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Abstract

We study the physics of charge frationalization using simple methods. The
strategy is to count the number of states of the theory with solitons relative to the
same theory with trivial background fields. The interplay between high and low
energy contributions is exposed and the topological properties clarified.
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We study fermions interacting with static external background fields with non-
trivial topology. The physics of the problem is simple. The spatial variations of the
background fields (b.f.) (gradients) act as “localized” scattering potentials. The
spectrum of the free problem is modified. Bound states may be formed (some of
them of topological origin), and there is a change in the density of continuum states
with respect to the free problem (constant or trivial fields).

Since the spatial variations of the (b.f.) are localized, the change in the density
of states is finite. The continuum wave functions are phase shifted near the region
of the spatial variations. We study the case when the theory is not CP-invariant,
where there is no ambiguity arising from states at zero energy.

The vacuum charge is related to the asymmetry between the positive and neg-
ative part of the spectrum (Atiyah-Patodi-Singer invariant)

Q = −1
2
η (1)

As a measure of the asymmetry in the spectrum of the Hamiltonian H we introduce
the fundamental quantity B(E) given by

B(E) = det
[
H + E

H − E

]
(2)

B(E) compares the positive and negative parts of the spectrum. We also introduce
the even part of the resolvent and odd part of the density of states.

Ge = 1
2Tr

[
1

H+E + 1
H−E

]
= 1

2
d

dE lnB(E) (3)

ρodd = 1
2π Im Ge(E + iη) (4)

Then
η = 2

∫ ∞

0
ρodd(E)dE =

∫ ∞

0
[ρ(E) − ρ(−E)]dE (5)

Regulators are not necessary: the localized spatial variations induce finite changes
in the density of states (DOS) and B(E) is a direct comparison of the positive and
negative energy spectrum of the full H. We write above the continuum thresholds

B(E) = |B(E)|eiδ(E) (6)

where δ(E) = δ+(E) − δ−(E)(difference of phase shifts for E > 0 and E < 0).
Therefore

η = N+ −N− +
1
π

[δ(∞) − δ(ET )] (7)

where N± is the number of positive and negative energy bound states and ET =
threshold energy.

The most general Hamiltonian of interest in 1-spatial dimension is
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H = −iσ2
d
dx + σ1φ(x) + σ3K(x) (8)
Hχ = Eχ (9)

Writing

φ(x) = ρ(x) cos θ(x) K(x) = ρ(x) sin θ(x) (10)

and performing a chiral rotation

ψ(x) = eiσ2θ(x)χ(x), (11)

we find
B(E) =

Tχ(E)
Tχ(−E)

(12)

where Tχ is the transmission coefficient of the spinors χ that are eigenspinors of
the transformed Hamiltonian

Hχ = −iσ2
d

dx
+

1
2
dθ

dx
+ ρ(x)σ1 (13)

The spinors χ are, asymptotically, eigenstates of charge conjugation (σ3). Positive
and negative energy spinors interact with opposite sign with the potential (θ′(x));
this is the basic reason for the asymmetry in the spectrum (notice that the spectrum
of Hχ(θ′ = 0) is symmetric). We have studied the cases:

φ(x) =

{
−φ x < 0

φ(> 0) x > 0
K(x) =




K x < −d
K0 −d < x < d
K x > d

(14)

and also

φ(x) =




−φ x < −d
0 −d < x < d
φ x > d

K(x) =




K x < −d
K0 −d < x < d
K x > d

(15)

These examples provide a setting in which the adiabatic approximation breaks
down and also the chiral angle θ(x) winds by 2π, allowing us to understand whether
these ambiguities have any influence on the vacuum charge.

For d = 0 these examples correspond to the K = constant case, where we find
that there is an operator U such that {H,U} = 0. The existence of U ensures that
the net number of levels crossing E = 0 in the process of deforming φ(x) is zero
(zero spectral flow). We find for this case

δ(∞) = ∆θ ≡ θ(x = +∞) − θ(x = −∞), −pi ≤ ∆θ ≤ π (16)

N+ −N− =
1
2
sign(K)[sign(φ±) − sign(φ−)]; φ± = φ(x = ±∞) (17)

and
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δ(0)
π

= N+ −N− (18)

Therefore δ(0)/π cancels the bound states contribution (Levinson’s) theorem, but
only when there is no spectral flow. When there is spectral flow, δ(0)/π adds to
N+−N−. The threshold phase shift δ(0) changes by π (or −π) when a new bound
state emerges from the positive or negative continuum; therefore η does not change
when new bound states appear.

For K0 < 0 and d 6= 0, ∆θ jumps by 2π; however for d � 1/|K0| not bound
state crosses E = 0 (no spectral flow). This trivial 2π is compensated by a change
of 2π in δ(0) and is associated to the definition of the branches of δ(E) and not to
new bound states. Therefore [δ(∞) − δ(0)] stays invariant (δ(∞) = ∆θ).

When d > 1/|K0|, one bound state crosses E = 0 but δ(∞) − δ(0) remains
constant; η jumps by +2, and spectral flow has occured. Although the winding of
∆θ by 2π may indicate spectral flow and a change in the vacuum charge Q by one
unit, this does not occur unless this change in fields takes place over a distance
d � ρ(x) (ρ(x) = local mass term). The integral values of the charge depend
on this spectral flow and local details of the b.f. For the charge conjugate case
(K → 0+) with a soliton profile

N+ −N− = 1; δ(∞) = π; δ(0) = π (19)
η = 1 + 1

π [π − π]

The bound state (at E=0) is the Jackiw-Rebbi-Schrieffer “zero mode.” Expression
exposes the interplay between high and low energy contributions.

We have also studied the vacuum charge in 2+1 dimensions for the case

H = i 6D +mσ3 i 6D = i 6δ− 6A, (20)

where Aµ corresponds to a static vortex. For constant m, there is no spectral flow
as in 1 + 1 dimension (for K = constant). In Ref. (3) we showed that the phase
shift at infinite energy is

δ(∞)
π

= −sign(m)
∫
d2xεijFij (21)

this phase shift at infinite energy is completely determined by the axial anomaly in
1 + 1 - Euclidean dimensions where the vortex plays the role of an instanton.

We also found that because of the long range nature of the gauge fields there
are δ(∞)/π states at threshold E = ±m and the vacuum charge is

Q =
1
2
sign(m)

∫
d2xεijFij (22)

The relation between the chiral anomaly in 1 + 1 dimensions and the vacuum charge
in 2 + 1 dimensions is easily understood. The operator i 6δ− 6A in H is the 1 + 1
- dimensional Dirac operator; with topologically non-trivial Aµ, this operator has
“zero modes.” These zero modes are eigenstates of σ3 therefore they are eigenstates
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of H with energies E = ±m, i.e. threshold states. The sign of the energy depends
on the sign of the mass and the flux of the vortex. The sign (m) factor in the
expression for the charge plays the same role as the ± in the 1 - dimensional case;
these states are filled or empty depending on sign (m).

Some of these states are bound states, but there are also resonant states (non-
normalizable). For a sphericaly symmetric vortex the “zero mode” wavefunction
behaves as

ψ0
∼

r→∞r
J−F where J=angular momentum

F=vortex flux

In general we write the η-invariant as

η = ηSF + ηV , (23)

Where ηSF is a local quantity, i.e. it has information about details of the b.f. It
only has contributions from low energy (δ(0),N±) and is an even integer or zero.
It corresponds to spectral flow (energy levels crossing zero).

In contrast ηV is a topological invariant and is completely determined by δ(∞)
i.e. is a high energy property of the theory. Since it is a high energy property it
can be easily computed, and directly related to the anomaly in one less dimension
and topological indices. ( Callias, Atiya-Singer, etc).

There is a very important physical aspect that relates fractionalization to anoma-
lies. The phase shift at infinite energies is independent of the mass scale ρ in the
Hamiltonian. A non-zero phase shift at large energies implies that the energy levels
are shifted relative to the non-interacting system. Since the large eigenvalues are
shifted equally, the density of states (the energy derivative of the phase shifts) goes
to zero as 1/E3 as E → ∞.

The total deficity of continuum states cannot depend on the mass scale. It is
given by δ(∞) − δ(0) and δ(0) ∼ nπ (n = integer). The mass and the potential
range R set the scale of the density of states as a function of energy. As the mass
→ 0 and R→ ∞, the continuum relative density of states becomes a δ-function at
E=0.

stuff stu
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