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ABSTRACT 

The functional measure for the Feynman path integral is investigated, and it 

is argued that non-trivial measure factors should not be automatically discarded 

as is often done. The fundamental hypothesis of path integration is stated in its 

Hamiltonian formulation and is used, together with the Faddeev-Popov ansatz, 

to derive the general form of the canonical functional measure for all gauged or 

ungauged theories of integer spin fields in any number of spacetime dimensions. 

This general result is then used to calculate the effective functional measures for 

scalar, vector, and gravitational fields in more than two dimensions at energies 

low compared to the Planck Mass. It is shown that these results indicate the 

self-consistency and plausibility of the canonical functional measure over other 

functional measures and suggest an important relationship between bosonic and 

fermionic degrees of freedom. The canonical functional measure factors associ- 

ated with fields of half-integer spin and with auxiliary fields are also derived. 
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Introduction 

The path integral formulation of quantum field theory, developed by Richard 

Feynman, has been responsible for many of the most important developments 

in theoretical physics over the past several decades. However, one aspect of the 

Feynman path integral which has received relatively little attention is the func- 

tional measure. A recent series of elegant papers by Fujikawa [l] have shown 

that anomalies can be best understood as arising from the transformation prop- 

erties of the functional measure; a number of papers stretching back over the 

past decade-and-a-half have disputed the correct form of the functional measure 

for gravitation [2-71; and a few other papers have touched on the subject of the 

functional measure in one way or another. Virtually all of the remaining multi- 

tude of papers on the subject of quantum field theory and path integration have 

ignored the issue entirely. 

This state of affairs has been due to two very simple reasons. First, as we shall 

see below, the canonical functional measure for most ordinary theories is trivial, 

with the measure factor being equal to unity. Second, and more importantly, 

any non-trivial measure factors present would be formally set equal to zero under 

several very popular regularization schemes. 

In Sec. 2, I argue that in a wide range of situations, these regularizations- 

dimensional regularization and zeta function regularization-are not necessarily 

legitimate, and the results which they produce should be viewed with caution. 

Any measure factors which are discarded under these schemes but which survive 

under other, more intuitively simple regularization schemes should be retained. 

Under this line of reasoning, the functional measure factors derived in the re- 

maining sections of this paper may be meaningful. 

In Sec. 3, I state the fundamental hypothesis of the path integral formulation 

of quantum field theory, and use it to derive the canonical functional measures for 

theories of bosonic or fermionic integer spin fields in which all degrees of freedom 
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are physical. I then utilize the Faddeev-Popov ansatz to generalize this result to 

gauged theories of integer spin fields as well. 

In Sec. 4, I apply these results to calculate the canonical functional measures 

for various scalar and vector theories in an arbitrary number of dimensions. In 

curved spacetime, the measures of these fields often involve mixings with the 

measure for gravitation, but I argue that these terms should be neglected at 

energies low compared to the Planck Mass. Hence, some of the results obtained 

are valid only in more than two dimensions, where a dimensionful Planck Mass 

exists. 

In Sec. 5, I consider the case of the canonical functional measure for grav- 

itation in an arbitrary number of dimensions. The derivation of this measure 

is identical in form to those preceding, but is slightly more difficult to actually 

carry out, and yields the canonical functional measure for gravitation in more 

than two dimensions at energies low compared to the Planck Mass. 

In Sec. 6, the results of the previous sections are analyzed and several in- 

teresting conclusions drawn. First, it is suggested that fermions should best 

be understood as possessing bosonic physical anti-degrees of freedom (and vice 

versa). Second, it is noted that although the canonical functional measure for 

quantum fields in curved spacetime is usually not manifestly covariant under gen- 

eral coordinate transformations, its non-covariance may be required to cancel the 

possibly non-covariant point permutation Jacobian produced by a general coor- 

dinate transformation; a similar argument may indicate the flaw in the previous 

derivation of the gravitation functional measure by Fujikawa [7]. Finally, it is 

noted that only the canonical functional measure possesses the correct form to 

allow Kaluza-Klein theories to be automatically self-consistent on the quantum 

level. This appears to strengthen the likelihood that the canonical functional 

measure is indeed the correct functional measure for a quantum field theory. 

In Sec. 7, I derive the canonical functional measure for theories of half-integer 

spin fields, whose kinetic terms are linear in derivatives. I apply this result to 
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Dirac, Majorana, and Weyl spinor fields in an arbitrary number of dimensions. 

In Sec. 8, I show the proper means of dealing with auxiliary fields, which 

possess no dynamics, and use the result to determine the canonical functional 

measures for massive vector field theories in an arbitrary number of dimensions. 

Throughout this paper, I shall use units in which h = c = k = 1 and 

all quantities are measured in GeV. My metric convention will be timelike, 

VW = diag(+l, -1, -1,. . . , -1) , and Greek letters will range over spacetime 

coordinates, while capital Latin letters will be completely general field indices. 

I will adopt usage of the rationalized Newton’s Constant, c = 87rG, with the n 

dimensional (rationalized) Planck Mass being Mpllrnek = (e) A. 

Under my terminology, a propagating degree of freedom will be called “gauge” 

if the Lagrangian is invariant under a change in its value, and “physical” oth- 

erwise. Non-propagating degrees of freedom will be called “constrained” if they 

correspond to the first-class constraints always paired with gauge conditions [ll], 

and “auxiliary” otherwise. Except for this last distinction (which is more se- 

mantic than substantive), this nomenclature accords with supersymmetry usage 

[12]. These definitions differ slightly from the more common ones in which a field 

must have on-shell states in order to be truly “physical;” but such a definition 

breaks down under the Faddeev-Popov procedure, becoming either ambiguous or 

leading to the non-conservation of physical degrees of freedom. 

2. Why the Functional Measure Matters 

Consider a quantum field theory defined on some arbitrary space and based on 

canonical fields QA and a Lagrangian L[QA]. In its Lagrangian formulation, the 

Feynman path integral defines a generating functional for the Green’s functions 

of the theory, 

Z= 
/ 

(dQA]ezpiS ~“zL[QAI, (2.1) 
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with 

[&?A] = n M[QA]&?A 

being the functional measure which should be used. 

tional one may calculate the Green’s functions either 

the action or by using the relationship 

(2.2) 
From this generating func- 

by adding a source term to 

(FIQAI) = 
,f [dQ,t]F[QA]ez$-f d"ze[QA] 

J[dQA]eq'.f d"zL[QA] 
P-3) 

In this procedure, there is no reason for us to assume that the functional mea- 

sure factor M[QA] is trivial, i.e. that [dQA] = fl, dQA. A non-trivial functional 

measure factor corresponds to the presence of additional terms in the effective 

action of our field theory, and these in principle could have a significant impact on 

the behavior of our theory, Yet this very important aspect of the path integral- 

the issue of the correct form of the functional measure and the possible existence 

of non-trivial measure factors-has, with some notable exceptions, received very 

little attention. 

This lack of attention is due to two very simple reasons. First, as we shall 

see below in Sec. 5, the canonical functional measures for most ordinary field 

theories are trivial “flat” measures, with measure factors equal to unity. Second, 

and more importantly, all non-trivial measure factors in the functional measure 

may be transferred to the effective Lagrangian by means of fictitious “measure 

ghost” fields similar to the better known Faddeev-Popov ghosts of the gauge- 

fixing technique [8]. However, all loops involving these measure ghosts will carry 

factors of the form 

2N 
6 1 , (2.4 

with n being our spacetime dimensionality. And these, despite being highly 
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divergent, are formally set equal to zero under dimensional regularization (or 

zeta-function regularization). The widespread dominance of dimensional regu- 

larization over the past decade has nearly eliminated functional measure factors 

from the thoughts of most theoreticians* 

However, dimensional regularization may be argued to be a valid regulariza- 

tion technique only so long as it is unambiguous. This criterion seems roughly 

satisfied in situations in which the underlying topology of background spacetime 

is trivial. For example, flat Minkowski space in four dimensions, M4, can be 

extended in a natural manner to flat Minkowski space in w dimensions, MU, 

resulting in a unique regularization of all divergent quantities. 

Since ordinary particle physics is usually done on a flat Minkowski back- 

ground, dimensional regularization is more or less reasonable, and is widely em- 

ployed. But in situations in which the background space has non-trivial topology 

(as is often the case with gravity and always the case with Kaluza-Klein theories), 

this approach breaks down completely. 

For example, suppose that our background space is M4 x S1. Extending the 

dimensionality of this space can be done in a number of different ways, namely 

M4 x S’ - W x S’ or M4 x SW or M4 x (S1)w (24 

or any combination of these, and as Hawking has pointed out, the regularized 

values of divergent loops are dependent upon which dimensional continuation one 

chooses [lo]. D imensional regularization makes little sense under these circum- 

stances, even apart from its well-known inapplicability to theories with chiral or 

conformal symmetries. 

Zeta function regularization is only slightly more respectable in this context. 

The regularization technique is unambiguous for a non-trivial spacetime back- 

ground topology, hence its widespread use in gravity and Kaluza-Klein theory. 

* This view that dimensional regularisation legitimately eliminates all non-trivial functional 
measure factors is presented most forcefully by ‘t Hooft 191. 
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However, as Hawking himself pointed out (lo] in the paper which introduced it 

to the physics community, the results it produces are identical (up to an unim- 

portant constant normalization factor) to those obtained from dimensional regu- 

larization if we choose to append only flat extra dimensions to spacetime; hence 

in some sense, it is dimensional regularization by the back door. It should be 

realized that dimensional regularization would also produce unambiguous results 

if we adopt the arbitrary rule that all continued dimensions shall be flat regard- 

less of the background topology of the original space. Furthermore, zeta function 

regularization is self-consistent to only one loop anyway. 

For these and similar reasons, one should hesitate to ignore divergent terms 

such as (2.4) which are formally equated to zero under certain regularization 

schemes (such as dimensional or zeta function regularization), but which retain 

their full divergent character under other, somewhat more intuitively simple reg- 

ularizations schemes (such as working on a lattice or using a naive cut-off). Given 

such a cautious approach, non-trivial factors in the functional measure of a quan- 

tum field theory should be retained. 

3. The Canonical Functional Measure and How to Derive It 

Let us now consider the Hamiltonian formulation of the Feynman path inte- 

gral for quantum fields QA. We have 

z = 
/ [dflAdQA]ezpi-f d”z~*&Q.t-U]ll”,Q,] 

with our canonical momenta being defined by 

HA= 6L 
WOQA) 

and with 

N = nAaoQ~ - ~[QA,~oQA]. 

(3-l) 

(3.2) 

(3.3) 
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According to the fundamental hypothesis of path integration, our Green’s 

functions may be calculated from our generating functional Z by the Hamiltonian 

version of (2.3) 

(FInA, QA]) = 
J[dnAdQA]F[nA, QA]ezpild”‘~“‘oQ*-WIn”,8AJ 

‘I[dnAdQA]ezpiJ dnzl-lABoQA-U[l-I*,Q~] - (3.4 

Furthermore, the hypothesis holds that the correct functional measure in this 

Hamiltonian formulation is the canonical functional measure, in which the inte- 

gration extends over all physically distinct field configurations, and weights each 

by the same trivial factor of unity [3, 4, 81. 

IdnAdQ~I = n(dHA(Z)dQA(Z))phyaical' P-5) 
2 

Under this elegant hypothesis, our generating functional Z represents a quan- 

tum partition functional in which each physically distinct unit of classical phase 

space is weighted by the exponential of its quantum action. It has been argued 

that only this choice of the functional measure ensures the overall unitarity of our 

quantum field theory 14-51. The canonical functional measure for the more com- 

monly seen Lagrangian formulation of the path integral is obtained by formally 

performing the functional integration over the canonical momenta in (3.1). 

The above formulation-in which the canonical coordinates and momenta are 

independent, quantum mechanically conjugate variables-applies only in the case 

that our Lagrangian is quadratic in (time) derivatives. This is because the second 

order differential field equations obtained from such a Lagrangian requires the 

values of the fields and their first time derivatives to be specified on each spacelike 

hypersurface in order to determine the subsequent evolution of the fields in the 

path integral expansion. On the other hand, Lagrangians which contain terms 

cubic or higher in derivatives tend to lead to violations of unitarity and can be 



ignored for our purposes. Therefore, let us restrict our attention to Lagrangians 

which are quadratic in derivatives, and hence are based on fields of integer spin. 

Furthermore, let us temporarily impose the simplifying assumptions that (A) our 

Lagrangian is non-degenerate (i.e. has no gauge symmetry or constraints on its 

field variables QA, implying that all our canonical variables represent physical 

degrees of freedom) and (B) all our fields are bosonic in nature. 

Under these conditions, we can rewrite our Lagrangian as 

2 = iDAB(aoQ~)(aoQ~) + EA(aoQ~) + F, (34 

with DAB,EA,F b eing functionals of fields QA and their spatial derivatives, 

and with detDAB # 0 (our non-degeneracy condition). This implies that our 

canonical momenta are equal to 

HA= 6L: 
~(~oQA) = 

We can use this result to solve for the 

Lagrangian 

DABaoQB + EA. P-7) 

Hamiltonian which corresponds to our 

#[HA, QA] = ~~A(D-‘)~IIB - EA(Dml)ABnA - F. (3.8) 

With our Hamiltonian now known, we can directly perform the functional inte- 

gration over canonical momenta in our Hamiltonian path integral (3.1), and find 

that our generating functional becomes [8] 

Our path integral has now been put into its Lagrangian form, and we have also 

determined the form of the canonical functional measure 
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idQA1 = n [det ( 6(aoQ:;:aoQB) >I fdQA’ 2 (3.10) 

This functional measure is potentially non-trivial.* It should be noted that this 

measure is independent of the particular ordering we choose for our canonical 

fields and momenta in the Hamiltonian; all resulting commutators would be at 

most linear in canonical momenta, and hence would not contribute to the measure 

factor. 

If we relax one of our simplifying assumptions, and allow our canonical fields 

to be fermionic, it is easy to see that the resulting canonical functional measure 

would be 

[~QAI = n [det ( s(a,Q~~~aogB))] -tdQA, 2 
(3.11) 

with the inverse power of the measure factor being due to the special nature of 

fermionic integration. We can even consider the situation in which some of our 

fields are bosonic, some are fermionic, and terms in our Hamiltonian possibly 

contain mixtures of fermionic and bosonic conjugate momenta. The functional 

measure factor in this case is simply 

with sdet, the superdeterminant, being defined by [12] 

(3.12) 

* This same result may be obtained [14] by rotating to Euclidean space, introducing a 
new “pseudo-time” coordinate, and treating the theory as being one in classical statistical 
mechanics. 
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sdet(zi 21) = 
detMbb = det(Mbb - Mb,Mj--Mfb) 

det(Mff - M/bMbilMb/) detMff , 

(3.13) 

with A&, being the bosonic-bosonic submatrix, Mff the fermionic-fermionic sub- 

matrix, and Mb! and Mfb the mixed bosonic-fermionic submatrices of the super- 

matrix. 

If we relax the second of our simplifying assumptions, and attempt to calcu- 

late the functional measure for a theory based on a degenerate Lagrangian, we 

face a somewhat more difficult task. One approach is to determine the physical 

portion of the Hamiltonian phase space measure in terms of the total phase space 

measure by using the restrictions imposed by the constraints on our canonical 

variables [3-51; equivalently, we can demand that our measure be chosen so as 

exactly to cancel all divergences of the form 6(“)(O) in our Lagrangian effective 

action [4-61. However, the easiest and most intuitive approach relies on apply- 

ing the Faddeev-Popov ansatz to our theory based on a degenerate (i.e. gauge 

invariant) Lagrangian. Under this well-known technique, the Lagrangian for our 

theory is replaced by 

LO H L’ = l0 + lgaugc-f&zing + tghoet* (3.14) 

The gauge-fixing piece of our new Lagrangian is chosen so as to remove the 

degeneracy of our original Lagrangian, while the ghost piece compensates for this 

gauge-fixing piece, and contains additional ghost fields which have commutation 

relations opposite to those of our original fields. The extra physical degrees 

of freedom produced by our gauge-fixing procedure are exactly compensated for 

(and cancelled) by these ghost fields, which (as will be discussed in Sec. 6) should 

be understood as possessing physical anti-degrees of freedom. 

Now the central hypothesis of the Faddeev-Popov procedure is that the quan- 

tum field theory based on our modified Lagrangian f? and fields QA, VB yields 
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identical physical results (i.e. Green’s functions) to those produced by our orig- 

inal Lagrangian & and fields QA. But if this is true, then we can make the 

modified form of the Lagrangian the starting point of our analysis, and consider 

the corresponding Hamiltonian formulation in order to determine the canonical 

functional measure for the Lagrangian formulation of the theory.* 

This determination then becomes quite easy. Our modified Lagrangian is non- 

degenerate, with all its field configurations being physical, and we can directly 

apply the results previously obtained for non-degenerate Lagrangians. However, 

we must consider the meusure factors being contributed both from the ordinary 

fields and from the ghost fields of our modified Lagrangian; our full functional 

measure factor includes both of these contributions. The results obtained by this 

procedure are formally identical to those derived from the more cumbersome 

constraint procedure [4). 

4. Simple Cases 

Let us apply this powerful formal machinery of the Hamiltonian path inte- 

gral analysis to derive the canonical functional measures for various commonly 

encountered theories. 

Consider a scalar field theory in a flat spacetime. The Lagrangian is 

Therefore, the canonical functional measure is given by 

(4.1) 

(4.2) 

* This technique was previously noted by Fradkin and Vilkovisky [4] for the case of gravita- 
tion, but applied incorrectly. 
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and is trivial. On the other hand, for a non-linear sigma model with Lagrangian 

L = 2(1 +;am.)2 (ac,&)(a’&~) + &nt[dcr] with Q = 1,2,3, (4.3) 

the non-trivial functional measure is 

[dM = n: (I+; 2 
(p 

a a 
pa. 

It should be noted that the canonical formalism thus automatically reproduces 

the correct group-invariant measure which should be used for the non-linear sigma 

model [ 141. 

Now let us consider the slightly more complicated case of an abelian gauge 

theory in flat spacetime. Our initial Lagrangian is 

L = -+,A, - &AJ2. (4.5) 

Adding the appropriate gauge-fixing and ghost terms of the Faddeev-Popov 

ansatz, chosen for Feynman gauge, we obtain the modified effective Lagrangian 

f? = - f (a,~,) (apAY) + (a,~) (857). (4.6) 

The functional measure factor due to our vector field is given by 

1 ( 
S2L 

>I 

r 

det ~(aoAp)~(aoA,) 

2 
= constant, 

while the functional measure contribution from our ghost fields is 

[ ( det 62’ 
S(aO?a)J(a06b) >I -’ = constant , 

P-7) 

(4.8) 

where we have defined 60 = (II, 4). Both of th ese contributions are trivial con- 

stants which can be absorbed into our overall normalization factor, so their prod- 

uct, the total functional measure factor for an abelian gauge theory in flat space- 

time is also trivial. Equivalently, the total functional measure could have been 

written more compactly as the superdeterminant 
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s2t >I 
1 5 

~(~OQA)@%QB) 
= constant, 

with QA = (A,,~,fj). S ince there are no Hamiltonian terms which contain both 

vector field and ghost field canonical momenta, our supermatrix is block diagonal, 

and its superdeterminant is indeed simply the product of (4.7) and (4.8). 

The case of a non-abelian gauge theory in flat spacetime is just as simple. 

After adding gauge-fixing and Faddeev-Popov ghost terms (again chosen in Feyn- 

man gauge) our effective Lagrangian is 

(4.10) 

+ terms linear or lower in derivatives. 

The only portion of the Lagrangian which contributes to the functional measure 

is the portion quadratic in derivatives, and this portion is exactly the same as for 

an abelian gauge theory. The total measure factor is once again given by (4.9), 

where this time QA = (Ai,a”,fj’). The resulting expression is the result for the 

abelian case raised to the power of K, the number of gauge fields in the theory, 

and is once again trivial. 

We have shown that the canonical functional measure factors for free scalar 

fields and free vector gauge fields are completely trivial in flat spacetime. It will 

be shown below (in Sets. 7 and 8) that the canonical functional measure factors 

for free spinor and free massive vector fields in flat spacetime are also trivial. Now 

any interactions involving these various scalar, vector, and spinor fields will be 

at most linear in derivatives; therefore such interactions cannot contribute to our 

functional measure factors. This implies that virtually all familiar quantum field 

theories formulated in flat spacetime have trivial functional measures (the non- 

linear sigma models, mentioned above, are about the only significant exceptions). 

This is the only reason that these familiar quantum field theories-formulated 

by naively ignoring functional measure factors-are nonetheless correct. 
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If we extend our analysis to curved spacetime (i.e. theories in which gravita- 

tion is quantized), the functional measure factors for all of these theories become 

highly non-trivial. For a minimally-coupled scalar field, our Lagrangian is 

L = f4=iPa,&%P - $Gim242 + l[h7c(v]. (4.11) 

The functional measure factor for this scalar field theory is given by 

[ ( 
S2L 

>I 

r 

det qao4)J(ao4) 

1 

’ 
(4.12) 

and the canonical functional measure for 4 is thus 

[d4] = n(g”))‘/2g1/4dt#. 
z 

(4.13) 

Moving to the case of an abelian gauge theory in curved spacetime, the 

situation is slightly more complex. Our initial Lagrangian is 

lz = -~~gp”g”‘Fp~F,, with 
(4.14) 

F W = V,A, - &,A, = $,A, - &A,. 

Applying the curved space form of the Faddeev-Popov ansatz [4,20] and choosing 

Feynman gauge, we obtain the modified Lagrangian 

f? = - ;Gg”vgAu(VpAA - VxA,)Vv& - ~~gPvg’uVPAvV~A,, 

+ ~c,(15(-s)-““)g’“~a,tl. 
(4.15) 

Obtaining the functional measure factor for such a Lagrangian is slightly more 

difficult than it might seem. This is because the theory actually contains terms 
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involving the time derivatives of our metric field as well as the time derivatives 

of our vector and ghost fields, most obviously since 

V,A, = i3,A, - r&b = it$A, - fAUhw + gpu,v + gvqb). (4.16) 

Therefore, the Hamiltonian which we obtain from our Lagrangian will contain 

terms which mix the canonical momenta of our vector and ghost fields with those 

of the gravitational field, and the supermatrix whose superdeterminant produces 

our functional measure factor 

( 
s21z 

~(~oQA)~(~oQB) ) with QA = (gpv, A,, ~9 ii,. . a) (4.17) 

will not be block diagonal in its gravitational and vector/ghost sectors, and, in 

general, will be quite difficult to evaluate. 

Fortunately, there is a means of resolving this serious difficulty. If we are 

working in more than two dimensions the graviton-graviton diagonal block el- 

ement of our measure supermatrix which derives from the purely gravitational 

portion of our Lagrangian 

L grav = -&gR, (4.18) 

is proportional to a power of the Planck Mass (the square of the Planck Mass 

in four dimensions), while the graviton-graviton and graviton-vector/ghost block 

elements obtained from (4.15) are merely proportional to the appropriate powers 

of the values of the vector/ghost fields. Therefore, at ordinary energies, these 

latter entries contribute negligibly to the superdeterminant, and may be ignored 

in a computation of the total functional measure. Our supermatrix becomes 

effectively block diagonal in its vector/ghost and gravitational sectors, and the 

low energy effective functional measure for the vector/ghost sector is given by 
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[ ( sdet s21z 
S(~OQA)J(~OQB) 

with QA = (A,,fj,q) and with n being the dimensionality of our spacetime. 

This approximation based on neglecting terms involving the ratios of our 

various quantum fields to the Planck Mass is completely justified if we are reg- 

ulating our theory by using a naive cut-off (or inverse lattice spacing) which is 

small compared to the Planck Mass. Such a procedure may seem questionable, 

but is our only option given the lack of an acceptable full theory of quantum 

gravitation. In fact, the terms being neglected would have to be neglected under 

any circumstances. This is because the low energy effective Lagrangian for the 

true theory of quantum gravitation presumably contains higher mass-dimension 

interactions which are suppressed by appropriate inverse powers of the Planck 

Mass, and these (completely unknown) terms would produce contributions to our 

functional measure factors of exactly the same magnitude as the above mixing 

terms. Since we have no choice but to neglect the contributions of the unknown 

residue terms of quantum gravity, we must neglect the mixing terms as well. 

Thus, the canonical functional measure for an abelian vector field theory in 

n dimensional curved spacetime is given by 

[dA,](“) = n(goo)qgTdA,dfjdr,. 
2 

(4.20) 

This analysis is repeated exactly for the case of a non-abelian gauge theory: 

since the non-abelian character of the theory only manifests itself in Lagrangian 

terms containing fewer than two derivatives, it has no effect on the form of the 

functional measure (just as it did not in the flat spacetime case). If our theory 

has K vector fields (i.e. if the adjoint representation of our symmetry group is 

K dimensional, our canonical functional measure is 
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[dA$“) = n((g”)~g~)KdA;drs”d~~. 
2 

(4.21) 

5. The Canonical Functional Measure 
for Quantum Gravitation 

Now that these simple hors d’oeuures have been served and eaten (and per- 

haps even digested), we are properly prepared to begin the main course: deriving 

the canonical functional measure for gravitation itself. The techniques to be used 

are no different; but the calculation is much more involved. 

The Einstein-Hilbert Lagrangian for pure gravitation may be written as [15] 

LEH=-- 

=e - --&gV~g~‘g’P - gVPgAPgC’ + 2gVPgA’gQP - 2gT’gpQgvA)gv~,,g,,,,. 

+ total divergence. 
(5-l) 

Let us choose our gauge-f%ng interaction to be 

LGF = ‘h[(-g)-11’&(figc’))2. 
JE 

(5.2) 

Note that this term in the action has the proper negative-definite form only after 

we have Wick-rotated to Euclidean space. The Faddeev-Popov ghost interactions 

designed to compensate for this new gauge-fixing interaction are given by the 

formal expression 

where 4,~ are our Faddeev-Popov ghost fields and ev represents our infinitesi- 

mal gauge transformation parameter, corresponding in this case to an infinitesi- 

mal general coordinate transformation. The Lagrangian in (5.3) is evaluated by 
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noting the behavior of our various metric objects under such a transformation, 

namely 

Using these relations and relabelling a few of our indices for purposes of conve- 

nience, we obtain 

6FP = -&-d-1~4 [h,Bapevap(fip) - iav(vh,Bap(figy 

+ h,8a,(67av wq + hia, (-a, pgpq (5.5) 

+ b%k6a, wy ] . 

From this expression, we can obtain the ghost interactions of our Lagrangian by 

applying (5.3). 

Half of our ghost fields transform like the components of a world vector, vu, 

while the other half transform like world scalars, 48. This is inconvenient, so we 

should use a change of variables and redefine flc( G fjphpp.* Also, we should use 

integration by parts to put our Lagrangian into a form in which no field has 

more than one time derivative acting upon it (the proper form for making the 

transition to the Hamiltonian formalism). After these two modifications, our 

* Actually, such a naive change of variables in our path integral is not quite correct (contrary 
to the claims of Coleman [g] and ‘t Hooft [IS]). But in a paper which has received insuffi- 
cient notice, Gervais and Jervicki 1171 h ave worked out the correct procedure for changing 
functional variables of integration, and described the additional terms in the effective action 
which must be added at two loops and higher. For our purposes, the important point is 
that theee additional terms do not involve the canonical momenta, hence do not contribute 
to the functional measure. 
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ghost Lagrangian assumes its final form 

L: ghost = -& 

- ap ((-9) -lhp) ~dwd - a, (-8)-l’%,) 6iPapf7v 

- a, ((-4W%) 6%7~papf7v]. 

(5.6) 
Therefore, our complete modified Lagrangian for gravitation is 

f? = ZEH + LGF + lghost, 

and our gravitational functional measure factor is given by 

[ ( 
is2P r 

sdet >I 
1 

6(aoQ,@(aoQd ’ 

with QA = (gpv, VP, vu). 

W) 

(5.8) 

Evaluating the superdeterminant of such a supermatrix, containing graviton- 

graviton, graviton-ghost, and ghost-ghost sectors, would be a very formidable 

computation. However, just as in the case of vector fields, we may fortunately use 

energy scaling arguments to simplify our task considerably. First, note that the 

nature of the Faddeev-Popov ansatz has ensured that the dimensional constant 

in front of our ghost action is 3? while the constant in front of our Einstein- 

Hilbert and gauge-fixing action terms is &. Now in n dimensions, e has units 

of (mass)-(n-2). Therefore, our ghost fields have units of [qq] = (mass)F. 

Choosing how to distribute these units between a ghost and its conjugate ghost 

is arbitrary since they enter our Lagrangian only in pairs (and the choice will 

not affect the argument which follows); therefore, let us choose a symmetric 

distribution, with [q] = [q] = (mass)?. 
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Let us rewrite the matrix appearing in (5.8) in slightly more detailed form as 

( 

b2cEH + b2LGF f b2Lghod b’lghost 

&i~@iB &i~&iB &~A&~EI bti~&i~ 
G’lghort b2ighort ’ 

(5-g) 

hi~6tiB 66~66~ 
1 

with VA = (f?p,‘Iv) =d gA = gPv,p 2 u. These different blocks represent the 

bosonic-bosonic, fermionic-fermionic, and mixed bosonic-fermionic sectors of our 

supermatrix. Note that the bare and gauge-fixing portions of our total La- 

grangian contribute only to the bosonic sector since they contain no fermionic 

(ghost) fields. 

Now the bare and gauge-fixing contributions to our bosonic-bosonic subma- 

trix have the approximate magnitude 

while the ghost Lagrangian contribution to this submatrix has the form 

(5.10) 

(5.11) 

Therefore, just as in the earlier vector field case, the contribution from (5.11) may 

be neglected compared with the contribution from (5.10) when evaluating the su- 

perdeterminant of (5.9) (so long as the submatrix in (5.10) is non-singular, which 

it is, since that requirement determined our choice of gauge-fixing interaction). 

Next, let us consider the scaling behavior of the remaining contributions to 

the supermatrix (5.9). These scale as 

(Mmmck~2 (Mplanck) - ?I 
(Mpzanck) o rl (%=zonek)n-2 (5.12) 

(The fact that the different blocks of our supermatrix possess different mass- 

dimensions is not at all alarming, and indeed should be expected since our various 
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fields have different mass-dimensions; we are only interested in the superdeter- 

minant of this supermatrix, which is homogenous in mass-dimensions.) If we are 

working at energies low compared to the Planck Mass, the dominant contribution 

to this superdeterminant comes from the block-diagonal determinants (so long as 

these are non-singular). All off-block-diagonal contributions are suppressed by 

at least 

(5.13) 

If we neglect these Planck Mass suppressed off-block-diagonal contributions (us- 

ing the same reasoning as in the vector field case), our gravitational canonical 

functional measure assumes the simple form 

)] 1’2 [det ( 62’ghost )] -1’2. 
6(a03AwO'?B) 

(5.14) 

We can begin to evaluate the first of these two determinants by putting our 

gauge-fixing Lagrangian into a more convenient form. First, let us use the relation 

a,(figy = -(-g)1~2gxQrf, = 

to rewrite our gauge-fixing interaction (5.2) as 

LGF= &~~A”epr4”Yh%,p + 2g&7)(-gpz,v + 2g,,,,). 

(5.15) 

(5.16) 

Using the symmetries of the indices, two of the terms can be combined, and the 

entire expression put into its penultimate form 

eGF= 4gprgxpsuv + 4gAPgpVg~r)gAGqLgpr,v. (5.17) 

Relabelling our indices, and combining this expression with (5.1), we obtain the 
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complete graviton self-interaction (in Feynman gauge, a: = 1) 

LEH + LGF = - 4gcLQgP~gv~ + 2gvAg’rgflP 

- %fXdYlvp - !lvxsppsu’ Qv/b,ai7Xp,r* > 

We are interested in computing the determinant of the matrix 

6 6 
wogap) wog7d (~EH + LGF), 

(5.18) 

(5.19) 

with ,f? 1 (r,6 2 7. Proceeding carefully, we should note that our variational 

derivatives bj act only on the terms which appear at the extreme right of 

(5.18), and that 

(5.20) 

Therefore, (5.19) can be computed to be 

6 -2@. [2gaOgBOg76 + 2grOg60gaP _ gaOgrOgP6 _ gQog60gP7 

_ gPOg70ga6 _ gPOg60gw _ g~g~7gP6 - gWga6gf17]. 

(5.21) 

This w by ?!$!I ma rix t determinant (with n being the dimensionality of 

our spacetime) is extremely difficult to evaluate in general. However, the overall 

functional factor of fi contributes a determinantal factor of gq; and, in 

keeping with our previous approximations, if we assume that we are working at 
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energies low compared with the Planck Mass, our metric field can be expanded 

out in the linearized tensor field approximation to gravitation, namely 

!Y = rlpv + hpv with qpLy = diug(+l, -1,. . . , -1) and hp” < 1. (5.22) 

Inserting this into (5.21), a lengthy computation shows that the square-root of 

the determinant of our graviton-graviton measure matrix is (to lowest order in 

hpv and dropping an unimportant constant factor) given by 

b + lb + 2, hm 

4 
- F c ,,a) = (gm)wg=+ (5.23) 

a 

as might have been guessed from naive index-counting arguments. (Actually, the 

determinant is singular in two spacetime dimensions, but this need not concern 

us since most of our previous approximations were invalid in two dimensions as 

well.) 

Finally, there remains only the computation of the determinant of our ghost- 

ghost measure matrix from (5.6). This is given by 

det J2L ghost 

wOVA)wO’?B) 
-1 = det 

= det 

K 
621 ghost 2 

wof7,)wov) >I 
[ ( (-g)1/4(2g40b:6,0 + g”6,‘&)) “1, 

(5.24) 

and the measure factor contributed by the inverse of the square-root of this 

determinant is 

g: (gW)-“. (5.25) 

Thus, the total canonical functional measure for gravitation in n spacetime di- 

mensions is 
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[dgpv](‘L) = ~(gw)“li”g~dgpvd~p&f’~ (5.26) 
2 

This expression differs by a factor of g l/2 from the four dimensional special 

case worked out by Leutwyler [2], Fradkin and Vilkovisky [4], and others [6]. 

This is because under my choice of canonical variables, both of the ghost fields 

transform as world vectors, while under theirs, one would transform as a world 

vector and the other as a tangent space vector and set of world scalars. The extra 

factor of g’12 merely represents the determinant of the Jacobian between these 

two arbitrary choices of functional integration variables. Although all of these 

authors wrongly ignore the effects which correspond to the graviton-graviton 

and graviton-ghost blocks in our measure supermatrix deriving from the ghost 

Lagrangian, they are fortunate enough to obtain the correct answer (for four di- 

mensions) anyway: as we have seen, these additional contributions are negligible 

at energies far below the Planck Mass. 

The particular functional measure factor in (5.26) was first suggested (for the 

four dimensional case) by Leutwyler [2], and first derived in detail by Fradkin 

and Vilkovisky [4], who used the constraint-elimination procedure previously 

suggested by Faddeev and Popov [3]. Faddeev and Popov’s own derivation had 

contained an error and resulted in a different answer, which they have since 

retracted.* 

* I am grateful to Richard Woodard for informing me of this last fact. 
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6. What These Results Mean 

To summarize our results, the canonical functional measures for scalar, vec- 

tor, and gravitational fields in n dimensional curved spacetime and at low energies 

compared to the Planck Mass are given by 

[d@) = n(g00)‘/2g114dq$ s n Mr’d4 

[dAr](“) = b(g”)qg 9 dA,d;dtj s n MtdA,dfldq 

[dgpv](‘d = ;(g@‘)~gn2-6n-4 
z 

“dgpvdq,d$’ = rl[ M~;jdgctvdqpd$‘. 
z z 

(6-l) 

These results contain several interesting features. First, the exponent of the 

go0 piece of th e measure is always equal to the number of physical degrees of 

freedom divided by two. It is easy to see why this result is true in general 

for theories of the form which we have been discussing. In theories in which 

all degrees of freedom are physical, bosonic degrees of freedom each contribute 

a factor of (goo)‘/2 and fermionic degrees of freedom each contribute a factor 

of (goo)-‘i2. N ow if we consider a theory with some non-physical degrees of 

freedom, i.e. some gauged and constrained variables, the number of first class 

constrained variables will always be equal to the number of gauge degrees of 

freedom [ll]. After applying the Faddeev-Popov ansatz, all of the previously 

unphysical degrees of freedom become physical, but we have added an additional 

set of ghost fields having opposite commutation relations to those of our original 

fields. The number of ghost fields added is twice the number of gauge degrees 

of freedom, hence equal to the sum of the number of gauge degrees of freedom 

and the number of constrained variables. Therefore, the extra factors of (ge”)‘/2 

coming from our newly added physical field degrees of freedom is exactly cancelled 

by the extra factors of (goo)-1/2 coming from our newly added ghosts, leaving 

a factor of (g”“)li2 to the power of the number of original physical degrees of 

freedom. 
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As an example, let us consider the case of gravitation in four dimensions. 

Before applying the Faddeev-Popov ansatz, there are two physical degrees of 

freedom (ten total degrees of freedom minus four gauge degrees of freedom minus 

four constrained degrees of freedom). After applying the Faddeev-Popov ansatz, 

there are ten bosonic physical degrees of freedom and eight fermionic physical 

degrees of freedom; cancelling measure factors, there remains the same factor as 

that for a theory of two (bosonic) physical degrees of freedom.’ 

As we shall see below in Sec. 8, this result relating the number of physical 

degrees of freedom in the theory to the form of the canonical functional measure 

holds equally well in the case of massive theories, and appears to be true in general 

for all field theories of integer spin (a similar relationship holds for theories of 

half-integer spin as well, as we shall see below in Sec. 7). This conjecture is 

strongly supported by a naive analysis of the transformation properties of the 

functional measure in its Hamiltonian formulation (i.e. counting the number of 

physical canonical momenta in the theory, each of which transforms like (goo)‘i2). 

Besides providing an excellent means of specifying the number of physical 

degrees of freedom in any field theory, this result emphasizes a very important 

point. Bosons and fermione are best thought of as having “oppositely signed* 

physical degrees of freedom; bosonic fields have positive physical degrees of freedom 

and jermionic fields have negatiue physical degrees of freedom (or vice versa). 

There are a number of other ways of seeing why this is the natural way of counting 

physical degrees of freedom, but the above is one of the clearest. 

t If we choose to follow the slightly more conventional but less elegant nomenclature in which 
degrees of freedom must exist on shell to be considered truly “physical,” we are faced with 
difficulties. First, Faddeev-Popov ghost fields violate the spin-statistics theorem; hence they 
cannot exist as states and would not be considered ‘physical.” But now we must either 
arbitrarily define certain of our A, (or g,,“) components to be ‘unphysical” as well (which 
makes little sense, since after applying the Faddeev-Popov procedure all the components are 
on an equal footing) or allow the Faddeev-Popov procedure to lead to the non-conservation 
of “physical” degrees of freedom. Furthermore, we must severely modify our statement 
of the fundamental hypothesis of path integration for it to produce the correct canonical 
functional measure. For both of these reasons, the nomenclature used in this paper seems 
much preferable. 
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This notion of “oppositely signed” physical degrees of freedom for bosons and 

fermions is not merely a useless abstraction. Consider the case of gravitation in 

two dimensions. It is well-known that this theory has negative one physical 

degrees of freedom [18] (this is because there are more gauge conditions and 

constraints in our theory than there are independent variables). A theory with 

negative one physical degrees of freedom sounds like a peculiar and pathological 

curiosity, until we realize that it simply means that there is one more fermionic 

field than bosonic field in the theory. And this is indeed the correct interpretation: 

after applying the Faddeev-Popov ansatz, our theory would contain three bosonic 

fields gm, 901, 911 and four fermionic ghost fields qo,qr, Q’, vl. Nothing in the least 

mysterious or pathological is involved. 

A second interesting point is simply the mere presence of the factor (gOO)K in 

the canonical functional measure. The measure is not at all manifestly covariant 

under general coordinate transformations (the factors of detgpv, which naively 

transform like tensor densities rather than as scalars, can be shown by a trivial 

calculation (31 to actually be invariant under an infinitesimal general coordinate 

transformation). However, such a naive covariance analysis assumes that the 

point permutation Jacobian for a general coordinate transformation is unity, i.e. 

that 

IT dq$(z) = rl[ dqS(z’) where x’ = x + E(z), P-2) 
2 2’ 

and this is not at all certain. In fact, Fradkin and others [4-51 have repeatedly 

argued that this Jacobian should not be unity, and that the non-covariance of 

the go0 factor in the canonical measure is required in order to cancel this other 

non-covariance, and render the entire measure invariant. Their argument demon- 

strates the self-consistency of these assumptions. 

Fujikawa has also derived an expression for the functional measure for grav- 

itation, and has generalized it to n dimensional spacetime [7]. His procedure 

assumes that the BRST extension of general covariance is unbroken by anoma- 

lies arising from the non-invariance of the functional measure. The measure 
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factors which he derives agree with those above, except for the absence of all go0 

factors. However, Fujikawa’s analysis tacitly assumes that the point permutation 

Jacobian for a BRST transformation is unity; this is not at all clear, and perhaps 

accounts for the discrepancy between Fujikawa’s results and those of this paper, 

which are based on the canonical formalism. 

Finally, de Witt’s brief sketches presenting a plausible functional measure 

for gravitation (191 neglect those terms corresponding to the ghost-ghost and 

graviton-ghost blocks of the measure supermatrix, as well as the factors of goo. 

In fact, his result is identical to (5.2), except for the absence of the go0 factors. 

A final interesting feature of the canonical functional measures derived above 

and summarized in (6.1) is that they factorize in an enlightening manner. Specif- 

ically, the measure factor for a vector field theory in n + 1 dimensions is equal to 

the product of the measure factor for a vector field theory in n dimensions and 

the measure factor for a scalar field theory in n dimensions, namely 

Similarly, the measure for gravitation in n+ 1 dimensions factorizes into the prod- 

uct of the measures for gravitation, vector field, and scalar field in n dimensions 

This is not merely a curiosity; it is an absolute requirement needed for 

a toroidally compactified Kaluza-Klein theory to make sense on the quantum 

level, and if it were not satisfied, such Kaluza-Klein theories would be quantum- 

mechanically inconsistent. Therefore, it is indeed fortunate that the canonical 

functional measure satisfies this condition. Furthermore, although this factor- 

ization is necessary, it is not sufficient, and as I have shown elsewhere [21], the 

somewhat stronger true consistency condition is also (and automatically) satisfied 
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by the canonical functional measure . None of the other functional measures sug- 

gested in the literature (including Fujikawa’s) satisfy this consistency condition, 

and each would lead to the complete inconsistency of Kaluza-Klein theory. This 

fact significantly strengthens the likelihood that the canonical functional mea- 

sure, besides being the simplest and most elegant, is also the correct functional 

measure for a quantum field theory. 

7. Theories Linear in Derivatives 

Now that we have determined the canonical functional measures for theories 

quadratic in time derivatives, let us turn to the case of theories which are linear in 

time derivatives. The former involved particles of integer spin; these will involve 

particles of half-integer spin. 

The central feature of theories linear in time derivatives is that in their usual 

form their Feynman path integral representation cannot be put into Hamilto 

nian formulation. This is because the field equations of these theories are first 

order in time derivatives, implying that only the values of the fields themselves 

(and not also the first time derivatives of the fields) need be specified on each 

spacelike hypersurface. In fact, any conjugate momenta which we might care to 

define in the usual manner (such as lIA z .a]) are merely proportional to 

combinations of the fields themselves and carry no independent information. For 

this reason, the formal machinery developed in Sec. 2 is initially inappropriate 

for this situation. The canonical functional measure must be obtained through a 

similar but slightly different procedure. 

The basic idea of the approach which we shall use is intuitively simple. Ac- 

cording to the fundamental hypothesis of path integration, the functional measure 

factor should be unity in the Hamiltonian formulation, in which our functional 

integration variables are independent, canonically conjugate fields and momenta. 

Therefore, we shall redefine the variables of our theory so that half of our origi- 

nal fields retain the properties of fields und the other half assume the properties 
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of canonicul momenta, conjugate to those fields., becoming what one might call 

“canonical pseud+momenta.” Since the nature of such a theory of canonically 

conjugate fields and pseudc+momenta is formally distinguishable from the usual 

case of a theory based on fields and momenta, one may invoke the fundamental 

hypothesis of path integration to argue that the canonical functional measure fac- 

tor should be unity in the “pseudo-Hamiltonian formulation” of the theory. From 

this assumption, it is easy to derive the non-trivial functional measure factors 

which would be present in other, more commonplace formulations of the theory. 

A non-trivial functional measure factor may be easily understood as being the 

product of the various factors by which we must multiply some of our fields to 

give them the characteristics of canonical momenta. 

Let us consider then a Lagrangian based on fields QA. which is linear in 

the derivatives of these fields, and with a kinetic term at most quadratic in the 

fields themselves (this last restriction follows automatically by counting mass- 

dimensions). For the moment, let us also assume that these fields QA are all 

bosonic. Under these conditions, our Lagrangian can be written as 

L: = EAdoQ~ - F, (7.1) 

with EA and F being functions of the QA (as well as possibly some other fields 

in our complete theory). 

Now this expression can be rewritten as 

L 6& &QA - F = S2L 
= J(~oQA) ~(~oQA)~QB 

QB~OQA - F, (7.2) 

where we have used the fact that the kinetic term of L is at most quadratic 

in QA. Next, if we use integration by parts to shift the time derivative which 

appears in the first portion of (7.2), we obtain 
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Therefore, if we require our theory to be consistently defined under integration 

by parts (any theory linear in derivatives can be put into a form which meets 

this requirement), we obtain the condition 

(7.4). 

Note that NAB is not a function of the QA (though it might be a function of 

other fields appearing in our complete theory) and that 

L: = NABQ~&Q~ - F. (7.5) 

We can now place a useful restriction on the form of NAB by considering the 

nature of our fields. Since the QA have half-integer spin, we can choose to work 

in a basis of chiral eigenstates, i.e. a basis in which our fields are labelled by a 

chirality index. We can separate our fields into two categories, QA = (QL, QR), 

with L being a new index ranging over the “left-handed” fields and R a new 

index ranging over the “right-handed+’ fields. For our purposes, we will define a 

field to be “left-handed” if it either creates left-handed particles or annihilates 

right-handed particles; “right-handed” fields satisfy the opposite requirement. 

(Whether or not particles of different chirality are connected by the presence of a 

mass term in our Lagrangian is immaterial, and the left-right symmetry or lack 

thereof in our entire theory is equally irrelevant.) 

Since the kinetic term of our Lagrangian should preserve chirality, each kinetic 

piece must contain one right-handed and one left-handed field, implying that the 
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matrix NAB has the block-off-diagonal form 

This allows us to rewrite our Lagrangian as 

t = NrnQ~aoQ~ -I- NLRQ&Q= - F = 2NRLQLaoQR - F, V-7) 

where we have used integration by parts to shift the time derivative, and absorbed 

any extra terms produced into a redefinition of F. Finally, let us redefine our 

left-handed field variables by 

PR = 2NRLQL. (74 

Our Lagrangian now assumes its final form 

i = PRaoQR - F[PR, QR]. P-9) 

But now our newly defined left-handed fields PR appear in this theory exactly 

as if they were the canonical momenta conjugate to our right-handed fields QR; 

they are in fact our canonical pseudo-momenta. Therefore, by our fundamental 

hypothesis, the functional measure for this theory is given by 

[dPRdQR] = n dPRdQR. 
2 

(7.10) 

(Note that in deriving this result we have tacitly assumed that our Lagrangian 

is non-degenerate, i.e. that detNAB # 0; in fact, if there had been gauged and 

constrained variables in our theory, it would have been necessary to apply a form 

of the Faddeev-Popov ansatz before following the above procedure.) 
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This form of the functional measure differs by a Jacobian factor from the more 

usual form in which all the functional variables of integration are our original 

fields. The canonical functional measure in the more common form is therefore 

IdQd = IdPRdQR] = n detgdQLdQR = n &tgdQA, 
z 2 

(7.11) 

with the canonical functional measure factor being* 

det ” 
R 

-= 
~QL 

detNRL = det 
( 

s2L 
S(aoQR)& 

) = [det ( s(ao~A~6QB)] 1’29 V-12) 

This result has been derived under the assumption that all of our fields QA 

are bosonic. However, we have carefully chosen our derivation in such a way that 

all the steps leading to (7.12) are equally correct for fermionic QA. Hence, the 

canonical functional measure factor for the case in which some of our QA are 

bosonic and others are fermionic is simply the appropriate generalization of the 

Jacobian determinant appearing in (7.12), namely 

(7.13) 

Actually, in practice, all the half-integer spin fields with which we will concern 

ourselves shall be fermionic. 

Let us now apply these general results to compute the canonical functional 

measure factors for spinor fields. The form of the measure matrix in (7.13) 

ensures that only the kinetic portion of the spinor interaction is relevant to this 

* It is also poesible to derive this same result by adding a pseudo-time coordinate and utilieing 
a statistical mechanics approach [14]. 
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computation. For a Dirac spinor field in n dimensional flat spacetime, the kinetic 

Lagrangian term is 

z = f (r3;7vprl - (apd)7w), (7.14) 

with each of our n dimensional Dirac spinor fields $,ll, having 2[n/2]-1 compo- 

nents and QA = ($,+) having 21ni2] components. For this choice of functional 

integration variables, our functional measure factor is given by (sdetM)l12, with 

M being a 2[“i2] x 21n12] block-d’ lagonal matrix, each of whose 2 x 2 blocks is given 

by 

(-K. ;o’“>. (7.15) 

The determinant is a constant, hence the canonical functional measure is trivial. 

The functional measure factors for Majorana or Weyl spinor fields would be given 

by the square-root of this Dirac field measure factor, and would be equally trivial. 

Next, let us consider the more interesting case of a Dirac spinor field acting 

in curved spacetime (i.e. coupled to a quantized gravitational field). The kinetic 

portion of the Lagrangian is [20] 

(7.16) 

As in earlier cases, our covariant derivatives contain terms in which time deriva- 

tives act on the metric field. However, these terms do not contribute to the 

graviton measure matrix since all such contributing terms must be quadratic 

in time derivatives. On the other hand, the spinor measure matrix derived from 

(7.16) is non-trivial, and has a block-diagonal form, with each of the 2[a/21-1 2 x 2 

blocks being given by 

0 

- f ~+ha” 
(7.17) 

Dropping all unimportant constant factors, the determinant of the block in (7.17) 
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is 

gya#hzhpo = ;g{Ta, ya}h,“hp” = ;g2qaPh,ohpo = gg? (7.18) 

Therefore, the canonical functional measure-containing the square-root of the 

superdeterminant of the entire measure matrix-is 

[d$d&) = n(ggw)-21”‘21-)d$d& 
2 

(7.19) 

Once again, the functional measure factors for Weyl or Majorana spinors in n 

dimensional curved spacetime would simply be the square-root of this quantity. 

It should be noted that the exponent of the go0 piece appearing in the measure 

is equal to one-fourth the number of physical degrees of freedom, with fermionic 

degrees of freedom being once again counted with a minus sign. This appears to 

be true in general for theories of half-integer spin. 

8. Measure Factors for Auxiliary 
Fields and Massive Vectors 

Now that we have determined the canonical functional measures for fields 

whose kinetic term contains two derivatives (integer spin fields) and fields whose 

kinetic term contains one derivative (half-integer spin fields), we should also 

consider the proper means of treating fields whose “kinetic” (i.e. quadratic) terms 

contain no derivatives. Such fields are usually called “auxiliary,” and are most 

often discussed in the context of supersymmetric theories, in which they play a 

crucial role by closing the symmetry algebra [12,13]. However, they enter into 

even as simple a theory as massive electrc+magnetism. 

First, it should be noted that since they are non-propagating, auxiliary fields 

are by definition non-physical and so should not be integrated over under the 

fundamental path integral hypothesis (see Sec. 3). This may be best understood 

by realizing that auxiliary fields do not have canonical commutation relations, 
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and are purely classical objects. Being classical fields, they are not true functional 

variables of integration, do not enter into the functional measure, and should be 

treated as classical constant factors. However, if for reasons of convenience or 

elegance we wish to treat our auxiliary fields as functional variables of integration 

appearing in the path integral, we must multiply our functional measure by a 

compensating factor to cancel the result of this additional integration. 

For example, suppose that the functional measure for a theory based on 

physical fields FA is given by 

[dh] = n M[FA]dFk (84 
2 

Now further suppose that the Lagrangian for this theory also contains a non- 

physical auxiliary field Q, which appears at most quadratically in l and whose 

quadratic term has the form 

1: = +[FA]Q2. (8.2) 

By our fundamental hypothesis, the canonical functional measure for our theory 

containing both FA and Q is still just given by (8.1), since Q is not a physical 

field. Functionally integrating over Q would correspond to inserting the value of 

Q determined by our classical field equations into the Lagrangian, and would thus 

remove Q from our theory while possibly adding new terms to the effective La- 

grangian produced; such a procedure is perfectly legitimate for a non-propagating 

field. However, this Gaussian functional integration over Q would also produce 

an additional functional measure factor, namely 

dQ ezp” = II(D[FA])-1’2ezpis’ff, 
2 

if we assume that Q is bosonic. Generalizing this result to the case of functionally 

integrating over an arbitrary number of bosonic and fermionic auxiliary fields is 

simple and yields the result 

37 



dQA ezpiS = n [sdet (,,“:,“,,)] -llaezpiseff . (84 
2 

Therefore, the canonical functional measure for our physical fields FA and aux- 

iliary fields QB, although still just given by (8.1), can also be written as 

WA~QAI = n M[FA]dFA = n [sdet ( ,QTfQB)] 1’2M[FA]dQAdFA. (8.5) 
2 2 

Often this latter form is preferable. 

Let us apply these results concerning auxiliary fields to the specific case of a 

massive vector field in n dimensional curved spacetime. Our Lagrangian is 

- aAA,)(avAu - a,&) - +2fig’YA,A,. (8.6) 

Of the polarizations of A, which appear in this Lagrangian, A0 is auxiliary and 

the remainder are physical. No gauge degrees of freedom are present. In the 

Hamiltonian formulation, our canonical functional measure is given by 

[dA,] = n I-PA,. 
=,m 

P-7) 

Integrating over the canonical momenta (see Sec. 4) produces the functional 

measure factor for our physical fields Am in their Lagrangian formulation 

[ ( s2L 
det ~(adrn)~(adn) 

)] 1’2 = [&(,&gmogno - Ggwgmn)] li2 
(8.8) = (goo)~gy 

This result applies for energies low compared to the Planck Mass. 
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Meanwhile, if we choose to functionally integrate over our auxiliary field A0 as 

well, we must include the compensating functional measure factor of (g”“)1/2g’/4 

(the mass term factor of m is simply a constant and can be neglected). Therefore, 

the canonical functional measure for a massive vector field in n dimensional 

curved spacetime is given by 

[dA,] = n(gw)?g?dA,. 
z 

(8.9) 

It should be noted that the exponent of the go0 piece in the meaSure once 

again equals one-half the number of physical degrees of freedom in this integer 

spin theory. It should also be noted that the functional measure for this n 

dimensional massive vector field is equal to the product of the measures for an n 

dimensional massless vector field and an n dimensional scalar field. This equality 

is necessary for the conventional analysis of the Higgs mechanism to be correct 

on the quantum level. As I show elsewhere [21], this consistency as well as the 

quantum consistency of Kaluza-Klein theories mentioned previously are both 

special cases of the automatic consistency of the canonical functional measure 

under field redefinitions. 
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