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ABSTRACT 

A covariant formalism for the scattering of three distinguishable scalar par- 

ticles is developed. Lorentz invariance in the form of velocity conservation and 

a parametric relation between the two- and three-body off-shell continuations 

in energy are introduced in order to satisfy unitarity and physical clustering. 

The three-body invariant probability amplitude is derived from the two-body 

transition matrix elements. 
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1. Introduction 

We present a self-consistent, relativistic scattering theory for three distin- 

guishable scalar particles of finite mass. From arbitrary pairwise interactions 

satisfying Lorentz invariance, individual particle mass conservation, and unitarity 

we derive integral equations leading to the probability amplitude for scattering in 

the full three-body system. The treatment satisfies several important criteria: v 

1. Relativistic invariance and four-momentum conservation - 

The equations, derived in an arbitrary Lorentz frame defined by an overall 

velocity, lead to an invariant probability amplitude. Four-momentum 

conservation is recovered in the on-shell limit as the product of energy 

conservation and velocity conservation. 

2. Two- and three-particle unitarity - 

The two-body input is constrained to satisfy unitarity. The form of the 

off-shell continuation guarantees that three-body unitarity follows. 

3. Unambiguous off-shell continuation - 

A set of parameters, corresponding to asymptotic single-particle energies, 

is introduced in order to write the relation between two- and three-body 

off-shell variables in terms of external quantities, independent of the in- 

tegration over intermediate states. Both systems are then effectively dis- 

persed in terms of the same variable, the three-body total energy. 

4. Proper cluster decomposition - 

Clustering, in the physical sense, is satisfied. If the interaction of one 

particle with each of the others vanishes, the solution decomposes into 

the product of a spectator and a two particle scattering state. 
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5. Correct non-relativistic limit - 

In the low energy limit the equations satisfy the same physical criteria as 

the non-relativistic Faddeev equations. 

The conditions of relativistic invariance, clustering, and unitarity place severe 

restrictions on the form of a scattering theory. In the three-body problem, the 

occurrence of successive pairwise interactions in different center-of-momentum 

frames leads to a consideration of the Lorentz transformation properties of off- 

mass-diagonal matrix elements. Clustering and unitarity point to the need for a 

parametric relation between the two- and three-body off-energy-shell dispersion 

variables. These considerations are treated here in the simplest possible context- 

the scattering of scalar particles. 

Dirac3 first showed that several different forms of Poincare’ invariant rela- 

tivistic dynamics are possible. These dynamics are distinguished by the choice of 

invariant hypersurfaces on which initial conditions are specified. The usual choice 

is the “instant form” in which the hypersurface is t = constant. In this case the 

generators of space translations and rotations are kinematic operators, while the 

dynamics is contained in the generator of time translation and the generators of 

Lorentz boosts. We utilize here the “point form” corresponding to the hyper- 

surface t2 - x2 = constant > 0. Then the six generators of the Lorentz group 

are kinematic, while the dynamics is contained in the four-vector P. As a result, 

interactions are Lorentz invariant but do not commute with the generators of 

space-time translations. Since we are constructing a scattering theory that con- 

nects two-body t-matrices to three-body t-matrices, without explicit reference to 

the spatial form of the two-body potentials, the “point form” is the most natural 

for our purposes. 



The various basis states needed to develop the scattering theory are defined 

in Chapter 2. Chapter 3 reviews the fundamental operator relations and the 

Faddeev operator decomposition used to insure well-defined integral equations. 

Chapter 4 establishes the crucial connection to the two-body input. Here velocity 

conservation of the transition operator matrix elements is introduced in order to 

separate Lorentz invariance from the off-shell continuation in energy. Two-body 

dispersion is related parametrically to three-body dispersion. Chapter 5 presents 

the resulting integral equations. The connection to physical observables is de- 

scribed in Chapter 6, where the invariant probability amplitude is obtained from 

the solutions of the integral equations. Chapter 7 summarizes the conclusions. 



2. Covariant States 

Consider a system of three distinguishable scalar particles with conserved, 

non-zero real masses and no internal degrees of freedom. States within this 

system transform via a unitary representation of the ten-dimensional Poincare’ 

group U(Z, a) for Lorentz transformations 1 and space-time translations a,4 

U(Z2, a2) U(Z1, al) = U(Z2Z1, a2 + Z2ai) . (24 

For convenience, we write U(Z) for U(Z, 0). 

A general Lorentz transformation Z can be written in terms of a pure Lorentz 

boost b and a pure rotation r. The boost is characterized by a velocity /3, from 

which we define a relativistic velocity 

With u” = dw , we define a four-vector velocity 

u = (uO,u) 

(2.2) 

P-3) 

which satisfies u . u = 1 . 

A general quantum state I$) can be used to define a new, boosted state 

Iti( = U(W) I+) * (2.4 



2.1 SINGLE PARTICLE STATES 

Quantities pertaining to a particular particle are labeled with a lowercase 

Roman letter or numerical subscript. A single-particle momentum eigenstate of 

mass m, and velocity u, is defined from a standard rest state of the same mass 

(2.5) 

The four-momentum of this state is 

k, = maua . (2.6) 

Since the individual particle masses are fixed, we adopt the convenient notation 

Ika) - j,a’ua) . 

We choose the normalization 

( I > ka k; 

= 2&a b3(ka - ki) 

and completeness 

+w 

J 

m2 d3u 
1= l-21: a Ikd tk4 

-tW 

= 
s 

d4ka 6 

-CO 
kjf - mi) e(ki) Ika) (kal 7 

P-7) 

P-8) 

(2-g) 

where &a = dm. 



2.2 THREE PARTICLE STATES 

Three particles can be grouped into a spectator a and a pair (a+, a-), with 

(a, a+, a-) cyclic. The subscript A is used to label quantities pertaining to the 

pair. 

The nine degrees of freedom of the three-body system can be represented in 

terms of collective variables such as the invariant mass of the system 

I+’ = d(h + h + h) - (kl + h + k3) , 

the relativistic four-velocity of the system 

u = (kl + k2 + ks)/W , 

the two-body invariant masses 

W, = d(ka+ + ka-) . (ka+ + ka-> 3 

and the two-body relativistic four-velocities 

UA = (ka+ + ka-)/VA * 

v,, is used to represent the four-vector uA as observed from the three-body center 

of momentum frame. In particular, 

A - (2.10) 

p, is used to represent the magnitude and fiA the direction of the three-momentum 

of particle a+ as observed from the center of momentum of the (a+, a-) subsys- 

tem. 



The specification of any nine independent variables is sufficient to select a 

unique three-body momentum space configuration. The remaining variables are 

then fixed as functions of these original nine variables and the three conserved 

individual particle masses. This functional dependence is not shown explicitly 

when it is clear from the context. 

The full three-body Hamiltonian H is assumed to decompose into a non- 

interacting term plus a sum over three pairwise interactions 
G-S 

H = H(O) + c H!‘) . (2.11) 
A 

This leads to the use of several different types of three-particle states in our 

treatment. 

An eigenstate of the non-interacting Hamiltonian H(O) is the direct product of 

three non-interacting single particle states, one for each particle in the three-body 

system 

H(O) lkl,k2,ks) = E(O) lk&,k3) 

IdO) = 61 + E2 + 63 (2.12) 

kl, k2, kslki, ki, ki) = fi $ 63(Ua - d> 
a=1 a 

= u” f(WA,dj) S3(u - u’) b3(v, - vi) 

x qw, - 4) ~“(IL - ix) , 

where’ 

s(%,‘u:) = 
84W - wav;) 

w3w;p, - 



Corresponding to each free state is the equivalent boundary state of three widely 

separated, asymptotically non-interacting particles 

H(O) I(Po(k&,k&Wu) = E(O) l@o(kl,kzrkz) ;Wu) , (2.13) 

where the total four-momentum P = Wu is a convenient label” and E(O) = Wu”. 

The eigenstates of HA = H(O) + Hi1) f orm a complete set of clustered channel 

states. Specifying each state by its overall velocity u and the characteristics of 

the interacting two-body subsystem gives 

(2.14) 

E, = Wu” 

w = w,v: + j/m. 

$*(w, Q) represents a two-particle state of invariant mass wA and internal quan- 

tum numbers summarized by the single parameter vA. For two-particle scattering 

states the mass w is a continuous variable. For two-particle bound states w is 

one of a discrete set of bound state masses pa. The two types of states are 

orthogonal, with normalizations 

= u” a(w,,v;) b3(u - u’) 63(vA - vi) +JA,w:) s,A,,: , 
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where 

1 
6 qwA, w;) = I1*,c1: 
Qh - w:> 

bound 

scattering 

bound 

scattering . 

The overlap of these clustered channel states with non-interacting states defines 

wavefunct ions 

(k~,kz,k+‘,u;,$,(WlrOl)) = u” [s(ws.&, a(~:,$+ 63(u--‘) (2.16) 

x b3(v, -vi) ht(wqw’,rl’) , 

where 

1 

~~(vw,rl’) 
h(W&“JI) = lcIi(w Ij,w, rl,) 

bound 

, , scattering . 

The wavefunctions are complete and orthonormal. With 
$ 

dw, representing a 

sum over the bound state masses and an integral from mA Z (ma+ -I- m,-) to 00 

over the scattering state energies, 

dw:’ q!~~(w,filw”,$‘) ,:(w’,$‘Iw”,d’) = +A - W:) S”($A -it> 

cm 
J s dw:’ d$:’ $~;*(w”,?j”lw,~) q!~;(w”,$‘lW’,rl’) = +‘A - w:> hA,v; 

mA 
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co 
s s dw:’ dfi:’ ,;*(w”,,” Iv?) ~$J”$“IP’d) = 0 - (2.17) 

m.4 

Below the scattering threshold the summation over 7:’ extends only over quan- 

tum numbers corresponding to existing bound states. 

Boundary states containing a bound pair of particles are equivalent to the 

bound clustered channel states 

Hat k&u,, &WI)) ;Wu) = E, l@,(a,u&(w)) Wu) (2.18) 

E, = Wu” . 

The eigenstates of the full Hamiltonian H represent the solution of the phys- 

ical problem 

H IQo(h,hrki) ;Wu) = E IQo(hhk3) ;wu) (2.19) 

E=Wu’. 

Here ICI, k2, and k3 are the asymptotic momenta of individual particles and uA 

is the asymptotic relativistic velocity of the bound pair. 
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The symbols 1 aa ; Wu) and 1 q, ; Wu) are used to represent general boundary 

and fully interacting states respectively, with asymptotic limits containing either 

three free particles (CX = 0) or a bound pair with a free spectator ((2: = A). 
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3. Scattering Operators 

To solve the physical scattering problem, the exact eigenstates of the full 

three-body Hamiltonian are expressed in terms of the asymptotic boundary states 

with corresponding momenta. The standard techniques of scattering theory give 

Ql”)(kAh) ;Wu > = !S @SE) R(E * iE) Qo(kl,kdu) ;Wu) (3-l) 

I ( !I!!” U,UA,&u,?j)) ;wu) =!S (SFic) R(Efif) (@A(VA,~~(wl)) ;wu) 9 

where 

R(Z) = j& (34 

is the fully interacting resolvent. We also define the non-interacting resolvent 

R(O)(Z) = H(o;F z 

and the channel resolvents 

All resolvents satisfy the Hilbert identity 

R(Z1) - R(Z2) = (2, - 22) R(G) R(Z2) 

and 

R+(z) = R(Z*) . 

13 
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(3.5) 

(3.6) 



Several relations follow directly from the resolvent definitions 

R(Z) = R(O)(Z) - R(O)(Z) p!‘) R(Z) (3.7) 
A 

R(Z) = RA(Z) - RA(Z) c6A~ &) R(Z) (3.8) 

n 

RA(Z) = R(O)(Z) - R(O)(Z) I$) R*(Z) , (3-g) 

where zAAB = 1 - SASS 

The three-body transition operator T( 2) is defined to satisfy a Lippmann- 

Schwinger l1 type equation 

T(Z) = ply - p$’ R(O)(Z) T(Z) . 
A A 

(3.10) 

Then 

R(Z) = R(O)(Z) - R(O)(Z) T(Z) R(O)(Z) (3.11) 

T(Z) = -,pIr!” - 1 If!‘) R(Z) c I@ . (3.12) 
A A B 

The Hilbert identity for the resolvents (3.5) leads to a unitarity relation for T(Z) 

T(Z1) - T(Z2) = (22 - Z,) T(Z1) IdO) R(O)(Z2) T(Z2) . (3.13) 

As it stands, the Lippmann-Schwingerequation (3.10) for T(Z) yields an in- 

tegral equation with a non-compact kernel and therefore has no unique solutions. 
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In order to proceed, T(Z) is decomposed using Faddeev’s methodI into 

T(Z) = ETA&) . (3.14) 
A>B 

The components satisfy 

TAB(Z) = 6AB TA(z) - CzAD TA(z) a”‘(z) TDB(Z) , (3.15) 
D 

where TA (Z), the transition operator for the scattering problem generated by the 

Hamiltonian HA = H(O) + HiI), satisfies 

T,+(z) = HiI) - HiI) l-do’(Z) TA(z) (3.16) 

&(z) = R(‘)(z) - R(‘)(z) TA(z) R(‘)(z) (3.17) 

TA(Z) = H!‘) - H!‘) R,(Z) Hi1) (3.18) 

TA(zl) - TA(z2) = (z2 - z,) TA(zl) R’o’(&) Rco)(z2) TA(z2) . (3.19) 

The FLN proof of unitarity13 demonstrates that the unitarity of T(Z) (3.13) 

follows from the unitarity of TA(Z) (3.19). 

TA(Z) expresses the scattering of two particles in the presence of a third, 

non-interacting particle. The relation of TA (Z) to the purely two-body scattering 

problem is the central issue of this treatment. It is discussed in the next chapter. 

To obtain integral equations with fully connected kernels, Eq. (3.15) for 

TAB(Z) is iterated once. Defining the operator W(Z) and its components WAB(Z) 
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through 

w(z) = c wAB(z) 

A,B 

TAB(Z) = SA, TA(z) + WA&) 

(3.20) 

(3.21) 

gives 

WAB(Z) = -8AB TA(Z) R(O)(Z) TB(Z)-CZAD TA(Z) R”‘(Z) WDB(Z) . (3.22) 
D 

The solution of this equation yields Z’(Z), which then through (3.11) gives the 

full resolvent R(Z). The connection to the physical probability amplitude is 

discussed in Chapter 6. 
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4. Two-Body Input 

The solution to the two-body problem is the input for this formalism. The 

transition operator t(z), generated by a Hamiltonian h = h(O) + h(I) acting in a 

two-body space, satisfies 

t(z) = h(I) - h(‘) d’)(z) t(z) (4-l) 

T(Z) = do) (2) - do) (2) t(z) r(O)(z) (44 

t(z) = h(l) - h(I) r(z) h(l) (4.3) 

t(a) - +a) = ( z2 - Zl) t(a) r(o)(zl) r(O)(zz) t(z2) , (4.4 

where 

r(z) = g- 
Z 

r(o)(z) = h(O)‘- z - 
The connection between tA (z) and TA (Z) cannot be written in operator form, 

since these two operators act in different Hilbert spaces. Instead, a matrix ele- 

ment relation is sought which satisfies covariance, unitarity, and clustering. 

At the two-body level, Lorentz invariance and unitarity restrict the form of 

the matrix elements of t(z) . r4 Lorentz invariance requires that the scattering pro- 

cess not alter the velocity of the center of momentum (see Appendix). Extracting 

17 



phase space factors gives 

(k.+,ka-1 b(z) (k:,,k:-) (4.5) 

= [u:]" [wAw:]-" [16 w,+w~/PAP:]' b3(uA -u:) ~A(~,filw',fi';Z) 3 

where 

The function rA depends on the indicated center-of-momentum variables, the 

off-shell parameter ZA, and the conserved individual particle masses m,,, m,-. 

Unitarity (4.4) requires 

7A(w,fiIw’,lj’;zl) - ~A(w,$Iw’,j’; 22) (4.6) 

1 1 
X wl' - 21 w;' - 22 

TA(w”,fi” Iw’,$; 22) * 

The three-body unitarity condition (3.19) must reduce to this same restriction. 

Clustering is satisfied if the exact physical solution for the case of a non- 

interacting third particle decomposes into the product of a spectator plane wave 

and a two-body scattering state. When T++)(Z) and T+,,)(Z) both vanish, Eqs. 
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(3.14), (3.21), and (3.22) give 

T(Z) * TA(z) . (4.7) 

Both clustering and unitarity require the matrix elements of TA(Z) to be 

proportional to the function rAS Lorentz invariance requires the conservation of 

u. The conservation of UA is also necessary to insure the independent Lorentz 

invariance of the decoupled spectator and the interacting two-body state in the 

clustering limit. 

In order to connect three-body unitarity with two-body unitarity a para- 

metric relation must exist between Z and 2. This relation must reduce the 

three-body off-shell behavior to that of the two-body problem. Defining siar to 

be a parameter equal to the physical asymptotic energy of the spectator in the 

three-body center of momentum frame, we write 

2, = ( zc - .Ear)/,; , 

where 

zc = z/u0 . 

This gives the correct on-shell limit 

WA = (w - Egar)/,; . 

(4.8) 

(4.9) 

The linear nature of resolvent denominator gives 

(h,hk3/ R(‘)(Z) Ik:,k:,k;) = wu;w z (h,hd+&k:,k~) 

19 
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1 
= A ~A i *A (kl,kd+:&k;) 3 

dJv” 

where 

WNA = (W - gar)/v; . 

By expressing the off-diagonal dependence of the matrix elements of TA(Z) on rA 

through GA instead of WA, the restriction (4.6) on rA can be used to guarantee 

three-body unitarity (3.13) through (3.19). 

The three-body phase space element can be written as 

3 

III 
rn? d3u. a 

221; 
a = [W3/uo] [p(W, v;)] -’ dW d3u d3VA d& , (4.11) 

i=l 

where 

P(KVo,) = 
8~; (WV; - WA) 

W:PA 

. 

The form of the matrix elements of TA(Z) which satisfied all the required condi- 

tions is 

(k&$3/ TA(z) Ik:,k:&) 

= [u’]” [ww’] -’ [@,V;) p(w’,v;)] ’ h3(u - u’) 63(vA - v:> 

(4.12) 



where 

G,, = (w - &iar)/v; 

w”: = (W’ - ,iar)/v; 

2, = (z” - .gar)/,; . 

Since the matrix elements conserve both u and vi, the relation between 2, and 

Z is parametric. Using (4.10) and (4.12) to evaluate the matrix elements of 

(3.19) reproduces the two-body unitarity condition (4.6) written in terms of the 

variables CA, w”:, and @i’, instead of WA, w:, and w:‘. The 0 functions in (4.12) 

provide the correct lower integration limit. 
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5. Integral Equations 

Given the two-body inputs, (4.12) can be used in (3.22) to generate a coupled 

set of integral equations for the matrix elements of the components of W(Z). In 

these equations the &Par factors are formally treated as fixed parameters. In 

the next chapter we will show that the resulting matrix elements are related to 

the physical probability amplitude only for a unique choice of values for these 

parameters. 

To simplify the calculation, define the functions WA, by 

(kAh1 wAB(z) Ik:,k:,k;) 

= [u”]” [ww’]-g [p(W, v;, p(W’, vf)] 4 63(u - u’) qw 

x e(wl - Efar’ - mBvE’) WAB(W)v)~Iw’,v’,?j’;ZC) . 

(54 

cpar - mAvt) a 

In addition to the indicated variables, WA, depends parametrically on the indi- 

par 1 vidual particle masses and the factors syar, szar, .siar, and sb . 

In order to write the integral equations satisfied by WA, another phase space 

element is needed. Define the functions 

w(W,v~,mf) = WV: - 5 + w2((vy - 1) (5.2) 

“(W, vro, v:, UI - uJ)=m~+m~ - W2 + 2 u(W,v,O,m:) cd(W,v~,m~) uI. uJ , 
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and let Wij be the largest real root of the fourth order equation in W2 

K(Wij, ?I:, ?I:, U, * UJ) - rni = 0 (5.3) 

k#i,j. 

The phase space element can then be written as 

3 

II 
rnv d3u. 2 

2T.L; 
a = [wf’b/uo] ~(w~~,v~,v~) d3u d3VA d3vB , (5.4 

i=l 

where 

@(Wab9 v29 vZ) = 
1 [w(Wabrv~~m~)]3 [W(Wab,VZ,m~)]3 afJ(Wa*,Vt,mi) 

4mama vtl 2’: dma 

x dW(Wab,V~ym~) ~K(W~~,V~,V~,UA -2~~) -’ 

dmb swab 1 . 
The driving terms in the integral equations have the form 

&B(W,V,j+++?j’; zc) (5.5) 

= Qcw,‘b”, v;, vu0 ‘) [p(W(bl) VO) p(Wjf), v; ‘)I i B a 3 A 

x t?(W(,‘) - cPnr - m,v:) O(W(,‘) - $far - m,vE’) a a a 



where Wc[) is the largest real root of 

Kab(Wab ,vA,vB 9”A ‘uL) -mz =’ (I) 0 0’ 

c#a,b, 

and 

2; = (Z” - &;ar ‘)/vZ ’ . 

fj!” and 1;:*’ are specified through the four-vector 

P(W,vr,vJ,mf,m5) = b-l(V,) [ - Eijk [u(W,v:,mT) 21, + $w(W,v,O,mf) vI]] , 

where ~ijk is the antisymmetric permutation symbol and b(v,) is a boost from 

the center of momentum of the (i-t, ;-) system to the three-body center of mo- 

mentum. Define 

P(W,vI,vJ,mf,m5) = 
P(JWvtd+$) 

lP(Kv,vJ,m+$)I ’ 

Then 



With integration to occur over d3v/, the kernels have the form 

KAD(W,v,filW”,v”,fi”;ZC) 
W-9 

= Q(W”,vS:,v;“) [p(w”,v;) p(w”,v;“)]; 

X B(W” - czar - mAv:) B(W” - cflar 0 ” 
- mDvD > 

x TA(wy>~~wu”>lj”;~) w//~zc , 

where W” is the largest real root of 

Rad(W”,v~,v~“,uA *IL:) - rnz = 0 

e#a,d, 

and 

PA A" = p (w ")vA) vy, ml, mi) 

PD -” = ~(w”9v~9vA,m~,m~) 

W “i’ = (W ” - .y>/v; . 

Thus, the integral equations generated by the matrix elements of (3.22) have 

the form 

(5.7) 
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= AA, DAD(w,v,ljlw',~',~';Z~) 

- F SAD J t&J:: [K,,(W,v,8lW”,v”,8”; 2”) 

x w,,(w”,v”,B”~w’,v’,fJ’;zc)] , 

where the dependence on the conserved single particle masses and the epar factors 

has been suppressed. 
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6. Probability Amplitude 

The physical cross section is related in a well-known manner to the invariant 

probability amplitude A (+I (@a I@; ; W) defined by 

( 
a@ ; wu *I;‘) ’ ;w’u’) = 6,p (rn,;Wul@;,;W’u’) (64 

+ 27rri 64(Wu - W’u’) ff(+)p,p;, ; W) 

b4(Wu - w ‘u’) = [u0/w3] 6(W - w ‘) b3(u - u’) . 

c 
From (3.1) and (3.6) 

= lim lim (--EE’) (ip, ; Wul R(E + ic) R(E’ + ie’) I@; ; W’U’) . E-+0 E’dO 

From (3.11) and (3.13) 

R(Z1) R(Z2) = R(‘)(Z1) [I - T(Z1) R”‘(Z1)] [l - R(‘)(Zz) T(Zz)] R(‘)(Z2) 

R(Z1) R(Z2) = R(‘)(Zl) [l +T(&) [z t z - R’o’(Z1)] P-3) 
2 1 

- 1 z2 : z1 + R”‘(Z2)] T(Zz)] R(‘)(Z2) . 
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6.1 ELASTIC AND REARRANGEMENT SCATTERING 

Consider first the case of elastic and rearrangement scattering. Each bound- 

ary state consists of one free particle and a bound pair. Define a set of operators 

Q AB satisfying 

R(O)(Z) wAB(z) R(O)(Z) = RA(Z) &A,(z) RB(Z) - (6.4 

Then, by writing (3.5) as 

W2) = q%) [l - (21 - 22) R(Z2)] 

and using (3.17) and (3.21), th e second term on the right hand side of (6.3) can 

be written as 

= z t z R(o)(&) T(a) R’“‘(zl) 
2 1 

’ 
= 22 - 21 

~RO(&) TA(&) R(o)(Z1) 

A 

RB(&) 

=- z2 : z1 c [IR-dZ1) - R’“‘(-%)] 
A 
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w ‘ith a similar manipu Jation on the third term, (6.3) becomes 

R(G) R(Z2) 

+ c RA(&) Q--W(&) [z2 t zl - RB(Zl)] h(Z2) . 

A,B 

(6.6) 

= c [RA(&) RA(-%)] - 2 R(‘)(Zl) R(‘)(G) 
A 

+ ERA(&) [QAB(%) [z - RB(&)] 
2 

i z 
1 

APB 

- 
Ii z2 T z1 + Rn(Z2)] QAB(~~)] R~(z2) . 

Substituting this into (6.2) with 21 = E + in and 22 = E’ + in’, and using the 

principal value relation 

P ; Fi-/rS(Z) , 
0 (6.7) 

-2ni S(E - E’) (@A ;wul &k)(E) Ia:, ;w’U’) , 
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where 

Q\:‘(E) G lim Qiz)(E + ic) . 
E-+0 

Equation (6.4) relates QAB to WA,. Taking the matrix element between non- 

interacting states and using completeness in clustered channel states, along with 

the wavefunction definitions (2.16), gives 

(6.9) 

dw:’ dw;” [tz(w:‘, v;) a(~;“, TJ;‘)] -; 

1 
x &,(W,?jlW”,$‘) ~;(w’~?j’lw”‘d”) E,, _ 2 E//,1- 2 

X U,“A,tiA(W”,~ ‘,)I QAB(~) ~U’,U;,+B(W”‘,~“‘)) . 

Consider a scattering process characterized by a physical energy EP. The 

parameters EP, u, and uA together specify a unique invariant mass ~5 for the 

(a+,~-) system. Similarly EP, u’, and u; specify a unique invariant mass &’ 

for the (b+,b-) system 

/.L; = w(WP, TJ;, rni) 

(6.10) 

pi’ = w(wp’,v~‘,7?2;) , 
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where 

WP = EP/u” 

Wp’ = EP/uo’ . 

In (6.9) set 2 = EP + ic, multiply both sides by (-ic)2, and take the limit 

E + 0. Since the wavefunctions and the matrix element of QAB are non-singular, 

the right-hand side will vanish unless the invariant masses (6.10) correspond to 

actual two-body bound states masses. Assume, for simplicity, that the spectrum 

of two-body bound states is non-degenerate. Then 

’ lim (4~)~ (kr,kz,k3/ WAB(EP+ic) lk:,k:,ki) EITEp E-EP E+O (6.11) 

X u,“A,~~(~P,~P)~ Qk’(Ep) Iu,u:d:(/-~~‘,v~‘)) . 

We have chosen u = u’, since this is the only case which will contribute to the 

probability amplitude. 

u, uA) and u; are parameters of the particular physical process under con- 

sideration. Their values restrict the range of bras and kets which can appear on 

the left-hand side of (6.11). Th e requirement that the left-hand side of (6.11) 

vanish unless ~5 and p; ’ correspond to existing two-particle bound state masses 
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uniquely determines the values of the &Par factors in terms of the physical param- 

eters. To see this we must consider the singularity structure of W(Z). 

The “primary singularities” due to the 7 functions in the driving terms (5.5) 

occur to all orders of iteration of the integral equations (5.7) for the components 

of W (2). The singularity structure of the r functions follows directly from (4.3). 

Taking a matrix element of (4.3) between free states, using II(~) = h - h(O), 

and inserting completeness in terms of exact eigenstates of h shows that ~~(2) 

has poles at 2 = PA, for each two-body bound state pA, and a scattering cut 

extending from 2. = m, to +oo along the real axis. Due to (4.8), this means 

that the matrix elements of WA,(Z) have “primary singularities” at 

zc = E, par + ,&v; 

Zc = ci”’ + m,vi 

(6.12) 

zc = &y’ + j.LBV~’ 

Zc = .$far’+mBv~‘. 

These singularities must correspond to poles at 2’ = WP for values of WP which 

satisfy 

PA = w(wp, & mi) 
(6.13) 

pB = w(Wp,v~‘,m~) . 

Therefore, the left-hand side of (6.11) has the correct behavior in the E + 0 limit 
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only if 

cPar = Wp - w(Wp, vy, mf) 71: i 
(6.14) 

cHar’ = Wp - w(WP,v~‘,mf) v,“’ . 

The &Par factors are independent of the off-diagonal integration used in the 

coupled integral equations (5.7). All six .sPar factors are fixed by (6.14) because 

matrix elements of each of the components of W(Ep + ic) between the same 

free particle bra and ket correspond to possible physical processes in different 

channels. 

Having established the values of the E par factors in terms of the physical 

problem under consideration, we return to the relation between WAB(Z) and 

Q,,(Z) in the case of physically realizable asymptotic states. With p: and &’ 

now particular bound state masses in the outgoing and incoming channels, the 

wavefunctions in (6.11) can be expressed in terms of the two-body input (4.5). 

Using I?il) = HA - H(O) in (3.18), completeness in the clustered channel states, 

and the wave function definitions gives 

(bWs1 TAG lhrhk3) (6.15) 

= u” ((WA,?& b3(u - u) s3(v, - VA) 

x [(E” - E) - (E” - E) E,,1- z (E” - E)] . 

33 



Substituting (4.12)) setting 2 = EP + ic, multiplying by (-ie), and taking the 

limit as e --) 0 gives 

‘!fi w-3 P(w, ‘:) ,yzo (-iE.4) ~A(~,fiI6,j? ; p: + iEA) (6.16) 

= - ~(WA,V:) cw - wp)2 ~~A(w,fiI~p,~p)~2 , 

where 

GA = (w - w’)/vy + w(w’, vy, mz) . 

Similar considerations hold in the incoming channel. 

Define 

x(W,v~,fi,,p~) = [vy W3 a(py,v,0)] + [- J,‘-” (-it,) ~,(G,filG,j;p~ + if,)]-; . 

(6.17) 

Then the comparison of (6.1) with (6.8), along with substitutions from (5.1), 

(6.11), and (6.16), yields the elastic and rearrangement scattering probability 
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(6.18) 

= -x(w,v:,fiA,~:) x(W’,v~‘,~~,&) 

x ,fzo ,i,i20 (-eAcL) WAB(W,v,$jW’,v’9fi’ ;wp + i8) . 
B 

The spar factors needed to evaluate this expression are fixed by (6.14), with vf 

determined by u, uA, W, and IjA. 

6.2 FREE PARTICLE SCATTERING 

In the case of free particle scattering each boundary state consists of three 

free particles. Substituting (6.3) into (6.2) with 21 = E + ic and 22 = E’ + ic’ 

gives 

; w+p’ ;w’u’) = (rn,;Wu~~~;W’u’) (6.19) 

- 2ni 6(E - E’) (~0 ; wul T(+)(E) ICD~ ; w/u’) . 

The comparison of (6.19) with (6.1), along with substitutions from (3.14), (3.21), 
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(4.12), and (5.1), gives 

(6.20) 

= -C [p(W,vt) ~(W,V:‘)]’ [GAB b3(V, -Vi) 7!+)(wvSI~,fi’;W) 
A,B 

+ w!;)(w,v,BIw,v’,p’;w)] . 

The &Par factors needed to evaluate this expression are fixed by (6.14), with WP = 

W. The result is that each &Par factor is equal to the corresponding asymptotic 

single particle energy, as observed from the three-body center of momentum 

frame. 

6.3 BREAKUP AND COALESCENCE 

Breakup and coalescence involve transitions between boundary states con- 

taining three asymptotically free particles and boundary states containing a spec- 

tator and a bound pair. Define the operators KAB (2) for breakup and gAB(2) 

for coalescence through 

R”‘(Z) WAD(Z) R(O)(Z) = CR(O)(Z) ITAB R,(Z) (6.21) 
A 

R(‘)(Z) WAD(Z) R(‘)(Z) = c R&Z) itA,(z) R(‘)(Z) . 
B 

Then an analysis similar to that of Sections 6.1 and 6.2 gives the probability 
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amplitude for breakup 

(6.22) 

= - c [P(W,v:)] 4 x(w’,4’,8~,&‘) A 

x cl,izo (-ie;) wAB(W,v,~IW’,v’,~‘;WP + kc) 
B 

and coalescence 

A(+)(QA(U,UA, ~~(~",a"))l~o(k~,k~,k~) 3') (6.23) 

=- c x(w,v:,$A,/-$) [P(w’d)]’ 

B 

x liyo (-ZEA) WAB(W,~,fi]W',v',~';WP +ic') . 



7. Conclusion 

We have succeeded in deriving an explicitly invariant probability amplitude 

from considerations of the three-body problem in an arbitrary frame. Two ideas 

were central to this treatment. The first was the use of velocity conservation in 

place of momentum conservation in order to separate Lorentz invariance from the 

off-shell continuation in energy. The second was the introduction of spar factors 

into the connection between the two-body input and the three-body problem. 

The resulting equations exhibit exact unitarity and physical clustering. 
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APPENDIX 

Poincare’ invariance requires matrix elements which correspond to physical 

observables to remain unchanged under the action of the unitary operator U(2, a). 

Exact solutions IT/J) are eigenstates of the four-momentum operator P, which 

forms four of the generators of the Poincare’ group. Non-interacting states 14) 

are eigenstates of the non-interacting four-momentum operator P(O). This choice 

of non-interacting basis is made to insure that the Poincare’ boost generator is the 

same three-vector operator for both the fully-interacting and the non-interacting 

systems. Since in the point form 

[p,p’“‘] # 0 3 

matrix elements such as 

do not, in general, conserve three-momentum. Instead, they must conserve three- 

velocity in order that a transformation to a well-defined center-of-momentum 

frame be possible. Let U be such a transformation and A be the corresponding 

Lorentz matrix. Then 

(dl(Wu)l H IQ2(W’,u’)) = b3(u -u’) f(W,W’) 

transforms into 

(h(W)/ U--‘U H u-‘u IQ2(W’,u)) = ho, (h(W,O)l Pp ~+z(W’,O)) 

= u” P(o - 0’) g(W,W’) . 

In the center-of-momentum frame both the three-momentum and the three- 

velocity vanish. Therefore, in this frame the conservation of one is equivalent (up 
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to a Jacobian) to the conservation of the other. 

In order to show a connection with the more common instant form, we con- 

sider the two-body potential. We refer here specifically to the operator which 

connects the generators of time translations in the interacting and the non- 

interacting systems 

H = H(O) + v . 

A general instant form potential expressed in a momentum space basis con- 

serves three-momentum 

(Pl,pzl v’ IP:,p:) = b3(P - P’) d(E,plE’,p’) , 

where 

p = Pl + p2 

P = i(Pl - P2) - 

On-energy-shell this becomes 

6(E - E’) (PI,PZ~ V’ IP:,P:) = b4(P - P’) +(PIP’;W) 3 

where 

is an invariant. 

W2=P.P 
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A general point form potential conserves velocity 

(Pl,PZl VP Ip:,p:) = P(U - U’) vP(W,plW’,p’) , 

where 

U=P/W. 

On-energy-shell this becomes 

6(E- E’) (p~,pzl VP Ip;,p;) = w3 [U”]-2 b4(P - P’) ~p(PjP';w) . 

Thus, the two forms of the potential give the same on-shell result in the center- 

of-momentum frame (U” = 1) if 

G1(plp’ ; W) = w3 CP(plp’ ; W) . 

The existence of different forms for the off-energy-shell extension reflects an am- 

biguity in the specification of this physically unobservable quantity. Each form 

preserves certain symmetries off-energy-shell and breaks others. 
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