends on the disruption parameter, 

)fere a, is the rms bunch length and ro the classical electron radius. Each 
beam acts like a lens with focal length a,/0 for particles near the axis in the 
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opposing beam (if D 5 1). For large values of D, the beams act like a plasma 
during the interaction, with the number of transverse plasma oscillations given3 
approximately by (D/10)li2. In practical units, the disruption parameter can 
be expressed as 

D = ‘02’ N(lOlO) a&run) 
l+R EO (TeV) [q, bm)] 2 ' 

(2b) 

The luminosity enhancement as a function of D’-must becomputed by a 
simulation; Results from simulations made to date differ somewhat in the maxi- 
mum value of the enhancement HD that can be obtained, and in the rate of rise 
of HD as a function D near D k: 1. Hollebeek3 obtains a maximum enhancement 
ratio in the range five to six for D 2 1.5. Fawley and Lee4 find a maximum 
enhancement in the range three to four at D 2 3. Some representative results 
from these two simulations are given in Table I below. For a flat beam with 
large aspect ratio, the enhancement ratio is given approximately by the square 
root of the round beam result. For intermediate values of the aspect ratio, the 
enhancement can be estimated from5 

HD(R) = HD(~) 
R 

1+ (R - 1) [H~(l)]l/~ * 

Table I 
Luminosity Enhancement as a Function of D 

D < 0.2 0.5 1.0 1.5 2.0 3 5 

Hollebeek 

HD (round) 
HD (flat)a 

Fawley & Lee 
HD (round) 
HD (flat)” 

1.0 1.4 3.6 5.2 5.6 5.9 6.0 
1.0 1.2 1.9 2.3 2.4 2.4 2.5 

1.0 1.0 1.5 2.2 2.6 3.1 3.4 
1.0 1.0 1.2 1.5 1.6 1.8 1.8 

“Calculated assuming HD (flat) = [HD (round)11i2 

BEAMSTRAHLUNG 

(3) 

We turn next to a consideration of the beamstrahlung parameter 6. As the 
colliding bunches pass through each other, the particles in one bunch are de- 
&ted by the fields in the opposing bunch. This transverse acceleration produces 
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synchrotron radiation, called beamstrahlung in this case. The beamstrahlung 
parameter 6 is the average energy loss per particle, divided by the incident 
energy, calculated after the beams have separated. From the point of view of 
the physical processes occurring during the interaction between bunches, the 
relative energy loss in the center of mass system, 6/2, is of more concern. The 
rms energy spread in the center of mass system may be somewhat less than 
b/2. Thus it is now conventional to take 6 = 0.3 as acceptable in collider 
design. However, it is well to remember that beamstrahlung is best studied by 
calculating the actual distribution function for the energy-loss,-snd this can only 
-be done by a simulation in most cases of interest. The analytic expressions for 
6 which follow are, however, useful for scaling. 

The expression for beamstrahlung in the classical regime (this term will be 
defined later) for two colliding tri-Gaussian bunches has been calculated by 
Bassetti and Gygi-Hanney? 

(44 

where F(R) is a rather complicated function (see also Ref. 1) such that F(1) = 
0.22 and F(R >> 1) = 0.91/R2. Within a few percent, F(R) is approximated 
by 

( ) 2 
F(R) w 0.22 & . 

In the above calculation it was assumed that the particle trajectories do not 
change as the bunches collide. If the disruption parameter is large enough 
to cause the bunches to pinch, we would expect the beamstrahlung as well 
as the luminosity to be enhanced. This enhancement can be taken into account, 
at least approximately, by multiplying the preceding expression by Ho. A more 
exact beamstrahlung enhancement ratio can only be obtained by a simulation. 
In practical units Eq. (4a) becomes 

6 Cl m 1.0 x 1o-3 
[IV (lo’“)] 2 EO (TeV) 

0, (mm) [QY bm)12 * 
W) 

The classical synchrotron radiation spectrum for a relativistic electron mov- 
ing in a uniform magnetic field B peaks up near the critical photon energy 
tLwC = 3tiy2eB/2mc, in Gaussian units. However, when tLwC > 7mc2, one 
photon at the critical energy would have to carry more than the entire energy 
of the electron which emits it, and consequently the classical calculation of syn- 
chrotron radiation can no longer be valid. Define a scaling parameter T by 

2 liwc 
T E -- = 

3 ymc2 7p, 
C 

(5) 
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B, - !!!? = e 
eli - = 4.4 x 1013 G 

q-0 xc 
. 

Here X, is the Compton wavelength divided by 27r. For T < 1 the classical 
calculation of the energy loss by synchrotron radiation is valid, while for T’ 2 1 
quantum effects, which act to reduce the energy of the emitted photons, must 
be taken into account. The modification of the synchrotron radiation spectrum 
by these quantum effects is summarized in Refs. 7 and 8. The rate at which 
an electron radiates energy in the quantum regime is-reduced-compared to the 
classical radiation rate. This reduction factor, Hr, is plotted in Fig. 1 as a 
function of T. 

IO0 

lo-’ 

g I o-2 

I o-3 

I o-4 - 

Fig. 1. Beamstrahlung reduction factor as a 
function of the scaling parameter T defined 
in Eq. (5). 

An exact analytic calculation of the beamstrahlung parameter for Gaussian 
bunches in the quantum regime is difficult, and in any case a simulation must be 
carried out if the bunches pinch significantly. However, a rough approximation 
for scaling purposes is useful. We first compute the density-weighted average 
value of T for a flat beam. Assume the actual Gaussian bunch can be modeled 
by a particle distribution which is uniform in the longitudinal and transverse 
dimensions, having length fi a, and width fiaz, respectively. Assume a 
Gaussian distribution in the vertical (narrow) dimension. The density-weighted 
average magnetic field is then 

B= 0.50eN 0.50eN 
azu.2 = Rayoz ’ 

6 
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For a round beam we approximate the bunch by a particle distribution which 
is uniform over a length &a, and Gaussian in the radial direction. The 
density-weighted average magnetic field is in this case -- 

B= 0.29 eN M 0.29eN 
. 

~YUZ uyuz 

Thus for any aspect ratio it is reasonable to approximate the average magnetic 
field by ,- - m 

- Bk: FeN 
2(1+ R)a,u, ’ 

where F is a form factor of order unity. Substituting in Eq. (S), and doubling 
the result to take into account the effect of the electric field in the opposing 
bunch, 

SF= Froh7N 
(1 + R)u,uz ' 

where re X, = 1 09 x 1O-23 . cm 2 It1 In practica . 1 units 

;FB 2.1 x 10-2 N (10’“) EO (TeV) 
l+R a2 (mm) cry (pm) 1 H1p 

D ’ (7) 

A factor Ho l/2 has been included to account, very roughly, for pinch. Note from 
Fig. 1 that in the quantum regime Hr is given by 0.556 T-‘i3. Using this 
together with Eqs. (2b), (4b) and (7), 

6Q = ScLHr w 6x 1O-4 
DN HD Ii3 [ 1 l+R 

= 1.25 
DN (lOlo) HD 1’3 

l+R 1 , 
valid in the regime ‘Y 2 10. From Eqs. (2b) and (4b) we also have 

6Q kJ 24 . 6 4 b-4 1'3 
cl ITi (TeV) 1 ’ 

(8) 

(9) 

111 In a recent simulation, R. Noble5 finds F fir 26 for Gaussian bunches if Q. (6) is to be 
consistent with SQ = 0.556 6,.(T’-4/3. 
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B. BEAM POWER AND WALL PLUG POWER 

The three beam-beam parameters discussed in the previous section depend 
only on the beam properties at the interaction point and the beam dynamics 
during the collision. A fourth parameter which is also independent of the accel- 
erating linac is the beam power &, = bf N Eo. For scaling purposes, we assume 
that all of the bunches in a train b bunches long accelerated during one RF pulse 
have the same charge and extract the same fraction of the energy stored in the 
accelerating structure. If there are, for example, eight bu-nches.and each bunch 
extracts 4% of the stored energy, then this approximation is rather poor un- 
less the-bunch-to-bunch beam loading is compensated by one of several possible 
methods. As one example, the first bunch can be injected into a traveling-wave 
section before it is completely filled, and the spacing between bunches adjusted 
so that the energy added to the section between bunches just compensates for 
the bunch-to-bunch energy sag. In the following we assume this is done. It is 
also useful to introduce a normalizing voltage, current and power given by 

V, = mc2/e = e/t-o = 0.511 MV 

In = 4rrrv,/zo = ce/ro = 17.04 kA 

Pn = In?& = ce2/rz = 8.71 GW , 

where 20 = 377fl is the impedance of free space. Thus 

pb 
pa’ = p = (2) bfN7 . 

n C 

Of direct practical interest is the total “wall plug” power Pat required by 
each linac in a collider. The wall plug power does depend on the properties of the 
accelerating structure. It is related to the beam power by Pae = Pb/(bv,fq,q,), 
or per beam in practical units 

Pat (MW) = ‘; :,‘,“6” [N (10”) Ee (TeV) f (Hz)] . 
r 8 

Here qrf is the efficiency for the conversion of ac power into rf power, qe is 
a structure efficiency which takes into account the fact that some rf energy is 
dissipated in the structure walls during filling, and qb is the fraction of the energy 
stored in the structure which is removed per bunch. If the rf pulse length Tp is 
made longer than the structure filling time Tf to compensate for bunch-to-bunch 
beam loading, as described above, then an additional efficiency given by Tf/T, 
isrequired. In Sec. IIIA it is shown that a reasonable value for the net efficiency 
qzfvs is, assuming some future technological improvements in the production of 
high peak power RF, r],fqs = 0.5. Thesingle bunch efficiency is discussed below. 
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C.SINGLE BUNCH EFFICIENCY AND ENERGY SPREAD 

The efficiency for energy extraction by a single bunch is 

4eNkl 
‘i’b = G ’ (12) 

where G is the accelerating gradient and ICI is a structure constant given by 

r- - 

G2 
klGq,=$. (13) 

Here u is the stored energy per unit length, X is the wavelength, and CO is a con- 
stant independent of wavelength which depends only on the structure geometry. 
For the SLAC disk-loaded structure, Co = 2.1 x 1011 V-m/C. It varies approx- 
imately as (u/X)-l, where a is the diameter of the iris openingg. Substituting 
Eq. (13) into Eq. (12), 

4eNCo 
?lb = ),2G 

N (10’“) 
= 13’4 X2 (cm) G (MV/m) ’ 

This can also be written in Gaussian units for a linac of length L as 

‘lb = 
4roC;NL TO N 

x2 7f 
= 93 - 

X2G’ ’ 

(144 

(144 

where G’ = 7,/L, k{ = 0.21 cmm2 and Cd = k:X2 = 23.2 for the SLAC structure. 

The single bunch energy spread is derived from the current distribution and 
the longitudinal wake potential, as described in Sec. V B. For a given accelerating 
structure and current distribution (e.g., Gaussian), it is a function only of u,/X, 
??b and 6, where 8 is the angle of the center of the bunch with respect to the crest 
of the accelerating wave. For the SLAC disk-loaded structure, the maximum 
value of ?jb for a 1% and 2% single bunch energy spread (defined to include 90% 
of the bunch current) is givenlo in Table II below for several values of u,/X. 
The angle 6 ahead of crest has been chosen to minimize the energy spread. 
The effective accelerating gradient is reduced with respect to the peak unloaded 
gradient, both because the bunch is off crest and because there is a decelerating 
wake field within the bunch. The reduction factor in the gradient is given in the 
last column. The bottom row in the table shows that a very large single bunch 
Gciency can be reached if the bunch length is chosen so that shape of the bunch 
wake is approximately the inverse of the crest of the accelerating wave, as has 
been proposed at Novosibirsk.ll 
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Table II 
Maximum r]b for 1% and 2% Energy Spread 

qb (%) 9” E/E0 

1% 2% 1% 2% 1% 2% 

.005 2.3 3.2 29 45 0.85 0.66 

.Ol 3.5 6.6 14 39 0.95 0.71 r- - 

.02 - 6.5 - 8 - 0.94 
-.04-. - w 25 - 6 - 0.80 

D.EMITTANCE GROWTH 

Assuming a simple two-particle model for the bunch, several effects can cause 
the leading particle to drive the amplitude of the transverse oscillations of the 
tail particle as the bunch moves along the accelerator. To get a feel for scaling of 
emittance growth, consider the simplest case of a uniform machine with constant 
beta function, constant energy, and an offset x0 in the leading particle at the 
beginning of the accelerator. From the results in Sec. VC, the amplitude of the 
oscillation of the tail particle at distance L, divided by the transverse size of the 
beam at the end of the machine, is 

Ax2 1 112 
-RS- 

uf 4 x0 9 (154 

where WI is the dipole wake at the tail particle due to the leading particle. In 
Gaussian units, WI m 2 x 10’ rnb3 for the SLAC structure with a,/X w .Ol. For 
a structure with constant geometry and fixed a,/& WI scales as WI = C,“X3, 
where C: = 315 for the SLAC structure geometry. Using this in Eq. (15a) and 
substituting r]b from Eq. (14b), we obtain 

w 
It is important to recall that the dipole wake constant Ci depends on both the 
structure geometry and bunch length. Details are given in Sec. V. 

A more realistic example assumes uniform acceleration from injection energy 
ato 7f, with a beta function which varies as ,0 = PO (7/70)‘/~. Assume also 
that the accelerator consists of A4 sections which are misaligned with an rms 
error d in transverse position. The the growth in amplitude of the tail particle 
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in the two particle model is then given by l2 

Ax2 1 
- = - rONLWl 

Of 2 (16) 

Note that, in spite of the more complex assumptions, this result is still very 
similar to the simple scaling leading to Eq. (15a). 

A third result has been obtained assuming uniform acceleraiion and constant 
beta function. Assume also a focusing lattice with a 63’ phase advance per cell, 
with M focusing quadrupoles which jitter in transverse position with an rms 
displacement d. For this case the displacement of the trailing bunch grows to 
an amplitudef3 

Ax2 -= 
Of 

112 
M1/2 d . (174 

Magnet misalignment is seen to impose a stricter limitation than accelerator 
section misalignment. For a 90’ lattice the number of magnets is M = 4L/7ro. 
Introducing also the gradient G’ = d7/dz, the preceding expression becomes 

Ax2 roNLWld 
- = 1r3/2 (En G')li2 - uf 

Wb) 

By introducing an energy spread within the bunch (Landau damping), the 
emittance growth due to the dipole wake can be greatly reduced.14 In Sec. V C 
it is shown that, for the simple case of a uniform structure having constant 
energy and beta function with an initial offset x0, the growth in the transverse 
oscillation amplitude of the tail particle is reduced by a factor 

d 
~L@P/P) - 

Thus Eq. (15a) becomes 

(19) 

Landau damping is seen to be very effective in reducing emittance growth due 
to injection errors. It may be less effective in reducing the effect of alignment 
errors and magnet jitter, but detailed calculations remain to be done. 
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E. DESIGN STRATEGY FOR LINEAR COLLIDERS 

Based on the relations summarized in the preceding sections, there are a 
number of ways to approach the design of a linear collider. We first assume that 
the energy, desired luminosity and allowable beamstrahlung are fixed. To carry 
this process further, some expressions which combine some of the preceding basic 
relations are useful. From Eqs. (lb) and (ll), 

- EO (TeV) [fJ (1032)]1'2 
. y%;P4]1" , (20) c mot Pm (MW) .= o 57 

where mot = brlb%f% = %/& A reasonable upper value for qtot is 0.15 
(aSSUE& qrfqs = 0.5, bqb M 0.3). It is clear that the number of bunches, 
the repetition rate and the beam area Rul should be chosen as low as possible 
to keep the AC power down. However, the constraint imposed by beamstrahlung 
must also be considered. From Eqs. (lb) and (4b), 

EO (TeV)1: (103") = 2 o x 1o-3 
6 

. 
CC 

(214 
In order to get a high luminosity in the classical beamstrahlung regime, we see 
that, in contrast to the requirement set by Eq. (20) a large number of bunches 
and a high repetition frequency is desirable, as is a long bunch length. Since a, 
= (u,/X)X, th’ 1s also implies a long RF wavelength. However, the aspect ratio R 
can be increased to allow reduced values of b, j and X. In the quantum regime, 
the equivalent expression is, using Eq. (9) in Eq. (21a), 

L: (10"") 
EO (TeV) 6; 

= 1.5 x 1o-4 ( q2 [0,4rmRm,l - PW 

It is seen that, contrary to the classical case, a short bunch length is helpful. 

A final set of scaling relations is informative. Squaring Eq. (20) and dividing 
by Eqs. (21a) and (21b), we obtain 

W: (MW) 

Ez (TeV) L2 (1032) 

t5;Pb” (MW) 
EO (TeV) L2 (10j2) 

a; (cl4 
HD 02 (mm) ’ 

(224 

2 0; (pm) 0, (mm) 

HD 
. (22b) 

To see scaling more clearly, we can write these two relations in terms of the 
normalized emittance and p* as 

P; (MW) 6 
Ei (TeV) C2 (1032) = 2 ’ “l- 

2 H-T-P* (mm) 4w-n - rad) , 
HD 6 (mm) 

(22c) 
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Pb” (MW) 68 
l? (1032) 

= o.3 ~2 km) P* (mm) En(pm - rad) 
HD 

. (22d) 

Suppose Eo = 5 TeV, 6 = 0.3, f.? = 1034, Pat = 100 MW, and qtot = 0.15 
(Pa = 15 MW). Equations (22a) and (22b) then give 

ce : u; km) 
.a2 (mm) 

m 3.4 x 10u7 HD 
r- - 

- 
Q: ai (pm) a, (mm) B 5 x 10m8 HD , 

for the classical and quantum regimes respectively. Suppose a, k: 103uy. Then 
in the classical and quantum regimes uy M 3 x 10m7 pm and 5 x low3 pm, 
respectively. In both cases, one is forced to extremely small bunch dimensions. 

When the bunch length has been chosen, the scale of the collider design has 
been set. Since u,/X cannot be chosen arbitrarily, the choice of bunch length 
is related to a choice of operating wavelength. From Eqs. (22) the transverse 
dimension uy is now fixed (we have to guess initially whether we are in the 
classical or quantum regime, or else iterate on Hr in Eq. (22~). From Eq. (20) 
the product bfR is now fixed. It might be reasonable to choose f = 360. Some 
flexibility then remains in choosing b and R. The remaining quantities N, D, 
HD, and y are now readily calculated, and all parameters can be checked for 
consistency. It is left to the reader to continue this program for Eo = 5 TeV, 
L: = 1O34 cmF2 and Pat = 100 MW. It will be seen that for reasonable values of 
b, f and R, T > 1 and the parameters are pushed into the quantum regime. 

III. ACCELERATING STRUCTURES 

A.STRUCTURE DESIGN 

In this section we review a few basic expressions related to the design of 
traveling wave accelerating structures. Consider a periodic structure consisting 
of identical coupled cells with an RF feed at one end. For such a “constant 
impedance” structure, the group velocity vg and attenuation per unit length are 
uniform along the length of the structure. The accelerating field is attenuated 
by a factor ee7 along a structure of length e, where 

and Tf = e/v, is the filling time. Thus for a given 7, the filling time varies 
as w -3/2. The structure efficiency, q 8, is defined as the ratio V2(7)/V2(0), where 
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V(7) is the actual voltage delivered by the structure and V (0) is the voltage that 
would be obtained if the attenuation were zero. An input RF pulse with peak 
power PO and length Tf is assumed. Because of attenuation the energy per 
pulse required to reach a given accelerating gradient is increased by l/qs. The 
structure efficiency is given by15 

1 -e-T 2 
t78 = ( ) . 7 (24 

r- - 6 

This function is plotted in Fig. 2. The efficiency is seen to approach 100% as 
-r -+ 0. On the other hand, the peak RF power required per unit length is 

PO e= p f(r) , 

f(T) = i (1- e-r)-2 = -& . 

Fig. 2. Structure efficiency qs and 
normalized peak power per unit length, 
Pn = Por/G21, as a function of the 
attenuation parameter 7. 

0 

2.111 

I, I, I, I,, ,I,, , I,? 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 p 
Attenuation Parameter T r05e*r 

Here r is the shunt impedance per unit length and G = V/l is the average 
accelerating gradient. Thus 100% efficiency (7 --) 0) implies both zero filling 
time and infinite peak power. The function f(r) has a minimum at r = 1.26, 
with f(1.26) = 1.23, as shown in Fig. 2. At this minimum, however, the efficiency 
is only 32%. By decreasing r to 0.5, the efficiency is increased to 62% (almost 
double), while the peak power is increased by only 32%. Thus r =, 0.5 gives a 
reasonable compromise between efficiency and peak power requirement. For the 
SLAC structure r = 0.57 and qs = 58%. 

Present-day high power pulsed klystrons operate with a conversion efficiency 
of 45-55%. The efficiency for conversion of AC to DC pulsed power (modula- 
tor efficiency) is 80-90%. It is difficult to predict how much these efficiencies 
might be improved by future technological advances. A Lasertron16 RF source 
operating directly from a DC power supply might, for example, achieve an 
efficiency on the order of 75%. Together with a structure efficiency of 65% 
(r = 0.45), th’ 1s gives a possible net efficiency qrfqs = 50%. An additional 
structure parameter is the loss parameter per unit length, 

(26) 

14 



where u is the stored energy per unit length. The factor of four comes from 
the fact that the loss parameter was originally defined by u = klq2, where u is 
the energy deposited in the accelerating mode per unit length by a point charge 
passing through a structure originally empty of energy. For a simple pillbox 
cavity of length g, the parameter kl is given by 

kl = 0.456 x 10f2 G 1 $ , 

sin 7r 
3 T=- 

Y 
. 

We see from this expression, and directly from Eq. (26), that ICI - w2. For a 
SLAC type disk loaded structure with r = 0.5 and period x/3, 

kl = 
0.20 x 1012 n V 

X2 (m) s - m Or C - m 
. (27) 

The SLAC structure doesn’t do quite as well as a chain of simple pillboxes 
because of the finite disk thickness and field fringing in the disk aperture. 

It is important to note that the value of kl depends strongly on the ra- 
dius a of the disk aperture. This is shown in Fig. 3 for the SLAC structure. 
Approximately, ICI - u-l for a/x k: 0.1. 

0 I I I I I I I 

0.1 0.2 0.3 0.4 
* 12 a/x ‘(11911 

_ Fig. 3. Structure parameter kl as a function of beam aperture radius 
for the average cell in the SLAC disk-loaded structure (X = 10.5 cm, 
a = 1.163 cm and t = 0.584 cm, where t is the disk thickness). 
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B. PEAK POWER REQUIREMENT 

The filling time of a typical disk loaded accelerating structure with r = 0.5 
will be 0.7 ps at X = 10 cm [see Eq. (23)]. We can therefore write 

Tf(ns) = 22 [A (cm)13i2 . (284 

The average energy per unit length required from a power source is ,- - e - 
x2 (cm) G2 (MV/m) 

5.0 x 10s 

for the same structure. The peak power requirement is 

$ (MW/m) = ; = A1’2 km> z;(MV/m)) . 

(28b) 

(284 

Results from Eqs. (28) are plotted in Fig. 4 for wavelengths from 1 mm to 10 cm 
and accelerating gradients from 50 to 500 MV/m. 

IO I I I II111 

I IO I 00 
5-85 WAVELENGTH (mm) 5142A2 

Fig. 4. Filling time and peak power per unit length as a function of 
wavelength for a typical disk-loaded structure with r = 0.5. 
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C. LIMITS ON ACCELERATING GRADIENT 

Several effects can impose limitations on the RF fields in an accelerating 
structure. The easiest to calculate and understand in simple physical terms is 
surface heating. The power per unit area absorbed by a surface with surface 
resistance R, is 

pa = ; R, g2 = f G2 2 , 
8 

(29) 

where % is the peak magnetic field and 2, = G/g is-an-impedance defined by 
the geometry of the structure. For a typical disk-loaded structure, 2, M 4OOa. 
In terms of the power per unit area and the pulse length, Tp, the temperature 
rise is 

2P, DT, ‘I2 
AT=K - [ 1 , 7r 

where K is the thermal conductivity, D = K/Cap is the thermal diffusivity, C, 
is the specific heat and p the density. Substituting for Pa from Eq. (29), 

G = 2, (=$)l” (&)1’4 . (30) 

If Tp is set equal to the filling time (which scales as wm3i2), and since R, - 
w112, then G - w1i8. Putting in typical numbers at X = 10 cm for copper 
(Zs = 400 R, R, = .014 R, K = 3.8 W/ cm--OK, D = 1.1 cm2/s), and assuming 
also that the pulse length is equal to a typical filling time Tp = 0.7 ,xs, then 
the gradient required to raise the surface to the melting point is G M 1 GeV/m. 
This model breaks down at X M 30 pm, when the diffusion distance (DTf)1/2 
is on the order of the skin depth. Under this condition the filling time is about 
5 ps and the gradient is about 2.6 GeV/m. For still shorter wavelengths, the 
temperature rise is determined only by the specific heat per unit volume, giving 

AT = paTP = paz6D , 
PW 

where 6 is the skin depth. Substituting for Pa from Eq. (29), 

G = 2, ( ;;g;)1’2 , (31) 

where 20 = 377n. In this regime, G scales as w1j4. Another limit is obviously 
encountered when the filling time becomes comparable to one rf cycle, Tf M X/c. 
Also, at this limit a pulsed surface magnetic field can diffuse into the material a 
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distance equal to the skin depth in a time comparable to the filling time. Again 
scaling as X3j2 from Tp = Tf M 0.7 ps at X = 10 cm, we find X = cTf at 
X M 0.02 pm. The gradient is on the order of 15 GeV/m, and Tf k: lo-l6 sec. 

The variation of gradient with wavelength due to surface heating is plotted 
for the different regimes in Fig. 5. A further discussion is given in the report of 
the Near Field Group, in these Proceedings. 

The electric field limitations on gradient are less amenable to calculation. 
We expect the gradient limit. to be a function of both frequencyand pulse length. 
The well-known Kilpatrick criterion17 - predicts for CW or very long RF pulses, 

Eb (MV/m) m 25 [f (GH#/~ , (32) 
for frequencies greater than a few GHz. Here &, presumably can be taken as 
the peak field Ep at the surface of an accelerating structure, where typically 
G M 0.5Ep. 

The variation in breakdown field with pulse length is also not a precisely 
determined function. Some data18 at 2856 MHz on the power flow at breakdown 
in a resonant ring, used at SLAC to test klystron windows, are fit by” 

& (Tp) = E&xu) 

Combining Eqs. (32) and (33), for very short pulses 

Eb - w1/2 T;li4 . 

(33) 

(34 
If the pulse length is equal to the filling time, and again assuming the filling 
time scales as wB3j2, then & - w7j8. 

Two measurements have been made on breakdown in short resonant sections 
of disk-loaded structure near 3 GHz. Loew and Wang20 at SLAC reached a peak 
surface field of 259 MV/ m without breakdown at 2856 MHz for a pulse length of 
about 1.5 ps. Equations (32) and (33) predict a breakdown field of 215 MV/m. 
Tanabe21 working at 2997 MHz, reports a peak field of about 240 MV/m at 
a pulse length of 4 ps, with some surface damage due to breakdown. If we 
use Eqs. (33) and (34) to scale these two results to a filling time of 0.7 ps at 

fi2 The data can also be fit by a (l+const/T”3) variation. This scaling with Tp is in agreement 
with the behavior for DC pulses. lg However, the enhancement factor over the Kilpatrick 

- limit at S-band is then only a factor of three, which is inconsistent with experimental 
measurements. 20921 If the ‘(;I3 variation is accepted, then the electric field breakdown 
limit plotted in Fig. 5 varies as w1 instead of ~r/~. 
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3 GHz, we obtain 310 MV/m for the Loew and Wang measurement, with no 
breakdown, and 350 MV/m for the Tanabe measurement, with breakdown and 
surface damage. As a calibration point on our plot of breakdown field versus 
wavelength, we therefore take 160 MV/m (assuming G kc Ep/2) at X  = 10 cm. 
This is plotted in Fig. 5. 

0.03 
I o3 1 02 , 0 ’ 100 1 C-J- 1 o-2 I o-3 I o-4 I o-5 

S-85 WAVELENGTH (mm) 5142A3 

Fig. 5. Limitations on gradient as a function of wavelength due to electric 
field breakdown and surface heating in a SLAC-type disk-loaded structure. 

IV. RF POWER SOURCES 

A. GENERAL REMARKS 

From Fig. 4 we see that a collider linac operating at a gradient of (for exam- 
ple) 100 M V / m  requires a peak power of 300 M W /m at X  = 10 cm and a peak 
power of 100 M W / m  at X  = 1 cm. The pulse lengths for the two cases are about 
700 ns and 20 ns, respectively. The required peak power can be generated either 
by external microwave tubes, or by a high current driving beam which can be 
external or internal to the accelerating structure. Further, the required peak 
power can be generated directly by the source at a pulse length equal to the 
filling time or alternatively at a lower peak power level and longer pulse length, 
followed by some pulse compression technique to raise the peak power to the 
required level. These alternatives are considered in the following sections. 

RF sources which might be suitable for linear colliders are discussed in a 
recent review by Granatstein 22. Sources which have produced peak power levels 
on the order of 100 M W  in the wavelength range l-10 cm are: virtual cath- 
ode oscillators (Vircators), backward-wave oscillators, magnetrons, gyrotrons, 
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klystrons and free electron lasers. Oscillators, however, are not suitable as 
sources to drive a collider. Many amplifiers with good phase stability, driven 
from a common source, will be required. This reduces the possible sources to 
klystrons, gyrotron amplifiers (gyroklystrons), FEL’s and possibly some type of 
crossed field amplifier. The latter device is a dark horse and will not be con- 
sidered further. FEL’s and other possible two-beam accelerators are considered 
briefly in Sec. IVD. 

B. KLYSTRONS AND GYROKLYSTRONS r- - 
- 

For many years, klystron have been the RF source of choice for the highest 
peak power at wavelengths on the order of 10 cm. In 1970 a klystron was 
designed at X = 9 cm to produce a peak power of 1 GW at TP = 15 ns.23 
However, the tube failed before it could be tested at full output power. Recently, 
a klystron has been designed at SLAC to produce 150 MW at X = 10.5 cm at 
a pulse length of 1 p.s. This tube has now achieved24 the design output power 
with an efficiency of 55%. 

We have noted that a peak power of 300 MW/m is needed to reach an 
interesting accelerating gradient (100 MV/m) at X = 10 cm. Also, it would be 
desirable to reduce the number of sources by spacing them further apart than 
1 m. Furthermore, the optimum operating wavelength for a linear collider will 
almost certainly be shorter than 10 cm. It is difficult to specify a precise scaling 
law for the variation of peak power output of a klystron with wavelength, but 
almost certainly it will decrease more rapidly than the X1/2 requirement given 
by Eq. (28~). W e conclude that some form of pulse compression will be needed if 
klystrons are used as an RF source for a linear colliders. If so, a premium will be 
placed on efficiency and reliability, rather than on peak power, assuming that a 
power level in the range 50-100 MW can be attained at the desired wavelength. 

Gyroklystron are inherently capable of operating at shorter wavelengths than 
klystrons. For a collider operating in the wavelength range at or below 3 cm, 
a gyroklystron will probably be the RF source of choice (excluding for the mo- 
ment two-beam concepts). Granatstein 25 has recently reviewed the capabilities 
of high peak power gyroklystrons. A design calculation has been made for a 
gyroklystron capable of delivering 300 MW at 9 GHz. This source would power 
two meters of typical structure at a gradient of 100 MV/m. 

C.LASERTRON RF SOURCE 

_ In recent years a new possibility for a high efficiency RF source has been 
the subject of increasing interest-the Lasertron. Figure 6 shows a schematic 
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Fig. 6. Schematic diagram of a Lasertron RF power source. 

diagram of this device. A laser beam, pulse modulated at the desired RF fre- 
quency, is incident on a photocathode. Electron bunches, each a small fraction 
of the RF period in length, are emitted by the cathode, accelerated to high 
voltage and passed through the gap of an RF cavity. If the RF voltage across 
the output gap is about equal to the DC beam voltage, each bunch is brought 
nearly to rest by the RF field in the gap, thereby converting DC to RF energy 
with very high efficiency. A further interesting feature of this device is that it 
can in principle by operated directly from a DC power source, eliminating the 
inefficiency associated with a pulse modulator. The laser-driven photocathode 
acts, in essence, as a switch operating at microwave frequencies, capable of the 
direct production of microwave power from a DC source. 

Experimental work is currently underway on the Lasertron in Japan26 and at 
SLA@. At SLAC, a proof of principle test is underway to produce a Lasertron 
with a peak output power of 35 MW. Numerical simulations2’ indicate that an 
efficiency exceeding 70% is possible if a double output gap composed of two 
magnetically coupled output cavities is used. It is foreseen that peak power 
levels of 100 MW or more can be produced at a wavelength on the order of 
i0 cm. It is not so clear, however, whether this device can be scaled to produce 
high peak output power at substantially shorter wavelengths. Simulations are 
being carried out at SLAC to explore this possibility. 

D. PULSE COMPRESSION 

From the results of the preceding two section, it is seen that the direct gen- 
eration of peak power level on the order of 300 MW/m by microwave tubes will 
be difficult, especially at shorter wavelengths. It should be emphasized again 
that it is also highly desirable to reduce the total number of RF sources by 
moducing the required power level per meter from sources spaced at less fre- 
quent intervals. Thus some form of pulse compression and power splitting will 
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almost certainly be required for a very long collider operating at a high gradient. 
Suppose we require a gradient of 150 MV/ m at a wavelength of 3.5 cm. From 
Fig. 4, this implies a peak power of about 400 MW/m. A filling time of about 
125 ns is required. Suppose power sources are available capable of generating 
100 MW for 1 ps. If the peak power can be multiplied by a factor of eight and 
split two ways, each source is then capable of feeding two meters of structure 
(assuming the pulse compression can be carried out with an efficiency close 
to 100%). 
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Fig. 7. (a) D ia g ram illustrating the pulse compression method 
of Z. D. Farkas;28 (b) amplitude and relative phase of the RF 
power at the indicated points. 

Figure 7a shows a method invented by Z. D. Farkas28 for providing the 
desired pulse compression. Two RF power sources, Sr and S2, have a pulse 
length equal to eight time the structure filling time Tf. Dr, D2 and D3 are delay 
lines having, respectively, delays of 4Tf, 2Z’f and Tf. Hr, H2 and H3 are so- 
called 3db hybrids. If power is applied at either input terminal of such a device 
@errnina 1 or terminal 2 of HI for example), half the power appears at each 
output terminal (terminals 3 and 4 of HI). There is, however, a 90’ phase shift 
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between terminals 1 and 4 and between terminals 2 and 3. Thus, if the phase 
difference between the waves incident at terminals 1 and 2 is f90°, it is readily 
seen by supposition that the combined power will appear at-either terminal 3 or 
4, depending on the sign of the phase difference. By changing the relative phase 
between the two input terminals by 180°, the power can therefore be switched 
from one output terminal to the other. By pulse coding the low power phase 
shifters 5252 and 42 correctly in each of the eight time slots in the incident pulse, 
this switching is carried out in the hybrid HI, H2 and H3 at increasing power 
levels and reduced pulse lengths. The process is illustrated in Fig. 7b, where the 
relative phase and power level is shown for the points indicated. The process 
can be extended, in principle, to any desired power multiplication by a factor of 
2n. Of course, the delay lines must not introduce significant attenuation. They 
can be either superconducting or over-moded room temperature copper pipes. 

E. TWO-BEAM AND WAKE FIELD ACCELERATORS 

The energy per unit length required to produce an intense accelerating 
field can be produced by a variety of means other than by conventional ex- 
ternal microwave power sources. An intense driving bunch, with appropri- 
ately shaped current distribution, can be injected on the axis of the acceler- 
ating structure ahead of the bunch to be accelerated (the collinear wake field 
accelerator). 2g A hollow ring-shaped driving bunch, which produces inwardly 
propagating wake fields in a suitable structure, can be used (the Voss-Weiland 
wake field accelerator) .30a31 

A low energy, high current beam moving in an external circuit parallel to 
the accelerating structure can be sent through a series of wigglers to generate 
the required RF power. 32,33 The energy lost by the driving beam is made up 
periodically by induction units. In addition to an FEL of this type, in which the 
parallel driving beam interacts with the transverse component of the RF field, 
a two-beam accelerator in which the driving beam interacts with a longitudinal 
RF field is also possible. In this device34 a bunched beam, possibly produced 
by a laser-modulated photocathode, passes periodically through klystron-type 
cavities which extract a portion of the beam energy. The energy loss can again 
be made up by induction units. The disadvantage of this type of two-beam 
accelerator, in contrast to the FEL, is that the transverse dimensions of the RF 
interaction region must be comparable to the RF wavelength. 

V. WAKE FIELDS 

A. DELTA FUNCTION WAKE POTENTIALS 

The delta function wake W(r) is the potential seen by a test charge follow- 
ing at a distance cr behind a point unit charge passing through a component or 
structure. Both the test charge and the unit driving charge are usually assumed 
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to be travelling on parallel paths at the speed of light. The wake potential is then 
causal, such that W(r) = 0 for r < 0. The instantaneous forces experienced by 
the test charge in response to the complex pattern of “wake fields” excited in even 
a simple structure are not usually of interest. What matters is the integrated 
force, or total potential seen by the test charge on passing through an entire 
component, or through one period of a periodic structure. The potential may 
be either longitudinal or transverse. 

The theory underlying the wake potential description hKb,een extensively 
developed in recent years. The analytic development is somewhat complex, with 
many subtleties. We give here only a few results of use in scaling wake field 
effects for relativistic particles in typical accelerating structures. The reader is 
referred to Refs. 35-38 for a more complete exposition. 

The longitudinal wake field for the nth mode excited by a point charge q 
at radius rq and azimuthal angle 4 = 0 in a cylindrically symmetric periodic 
structure is given by 

E,(r,4,r) = -2qh (f>m (3>m cosm+ coswnr . (35) 

Here a is the minimum wall radius of the structure (the disk hole radius), m 
gives the azimuthal dependence of the mode and 

en k, z - 
4u, ’ (36) 

where un is the stored energy per unit length and E,, is the longitudinal syn- 
chronous field component at radius r = a. The delta function wake potential 
for the nth mode is now defined as the field per unit charge and per unit offset 
in both rp and r at angle C$ = 0. Thus 

Kn(~) = 2 coswnr , 

E zn = -Q Wzn(T) rm Yy COS rn+ . 

(37) 

The wake potential can also be defined as the potential per cell of the structure, 
rather than per unit length. In this case Eon and un in Eq. (36) are replaced by 
&np and unp, where p is the periodic length. Note that the longitudinal wake 
for azimuthally symmetric (m = 0) modes is independent of the radial positions 
of both the driving charge and the trailing test charge. 
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To find the total wake poten- 
tial behind a point charge for a 
given value of m, one must in 
principle sum over all possible 
modes supported by the struc- 
ture with symmetry cos mq5, 

W(r) = --& 2 kn COSW~~ . 
n=l 

(38) 
In practice a finite number of 
modes are calculated by an ap- 
propriate computer code, and an 
“analytic extension” is added to 
take care of the modes with fre- 
quencies above the limit of the 
calculation. The analytic exten- 
sion is based on the fact that at 
sufficiently high frequencies the 
impedance (dk/u!u) can be shown 
to vary as w -‘I2 for typical accel- 
erating structures. 

The wake obtained by summing 
over 416 modes for the SLAC 
structure is shown by the dashed 
curve in Fig. 8 for O-10 ps. Add- 
ing on an analytic extension gives 
the solid curve. The fundamen- 
tal (accelerating) mode is also 
shown for comparison. Note that 
the total wake at r = 0 is about 
a factor of six greater than that 
given by the fundamental mode 
alone. The wake out to 300 ps is 
shown in Fig. 9. 

If Fig. 8 shows the wake seen by a 
trailing test charge, one can ask 
what potential is seen by the 
driving (point) charge itself. It 
iEasy to show35 from conserva- 
tion of energy that the potential 
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Fig. 8. Longitudinal wake potential per cell 
for the average cell in the SLAC disk-loaded 
structure in the range O-10 ps. 
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Fig. 9. Longitudinal wake potential per cell 
for the SLAC structure in the range O-300 ps. 
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acting on the driving charge is just one-half of the wake potential seen by a test 
charge following an infinitesimal distance behind. Thus for the SLAC structure 
a point picocoulomb of charge experiences a retarding potential of 4 V per cell. 

The transverse wake field is also of great interest for collider design. It is 
given, again for a single mode in a cylindrically symmetric periodic structure, 
bY 

-Zl(r, 4, r) = 2qm ($) (f)“-’ (2)m (icosmg5 - Jsinmq5) SinWnT , 

(39) 

where r^ and 6 we unit vectors. Here e$l gives the total transverse force acting 
on the trailing particle. The delta function wake potential is now defined by 

W_L(r) = 3 SinWn7 , (40) 

and 

z1 = qW_L(r)rm-l rI;” r^cosmf$ - $sinm4 
( > . 

For the important case of the dipole (m = 1) modes, the deflection field varies 
linearly with the offset of the leading charge and is uniform across the entire 
aperture of the structure behind the leading charge. Note that the wake poten- 
tials W, and Wl are scalar function of r only. We see also that the longitudinal 
and transverse wake fields are related by 

a& - = -cVIEZ . 
ar 

The total delta-function wake potential is again obtained by summing over 
many modes and adding an analytic extension as described in Ref. 35. Results 
for the dipole mode for the SLAC structure are shown in Figs. 10 and 11. Note 
that, in contrast to the longitudinal wake, the dipole wake (and all transverse 
wake potentials) starts at zero at time r = 0 and rises to a first maximum at 
a distance behind the driving charge which is comparable to the iris aperture 
radius. At long distances behind the driving charge, the total wake is given by 
a-beating of the wakes due to the two or three lowest frequency modes. The 
period of the resulting semi-regular oscillation is substantially that of the lowest 
frequency mode. 
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Fig. 10. Dipole wake potential per 
cell for the average cell in the SLAC 
disk-loaded structure in the range O- 
100 ps. 
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Fig. 11. Dipole wake potential per cell 
for the SLAC structure in the range 
O-2000 ps. The period of the lowest 
frequency dipole mode is 235 ps. 

From Eq. (36) it is seen that k, - w2. Thus from Eqs. (37) and (40) the 
wake potentials per unit length scale as 

wz” N LJ2m+2 , m>O 
(42) 

w;_” - w 2m+l 
, m>O . 

The wake potentials per cell of a periodic structure scale as one power lower 
than above. The horizontal time axes in Figs. 8-11 also scale, of course, in 
proportion to the wavelength. 

The above scaling is for a constant geometry such that all dimensions vary 
in proportion to wavelength. The case in which only the disk hole radius is 
varied for a structure of fixed frequency is also of interest. This scaling has been 
investigated for the SLAC structure by K. Bane3g. The intercept at r = 0 for 
the longitudinal wake is found to vary as 

Wz(0) - u-1.7 . (434 
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The time at which the longitudinal wake falls to one-half of its value at r = 0 is 
given by 

c71/2 m .09a . WI 

The amplitude of the first maximum of the dipole wake is found to vary with 
beam aperture radius as 

WI (rm) N U-2*25 , (434 

where the value of rm varies as 7- - -. 
- 

Crrn za 0.65~ . (434 

The initial slope of the dipole wake for r << rn varies as 

dW1 - - (f-3.5 
dr 

. (434 

Finally, a note about dimensions. In the scaling relations developed in Sec. 
II, it was found to be convenient to use cgs-Gaussian units. The wake potentials 
per particle in cgs units are readily obtained from the potential per unit charge in 
mks units by multiplying by 47rco. Thus the m = 0 longitudinal wake potential 
per unit length, with dimension V/(C - m in mks units, has dimensions l/m2 ) 
(or l/cm2) in Gaussian units. We have, in general, for the wake potential per 
unit length 

mks Gaussian 

m=O WZ Cyrn 

m=l W, V 
c-n2 3 

V 
wz - 1 

C-m3 m4 

m=2 W, -I- 
C-m4 5 

WZ -IL 
C-m5 

1 
m6 
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B. WAKE POTENTIALS FOR CHARGE DISTRIBUTIONS 

The delta-function wake fields or wake potentials for a point charge, dis- 
cussed in the previous section, can be used as Green’s functions to compute the 
longitudinal and transverse potentials in an arbitrary charge distribution I(t). 
Thus for the important case of the longitudinal accelerating mode, the single 
bunch beam loading potential at time t within the bunch is given by 

t 
- Et@ ) = J iv,(t - 7) I(T) df- . - m (44 

-CO 
If this expression is divided by the charge, the potential in the bunch per unit 
charge per unit length (or the potential per discrete component) is obtained. 
This integrated potential, or bunch potential, is sometimes also called the wake 
potential. It is unfortunate that the terms “wake potential” and “wake field” 
are used to refer to several different quantities. The reader is cautioned to check 
the precise meaning of these terms in each case. 

The integrated wake potential for the SLAC structure is shown in Fig. 12 
for three different bunch lengths. The total energy gain of a particle at time t 
in the distribution is then obtained by a superposition of the single bunch beam 
loading potential per unit length, given by Eq. (44), and the RF accelerating 
field produced by the external RF source: 

E(t) = G cos(wt - 0) -Eb(t) . 

(45) 
Here G is the unloaded peak ac- 
celerating gradient and 8 is the 
phase angle by which the bunch 
center leads the crest of the ac- 
celerating wave. The total energy 
spread within the bunch can be 
minimized by adjusting 8, as de- 
scribed previously. 

An additional parameter of inter- 
est is the total loss parameter, &t, 
given by 

hot = - 
,i J I(t) &,(t) dt . 

8 m -10 0 IO 20 
z-.1 Time (ps) .osPlr 

Fig. 12. Beam loading gradient within 
a single bunch for the SLAC disk-loaded 
structure. Gaussian bunches of lOlo par- 
ticles, centered at t = 0, are assumed. 

(46) 
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If &,(t) is the integrated wake due to a single normal mode, it can be shown 
that, for a Gaussian bunch, 

ktot(n) = k, e-w~u2 , (47) 

where cr = az/c. If Eb(i?) is the integrated wake due to all modes, then 

,- - -. 
hot = B(a) h , (48) 

where kl is the loss parameter for the fundamental mode alone and B(a) is the 
beam loading enhancement factor. This function is plotted in Fig. 13 for the 
SLAC structure. 

I I 1 I I 
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Fig. 13. Single bunch beam loading enhance- 
ment factor as a function of bunch length 
for the SLAC structure. 

Functions similar to those defined in Eqs. (44) and (46) for the m = 0 case 
can be constructed using the transverse delta function wake potential W_L(~). 
The integrated wake potentials for m = 0 and m = 1 are compared in Figs. 14 
and 15 for the SLAC structure for various bunch lengths4’. In these two figures, 
W is the integrated wake per cell per unit charge. The dashed and solid curves 
show agreement between the sum of modes method used to calculate the wake, 
IBM discussed here, and a direct time integration of Maxwell’s equation computed 
by T. Weiland’s code TBC14’. 
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Fig. 14. Longitudinal wake potential (m = 0) per cell for gaussian 
bunches in the SLAC structure. Solid curves give TBCI results and 
dashed curves are results from a sum of modes. 
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C. Two PARTICLE MODEL 

A simple model in which the bunch current distribution is approximated by 
two point charges, a leading (head) particle with charge q/2 and a following 
(tail) particle with charge q/2, is very useful in estimating emittance growth 
due to dipole wake field effects in a linac. Consider the simplest case of a linac 
with constant energy and constant focusing strength k = l/p, where 27rp is the 
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wavelength of the betatron oscillation in the focusing lattice. The equations of 
motion of the two particles are 

x;‘+k2xl = 0 , (494 

xi’+ (k + A k)2x2 = Cxl , (4W 

where the subscripts 1 and 2 refer to the head and tail particles respectively. 
Here the prime indicates dx/dz and C = eqWl/2E6; where Wi is the dipole 
wake potential at the position of the trailing charge. (The separation of the two 
charges can be approximated by 20,). There may also be an energy spread in 
the bunch due to the longitudinal wake, or to the slope of the RF wave if the 
bunch is placed off crest. This energy spread can be modelled in the two particle 
approximation by an energy difference AE between the particles, leading to a 
difference in focusing force Ak/k = tAE/E 0, where e is the chromaticity of the 
lattice (for a lattice with 90’ phase shift per cell t = -4/z). For the leading 
particle, the solution to Eq. (49a) is 

where Zi is a complex quantity giving the amplitude and phase of the oscillation 
at position Z, and Zio is the initial value at z = 0. If Ak = 0, the tail particle 
obeys 

ii5 = Z&O e ikz iCZ ikz - - 
2k 

Zloe . (51) 
Here the first term represents a free betatron oscillation and the second term an 
oscillation driven by the head particle. If 550 = 
z = 55 - Zr, grows in amplitude as 

Z&o, the difference 

Ax I I cz eqwlz - =-=- 
x10 2k 4kEo ’ (524 

In Gaussian units this becomes 

Ax roNWlz -= 
x10 4k-y - ( 524 

If there is an energy difference between the head and tail particles 
(Landau damping), the solution for x2 is14 

z2 = z20ei(k+Ak)z _ s sin (T) ,i(k+y)z . (53) 
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Again assuming Z&o = Z&o, the difference G = Zz - 21, grows in amplitude as 

As has been pointed out 14, the emittance growth is zero if either zAk = 2mr or 
if C = 2kAk. This latter condition can be written, for a 90’ lattice, 

~4% AE=-- 16k2 ’ ‘- - - (55) 
However, even in the worst case the amplitude does not exceed C/kAk, which 
becomes for a 90’ lattice 

“<- wW1 
x10 8k2AE * (56) 

The amplitude of the wake potential WI can be determined from Fig. 10, 
at least approximately, by taking the wake potential at distance o, behind 
the bunch center. Thus for a 1 mm bunch in the SLAC structure 
Wl M 0.8 V/PC/cell, or 2 x 1015 V/C-m2. In Gaussian units this becomes 
WI = 2 x 105/m3. 

VI. EMITTANCE 

A. GENERAL REMARKS 

The scaling laws in Sec. II show that very small emittance beams will be 
required for future linear colliders operating in the energy range above 1 TeV. 
The normalized emittance required for a 5 TeV machine, for example, might 
be on the order of 10-7-10-8 z m-rad. 42. In this section some limitations and 
expectations concerning the emittance that can be obtained from linac injectors 
and damping rings will be briefly discussed. 

Linear optics and emittance concepts in beam transport systems and in 
circular machines have been discussed in several tutorial papers.43 We are con- 
cerned here with periodic linear transport systems, and for this case a word of 
caution is in order. In a circular machine, the lattice functions (e.g., p) are truly 
periodic and can be defined by the characteristics of the focusing lattice alone, 
even where no beam is present. This is not the case for a linear transport sys- 
tem. Assume that the transport system consists of a finite number of identical 
cells. The initial beam ellipse in the phase plane at the entrance to the first cell 
must still be defined in order to define the initial values of the lattice functions. 
Alternatively, the values at the end of the last cell could also be defined by 
working back from the final focus. Expressed differently, the concept of a beta 
function in a linear collider is only meaningful if the beam ellipse is defined at 
some location in the transport system; 
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B. EMITTANCE FROM GUNS 

The emittance of a typical linac injector is for the most part determined 
by the emittance of the gun itself. Consider a point on the surface of a hot 
cathode. Electrons leaving this point have a transverse momentum proportional 
to (K!y2, where K is the Boltzmann constant. The transverse emittance is 
then proportional to this momentum times the radius of the cathode, or to the 
square root of the cathode area. For a fixed current density, the area is in turn 
proportional to the total current. Thus, it is reasonable to write 

- 

En = 7c m 1 x 1o-4 6 ?r m-rad , (57) 

where I^is the peak current in the bunch in amperes and B is the bunching factor. 
This expression is also called the Lawson-Penner relation (see, for example, 
Ref. 44). 

In addition to the transverse momentum due to the finite temperature of 
the cathode, other factors contribute to the beam emittance in the gun region. 
These factors include field fringing at grid and anode apertures, nonlinear forces 
in focusing lenses, and transverse RF fields which vary longitudinally over the 
bunch in the bunching region. A number of suggestions have been made for 
reducing or eliminating these deleterious effects, such as: removal of grids, very 
high gun voltages, tight focusing, bunching at high energy, use of a cathode in 
which the emission is driven by a microwave field, and photocathodes in which 
the emission is driven by a modulated laser beam. 

The normalized emittance for typical present-day linacs at 100 A peak cath- 
ode current is the range of l-3 x lOA x m-rad. It is expected that this can be 
reduced by a factor of ten or so in the case of a laser-driven photocathode. The 
thermal limit lies still another order of magnitude lower. 

C. EMITTANCE FROM DAMPING RINGS 

Low emittance storage rings are of interest as synchrotron radiation sources, 
as beam recirculation devices for FELs, and as injectors for linear colliders. As- 
sume first a ring with a lattice consisting of bending magnets of length ! = ~0, 
with a waist in the ,f3 function at the center of each magnet and appropriate 
focusing elements between the magnets. Then it can be shown45 that the mini- 
mum normalized emittance is given by 

En = 8.3 x lo-l5 r3 fi3 z m-rad . (584 
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The more conventional FODO lattice produces a considerably higher minimum 
normalized emittance, given by46 

4.8 x lo-l3 En = 
Ft?X 

r3 tJ3 7~ m-rad , 

where Fm is the fraction of the ring filled by the magnets. From the standpoint 
of low emittance, therefore, a damping ring should consist of a large number of 
very short bending magnets-with a large bending radius.- e 

It is natural to ask whether there is a fundamental limit on the emittance 
that can be achieved using this strategy. It is clearly not productive to reduce 
the bending angle below the opening angle for synchrotron radiation. More 
precisely, it can be shown4’ that emin = 6/7. Using this in Eq. (58a), 

En % 1 8 x lo-l2 ?r m-rad . . (59) 

In addition to emittance, other factors must be considered in the design of 
a damping ring. For either lattice, the damping rate is given by46 

[T (set)]-’ = 2.1 x 10m3 Fm I$ (GeV) / p2 (m) . (60) 

Thus for a fast damping rate, required for a collider with a high repetition rate, 
a small bending radius is desirable. This is in conflict with the requirement for 
low emittance, and a compromise must be struck. 

The Touschek effect may limit the beam lifetime is a storage ring designed for 
low emittance, and intrabeam scattering (multiple Touschek effect) may produce 
emittance growth. In a damping ring the beam lifetime needs to be only a few 
damping times, and the limitation on lifetime imposed by the Touschek effect is 
normally not of concern. Intrabeam scattering, however, may impose a serious 
limitation on emittance. It is difficult to write a precise relation giving the 
scaling for this effect, but the threshold current at which significant emittance 
growth becomes observable increases rapidly with increasing energy. Computer 
programs48 are available for calculating beam lifetime limitations and emittance 
growth due to intrabeam scattering in storage rings designed for high brightness 
synchrotron radiation sources and FELs. For these applications, normalized 
emittances on the order of 5 x 10m6 r m-rad have been achieved. This is a factor 
of six lower than the emittance of the SLC damping ring at SLAC (En = 3 x 10F5). 
For a 5 TeV collider, an emittance which is still lower by two or three orders of 
magnitude may be required. However, a serious effort to design damping rings 
mable of producing beam emittances of this order is only just beginning. 

36 



Acknowledgment 

The help of P. Morton and L. Rivkin in preparing Sec. VI is gratefully 
acknowledged. 

References 

1. Ugo Amaldi, ed., Proc. of the 2nd ICFA Workshop on Possibilities and 
Limitations of Accelerators and Detectors, Les Diablerets, Switzerland, 
October 1979 (CERN,. June 1980), pp. 3-20. ‘- - e 

2. HI W-iedemann, 1981 SLAC Summer Institute on Particle Physics, SLAC- 
PUB-2849 (November 1981). 

3. R. Hollebeek, Nucl. Instrum. Methods 184, 333 (1981). 

4. W. M. Fawley and E. P. Lee, UCID-18584, Lawrence Livermore Labora- 
tory (1980). 

5. R. Noble, private communication. 

6. M. Bassetti and M. Gygi-Hanney, LEP-Note-221, CERN, Geneva (1980). 

7. T. Erber and G. B. Baumgartner Jr., Proc. 12th Int. Conf. on High 
Energy Accelerators (Fermilab, August 1983), p. 372. 

8. T. Himel and J. Siegrist, “Quantum Effects in Linear Collider Scaling 
Laws.” These Proceedings. 

9. P. B. Wilson, “High Energy Electron Linacs: Applications to Storage Ring 
RF Systems and Linear Colliders,” in Physics of High Energy Accelerators, 
R. A. Carrigan, F. R. Huson and M. Month, eds. (AIP Conf. Proc. No. 87, 
New York, 1982); also SLAC-PUB-2884. (See Sec. 10.1.) 

10. See Ref. 9, Sec. 12.3. 

11. A. N. Skrinsky, Proc. 12th Int. Conf. on High Energy Accelerators (Fer- 
milab, August 1983), p. 104. 

.12. A. Chao, SLAC Internal Note (May 1983). 

13. A. Chao and L. Rivkin, SLAC Internal Note CN-263 (January 1984). 

14. K. L. F Bane, “Landau Damping in the SLAC Linac,” 1985 Particle Ac- 
celerator Conf. (to be published in IEEE Trans. Nucl. Sci. NS-32); also 
SLAC-PUB-3670. 

15. See, for example, Ref. 9, Sec. 10.1. 

16. E. L. Garwin et al., “An Experimental Program to Build a Multimegawatt 
Lasertron for Super Linear Colliders,” 1985 Particle Accelerator Conf. (to 

- be published in IEEE Trans. Nucl. Sci. NS-32); also SLAC-PUB-3650. 

17. W. D. Kilpatrick, Rev. Sci. Instr. 28, 824 (1957). 

37 



18. G. Konrad, private communication. 

19. R. B. Miller, An Introduction to the Physics of Intense Charged Particle 
~- Beams (Plenum Press, New York, 1982), p. 11. 

20. G. Loew and J. Wang, “Measurement of Ultimate Accelerating Gradients 
in the SLAC Disk-Loaded Structure.” 1985 Particle Accelerator Conf. (to 
be published in IEEE Trans. Nucl. Sci. NS-32); also SLAC-PUB-3597. 

21. Eiji Tanabe, IEEE Trans. Nucl. Sci. NS-30, No. 4, 3551 (1983). 

22. V. L. Granatstein, 1984 Summer School on High Energy?article Acceler- 
ators; Fermilab (to be published in AIP Conf. Proc.). 

23. Rome Air Development Center, Report RADC-TR-70-101 (July 1970). 

24. T. G. Lee et al., “The Design and Performance of a 150 MW Klystron at 
S-Band” (to be published in IEEE Trans. Plasma Science.); also SLAC- 
PUB-3619. 

25. V. L. Granatstein, to be published in Int. J. Electronics 57 (1984). 

26. Y. Fukushima et al., “Lasertron, a Photocathode Microwave Device 
Switched by Laser.” 1985 Particle Accelerator Conf. (to be published 
in IEEE Trans. Nucl. Sci. NS-32). 

27. W. Herrmannsfeldt, SLAC-AP/41 (May 1985). 

28. 2. D. Farkas, “Binary Power Multiplier.” Submitted to MTT Special 
Transactions Issue on New and Future Applications of Microwave Systems, 
to be published October 1986. Also SLAC-PUB-3694. 

29. K.L.F Bane, Pisin Chen and P. B. Wilson, “On Collinear Wake Field 
Acceleration,” 1985 Particle Accelerator Conf. (to be published in IEEE 
Trans. Nucl. Sci. NS-32); also SLAC-PUB-3662. 

30. G. Voss and T. Weiland, DESY Report 82-074 (November 1982). 

31. T. Weiland, “Wake Field Work at DESY,” 1985 Particle Accelerator Conf. 
(to be published in IEEE Trans. Nucl. Sci. NS-32). 

32. J. Wurtele, u On Acceleration by the Transfer of Energy between Two 
Beams,” these Proceedings. 

33. A. M. Sessler, “The Free Electron Laser as a Power Source for a High 
Gradient Structure,” in Laser Acceleration of Particles, P. J. Channel& 
ed. (AIP Conf. Proc. No. 91, New York, 1982), pp. 163-189. 

34. Suggested by W. K. H. Panofsky. 

35. Ref. 9, Sec. 9. 

36. A. W. Chao, “Coherent Instabilities of a Relativistic Bunched Beam,” in 
Physics of High Energy Particle Accelerators, M. Month, ed. (AIP Conf. 
Proc. No. 105, New York, 1983); pp. 353-523. 

38 



37. K. L. F. Bane, P. B. Wilson and T. Weiland, “Wake Fields and Wake Field 
Acceleration” in Physics of High Energy Particle Accelerators, M. Month, 
Per F. Dahl and M. Dienes, eds. (AIP Conf. Proc. No. 127, New York,. 
1985), pp. 875-928. 

38. K.L.F. Bane and R. K. Cooper, Invited Lectures at the 1984 Summer 
School on High Energy Particle Accelerators (to be published in AIP Conf. 
Proc). 

39. K. L. F. Bane, private communication. ‘- - - 

- 40. K-. B-ane and T. Weiland, SLAC/AP-1 (January 1983). 

41. T. Weiland, 11th Int. Conf. on High Energy Accelerators (Birkhiiuser Ver- 
lag, Basel, 1980), pp. 570-575. 

42. B. Richter,“Requirements for Very High Energy Accelerators,” these Pro- 
ceedings. 

43. See, for example, K. L. Brown and R. V. Servranckx, “First and Second 
Order Charged Particle Optics,” in Physics of High Energy Particle Ac- 
celerators, M. Month, Per F. Dahl and M. Dienes, eds. (AIP Conf. Proc. 
No. 127, New York, 1985), pp. 62-138. 

44. L. R. Elias and G. J. Ramian, “Status Report of the UCSB FEL Ex- 
perimental Program, * in Free-Electron Generators of Coherent Radiation, 
C. A. Brau, S. F. Jacobs and M. 0. Scully, eds., Proc. SPIE 453, 137 
(1984). 

45. L. C. Teng, internal report LS-17, Argonne National Laboratory (March 
1985); also internal report TM-1269, Fermilab (June 1984). 

46. H. Wiedemann, 11th Int. Conf. on High Energy Accelerators (Birkhiiuser 
Verlag, Basel, 1980), p. 693. 

47. L. Rivkin, private communication 

48. Computer code ZAP by M. S. Zisman, J. Bisognano and S. Chattopadhyay, 
Lawrence Berkeley Laboratory. Unpublished. 

49. K-J. Kim et al., “Storage Ring Design for a Short Wavelength FEL,” 
1985 Particle Accelerator Conf. (to be published in IEEE Trans. Nucl. Sci. 
NS-32). 

- 

39 


