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ABSTRACT 

In an attempt to understand exclusive K decays within a long distance frame- 

work, a simple and operative model for the K+ effective vertex is constructed 

and applied in the analysis of a few decay modes. 
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1. Introduction 

The QCD corrected effective Hamiltonian was for a long time the basic tool in 

analyses of nonleptonic decays. (For a review of successes and problems in such 

“standard” scenario see e.g. Refs. [1,2] ). The popularity of that approach is in 

fact not completely understandable, when its rather poor record in description 

of exclusive decays is taken into account. Although in the first works on K -+ mr 

the old current algebra (CA) result was changed in right direction, an explanation 

of AI = l/2 wasn’t achieved. In a similar way the method originally failed in 

analyses of D-decays, CP-violating parameters, n-decays, etc. It is true that 

one can post factum adopt a procedure and parameters in such a way that the 

observed values are reproduced, but that could hardly teach us anything. Even 

more than the lack of predictive power, the physical picture - in which the low 

energy decays of “large” systems tll are assumed to be properly described by a 

short distance expansion - casts shadows on the entire procedure. 

There has been therefore many attempts [3 - 6] to improve the method by 

systematic inclusion of long distance corrections to the existing framework. It is 

also possible to imagine another, completely different and to some extent more 

natural path. Indeed, various authors [7 - 141 have tried to describe exclusive 

weak decays of light hadrons relying only on long distance dynamics and ne- 

glecting altogether short distance contributions. One of the proposed schemes 

[13,14] was based on an effective field theory with a direct coupling of mesons to 

constituent quarks. The only role of QCD was to produce meson-quarks effective 

vertices, while no further gluons were allowed in diagrams. 

dl The size is basically determined by the inverse of the reduced mass of bound states. 
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Here the mentioned program is illustrated by a simple example. A toy model 

compatible with the requirements of the new scheme is constructed and applied 

in the study of K+ + zT+zo and some other K+ decays. (The same model 

will be used in more interesting and more challenging decays of neutral kaons in 

the subsequent paper.) Note that the method is designed only for the descrip- 

tion of weak exclusive decays of mesons. If the long distance dynamics really 

plays an important role, then the inclusive decays, and the exclusive decays of 

baryons might need a completely different approach. Throughout the work the 

four-flavour version of the standard model is used, but a generalization to more 

flavours presents no problem. 

2. Model 

As mentioned previously, the simplified world will be considered in which 

mesons are constructed of valence quarks only, and gluons fulfill their role by 

producing effective vertices. To the order l/M&, the decay K+ + zT+ro is then 

represented by four diagrams in Fig. 1. In Refs. [13,14], these diagrams were 

treated in a general context. Here a simple model for effective vertices will be 

constructed and - by making use of the Feynman rules (with minus signs and 

traces for closed loops of fermions, etc.) - the amplitude of the process will be 

calculated. Note that there will be no need for the soft pion technique and CA 

reductions, since diagrams can be treated exactly. (Still, results will be similar 

in form to the results of the CA analyses). 

Whatever we choose for a vertex function, the Lorentz and colour structure 

of the function should respect the pseudoscalar nature of z and K mesons, and 
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the fact that these mesons are colour singlets. In the construction of the effective 

vertices I have also made use of the following constraints: 

(a) Diagram in Fig. 2a should give finite and correct weak decay constants fr, 

f~, etc. (Since a pointlike vertex necessarily leads to divergent integrals, 

it is clear that the vertex function therefore must be nonlocal); 

(b) Diagram in Fig. 2b in the SU(3) limit, with M + M’, and Q2 + 0 

(M denoting here the mass of a meson) should give properly normalized 

form factors, F+(O) = 1 and F-(O) = 0; 

(c) The vertex should be such that the decay of a meson to a quark-antiquark 

pair is forbidden when quarks are on mass-shell. (With this requirement 

the “confinement” is introduced into the scheme). 

Although the constraints restrict a class of acceptable functions, a certain 

freedom still exists. Another criterion, the simplicity, was then decisive for the 

choice proposed in this work. With the notation explained in Fig. 3, the “regular” 

effective vertex functionn2 is chosen to be 

with 

(1) 

In (2), n is an integer not smaller than three (n 2 3), while CY and p are pa- 

rameters of the model. It is easily seen that requirements (a) - (c) are satisfied 

fl2 The “anomalous” vertices will be briefly discussed in Section 4. 
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with 

PM = 4~ a;-’ [(2n - 1)(2n - 2)/3]“2 . 

It will be shown later that the larger n produces the better description of the 

K+ --) r+r” decay. However, the goal of the model is to provide a qualitative 

rather than exact quantitative picture. Therefore I will concentrate mostly on 

n = 3 case. For n = 3, the expressions (3) are reduced to 

(4) 

Note also that Clebsch-Gordan coefficients &l/fi should be added to vertices 

in which neutral mesons A’, KL and KS appear. 113 

3. Amplitudes 

Having defined the vertices, we can start with the analysis of diagrams in 

Fig. 1. Let the momenta of K+, 7~’ and K+ be denoted as P, PO, and P+ 

respectively, and momentum of the strange (s) quark as k - P/2. The amplitude 

tj3 More precisely, +1/a for no@) , JCL(&), K~(gd) and KS(&) vertices, and -l/d for 
I’ and Ks(sd) vertices. 
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corresponding to the diagram (a) in Fig. 1 is then 114 

A(Po, P+) 
h2 = -gsin9cos9 (-3) 

/ 
1 

- (i;4 P; - M& 

XTr 
{ 

- 5 &(k + P+/V’o) [ F + 2 p - ml e&t p)7r(l - “15)) 

x e-3) (;;4 / - Tr ww,P+/2)7p(l- 75)) * 

(5) 

In (5), t9 denotes Cabibbo angle, and h2/(8M&) = GF/& is the Fermi coupling 

constant. Masses of u and d quarks are assumed to be equal, and denoted by m. 

In a similar way one can express amplitudes B(Po, P+), C(Po, P+) and 

D(P0, P+), corresponding to diagrams lb, lc and Id. It is easily seen (on the 

basis of a symmetry of integrands) that amplitudes C and D cancel each other. 

The remaining two amplitudes can be expanded in series of powers of l/A$. 

Let Ao(Po, P+) ad Bo(Po,P+) d enote the first terms in these expansions. One 

obtains 

AOPO, P+) fi = GF sin 29 cos rP 9(27r)-*pKPf (A4K.A4z)2”-3 

Tr POP +4v2)?rtic) 
[(k + P+/2)2 - aTM:ln[k2 - QKM;]” (6) 

x & W7J+) 
/ [P - a,M,2]* * 

At the same time, as a consequence of a generalized Fiertz transformation (see 

fl4 An early attempt of such ‘diagrammatic” approach to K decays is described in Ref. [15]. 
The authors however have used pointlike vertices, and applied some additional assumptions 
to eliminate a class of diagrams. 
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Ref. [ 141 ), one finds 

Bo(Po,P+) = Ao(%Po)/3 . (7) 

To simplify expression (6), I shall use the definitions for weak decay constants 

and form factors (compare to Fig. 2 ): 

atPc( = (-3) 
/ &4Tr@M(1,P)f(l -75)) , (8) 

and (with Q = PA - PB), 

iF+AB(Q2)[P~ + PB]’ + ~F?(Q”)[PA - PB]” 

?A Tr {HB(k + Q/2, PB)[F + 2 - m] fb(k, pA)7’(1 - 75)) . 

(9) 

Expression (6) now can be written as 

Ao(Po,P+) - a - *sin 9 cos t9 -j=fr ( F+K”(Mz) [M& - Mz] + F_K”(Mz) A4: } . 

(10) 

A consequence of (10) is that Ao(Po, P+) = Ao(P+, PO), and the amplitude A for 

K+ + 7rT+ro decay becomes (to the lowest order in l/M&) 

A = Ao(Po, P+) + Ao(P+,Po)/3 = 4Ao(Po,P+)/3 - (11) 

In order to find this amplitude, one must know the values of form factors in (10). 

From the definition (9), after some rearrangement, one obtains 

@"(Q2) = (M~/M~)2n-3(~,/aK)n-1 ] &g,(z) 
0 

[(l - z)M;/M; f z] 
’ [(l - z)ac,M,2/(aKM&) + z - ~(1 - z)Q2/(4&@)]“‘-” ’ 

(12) 
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In (l2), constants p were re-expressed in terms of CY’S. The function gn(s) is 

the result of Feynman parametrization; if e.g., n = 3, g(s) = 30 x2(1 - x)~. 

Expression (12) has a suitable form for a numerical integration. The obtained 

values are presented in Table 1. , and will be discussed in the next section. 

Note that for positive CY* and CYK, form factors F* (Q2) reach a singularity 

when 

@=M*=2(MKfi+M,,&). (13) 

For n = 3, this point is at M* = 0.795 GeV. Graph in Fig. 4 presents F* as 

functions of Q 2. A good fit for Ff”(Q2) is a function 

M* in expression (13) thus reminds somehow of the pole K* in the disper- 

sion relation analysis of form factors (see e.g. Ref.[16]). For n = 3, the ratio 

F~“(Q2)/F+K”(Q2) comes out to be very slowly changing function which for any 

practical purpose can be considered as a constant. The well known soft pion 

result [ 161, 

F-t (Q2 = MK’) + F-(Q2 = MKa) = f~/f,r , (15) 

is quite well satisfied with form factors as defined by (12). (The 1.h.s. in Eq. (15) 

has e.g. for n = 3 the value 1.37 ). 



4. Discussion and Conclusion 

Table I summarizes the parameters and the results of the analysis for several 

values of n. The inputs were f,, = 0.9 MT and fK = 0.4M~. For the value n = 3, 

the amplitude comes out to be by a factor of two larger than the experimental 

value, 1 Aexp (K+ + ~r+r~)I = 18.3 eV . However, taking into account the rough- 

ness of the used approximation, this is quite a good result. For larger values of 

n, the agreement is even better. 

Having the expressions for form factors, one can in addition numerically 

calculate decay rates II’( and they also agree with the observed values. For 

n = 3, one obtains 

F.(Ke3) = 3.46 x lo%+ , r(Kcc3)/I’(Ke3) = 0.68 , (16) 

while the experimental values for these quantities are 3.90 x 106s-' and 0.66 

respectively. 

Besides the form (l), I h ave tested a few more complicated wave functions, 

but the results are similar: the constraints (a) - (c) in Section 2, seem to be 

strong enough to ensure the right order of magnitude for K+ + z+z” and other 

K+ decays. 

One might now try to apply the same method to nonleptonic decays of neutral 

kaons. Taking into account only regular vertices (l), one easily obtains e.g., 

A(KL-ur+r-) = A(KL-+noao) =0, 

A (KS --$ x+x-) = -3A(Ks + r”ro) = ; A (K+ 
(17) 

+ 7f+7r”) . 

The first line in (17) is simply a consequence of a symmetry of the four-flavor 

model with no CP-violation. The second line however incorrectly describes KS 
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decays. The experimental values are ]A i- ] = 389 eV and ]A;‘] = 372 eV, while 

(17) gives more than one order of magnitude smaller values. In fact, this dis- 

agreement between the theory and experiment is no surprise: the regular vertices 

alone cannot completely describe K-decays. As shown in Ref. [13], a new type of 

“anomalous” vertices is a natural part of the scheme. Such anomalous vertices, 

presented in Fig. 5, originate when the s --) d transition (via the W-boson, in 

self-energy type exchanges) happens within the confinement radius. Unlike in the 

“penguin” graphs [1,2], h ere the dominant mechanism is assumed to be the non- 

perturbative long-distance dynamics. lt5 The situation is symbolically presented 

in Fig. 6. A mechanism which might lead to a big contribution of diagrams 

with anomalous vertices (and thus to an explanation of the “octet” rule) will be 

presented in more detail in the subsequent paper. Note that anomalous vertices, 

carrying AI = l/2 isospin change, cannot affect the analysis of K+ + r+r” 

decays. 

In conclusion, the simple semiphenomenological model for the (regular) me- 

son wave-functions is presented. This work is a step in the attempt of a de- 

scription of nonleptonic decays of mesons in a new framework. The unavoidable 

arbitrariness and not too convincing physical picture of the so-called standard 

procedure urge indeed for radical improvements. Opposing the main assumption 

of the standard procedure, this work is exploring the possibility that properties 

of K-decays are mostly hidden in the wave functions, and that short distance 

QCD corrections are only marginaly important. It is shown that K+ decays, in 

which only the regular vertices appear, are fairly described by rather general wave 

fl5 There is an interesting (although not direct) analogy between anomalous vertices and “tad- 
poles” advocated in Refs. [8,12]. 
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function.l16 One of advantages of the scheme is that amplitudes are calculated 

directly from diagrams, and therefore some ambiguites related to the transition 

from real pions to “soft” pions are not present. The proposed model in addition 

may be useful in the more thorough study of the behaviour of form factors in r, 

K, and D systems. It remains to be seen whether a combination of the regular 

vertices and long-distance parts of s + d transitions (Fig. 6) can bring naturally 

to the required enhancement of anomalous wave functions. If that is the case, 

we would gain a new insight into the AI = l/2 rule, and at the same time have 

a simple and elegant description of CP conserving and nonconserving decays of 

K meson and other light mesons. 

NOTE ADDED: A different type of effective meson - quarks vertices was 

proposed recently by A. S. Bagdasaryan, S. V. Esaibegyan, N. L. Ter-Isaakyan: 

Yad. Fiz. 38,402 (1983) [ S ov. J. Nucl. Phys. 38, 240 (1983) 1. A detailed study 

of K - 7r form factors was presented by J. Gasser, H. Leutwyler: Nucl. Phys. 

B250, 517 (1985). In both of these works models are designed for the analyses 

of Q2 = 0 region, and in form factors no poles (compare to expression (13) ) 

appear. 

ACKNOWLEDGEMENTS 

Kind hospitality in the SLAC Theory Group is appreciated. 

fl6 The same method, with regular vertices only, should work in Cabibbo allowed D-decays. 
However, the presence of poles in form factors makes the analyses of nonleptonic D-decays 
much more dependent on the choice of vertices. 

11 



REFERENCES 

1. R. Riickl: “Weak decays of heavy flavours”, Geneve preprint, October 1983 

2. J. F. Donoghue in “Phenomenology of Unified Theories”, eds. H. GaliC, B. 

Guberina, D. Tad% , pp. l-24. Singapore: World Scientific 1984 

3. H. Fritzsch, P. Minkowski: Phys. Lett. 90B, 455 (1980) 

4. V. L. Chernyak, A. R. Zhitnitsky: Nucl. Phys. R201,492 (1982) 

5. N. BiliC, B. Guberina: Phys. Lett. 150B, 311 (1985); Z. Physik C - 

Particles and Fields 27, 399 (1985) 

6. J. 0. Eeg: Phys. Lett. 155B, 115 (1985) 

7. G. Nardulli, G. Preparata: Phys. Lett. 104B, 399 (1981); G. Nardulli, G. 

Preparata, D. Rotondi: Phys. Rev. D27, 557 (1983) 

8. B. H. J. McKellar, M. D. Scadron: Phys. Rev. I&& 157 (1983) 

9. N. F. Nasrallah, N. A. Papadopoulos, K. Schilcher: Phys. Lett. 134B 355 -, 

(1984) 

10. K. Terasaki, S. Oneda, T. Tanuma: Phys. Rev. m, 456 (1984) 

11. T. N. Pham, D. G. Sutherland: Phys. Lett. 135B, 209 (1984) 

12. M. D. Scadron: Universal nonperturbative tadpole dynamics, Arizona pre- 

print, June 1984; G. Eilam, M. D. Scadron: Phys. Rev. m, 2263 (1985) 

13. H. GaliC: Phys. Rev. m, 2363 (1985); for more details see Ref. [14] 

14. H. Gal%: SLAC Report PUB-3383, July 1984 (unpublished) 

15. P. Pascual, R. Tarrach: Phys. Lett. 87B, 64 (1979) 

16. R. E. Marshak, Riazuddin, C. P. Ryan: “Theory of Weak Interactions in 

Particle Physics”. New York: Wiley 1969 

12 



Table I 

Parameters of the model, the values of the form factors, 

and K+ + r+x” amplitude for various choices of n . In 

the SU(3) limit, F+(O) = 1 and F-(O) = 0. 

n=3 n=5 n=9 

Qr 0.73 2.31 5.54 

CrK 0.32 1.03 2.46 

F,K= (0) 0.75 0.57 0.47 

Ff" (M3 0.83 0.61 0.49 

F?(O) -0.49 -0.32 -0.23 

F?(M:) -0.54 -0.34 -0.24 

A (K+ + ?r+r”) 37.3 eV 27.5 eV 22.6 eV 
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FIGURE CAPTIONS 

1. Diagrams for K+ + ?r+r” decay. Heavy dots denote regular effective 

vertices. 

2. Diagrams which define (a) weak decay constants fM, and (b) weak form 

factors Fk ( Q2). 

3. Feynman rules for regular vertices. An ingoing meson is described by 

I’(k, +P), and an outgoing meson by I’(k, -P). The function I’ is defined 

in Eq. (1). C 1 o our indices are denoted by i and j. 

4. Form factors Ff” and FF* as functions of Q2, with n = 3. The position 

of the pole is denoted. 

5. Typical anomalous vertices, with the “wrong” flavour structure. 

6. The long-distance (L-D) contribution of diagrams on r.h.s. is assumed to 

produce anomalous vertices of order - (m,/Mw)2. Dashed lines corre- 

spond to gluons. 
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