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. ..there are . . . certain limits to what 

verbal explanations can do when it comes to 

justifying axioms and rules of inference. In 

the end, everybody must understand for himself. 

Per Martin - Liif 
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1. INTRODUCTION 

In this paper we are to outline the logical form of the language of mathematics 

based on a lecture given by Per Martin - L6f in Oxford 1975.’ The language is 

an eztension of the intuitionistic theory of types which is the subject of a series 

of papers by h!artin-LCf.* The intuitionistic theory of types is itself an extension 

of Russell’s doctrine of types which says that “(c)very propositional function 

d(z). . . has, in addition to its range of truth, a range of significance, i.e. a range 

within which 2 must lie if 4(z) is to be a proposition at all, whether true or false. 

This is the first point in the theory of types; the second point is that ranges of 

significance form types, i.e. if z belongs to the range of significance of 4(z), then 

there is a class of objects, the type of 2, all of which must also belong to the range 

of significance of 4(z), however 4 may be varied; and the range of significance is 

always either a single type or a sum of several whole types.“3 As we said above: 

Martin-Liif’s theory of types is an extension of the doctrine above. 

One can trace the origins of this system, as Goran Sundholm points out,4 

on the technical side to Stephen Kleene’s notion of realizability,’ and Lguchli’s 

abstract version thereof.6 Furthermore, very important sources of inspiration 

were Giidel’s Dialectica translation7 and W. A. Howard’s notion of “formulae 

- as - type.“8 Other important sources are the natural deduction systems of 

Gentzen,g taken in conjunction with DagPrawitz’s reduction procedures.1° These 

systems are a significant improvement on the Hilbert style axiomatic systems, 

such as Zermelo - Fraenkel set theory, as regards semantics. Still an important 

source of inspiration was provided by the AUTOMATH project of de Bruijn 

and his co-workers.ll The relationship of this project (computer programming) 

to the intuitionistic theory of types has been explicitly dealt with by Martin - 
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L6f.12 This paper is intended as a contribution in order to provide a philosophical 

investigation (person program) in accordance with the proposition - (18 - rules 

idea. l3 

In the foundational studies of mathematics we are still faced with the unre- 

solved problems which the subject ran into the early part of this century. Among 

these are 

- to decide the merit of intuitionist structure 

on classical modes of reasoning. 

- to decide the merit of predicative strictures on 

impredicative modes of reasoning. 

of which the second cuts across the first. More recently we are also faced with the 

problem how to decide the relative merits of the multiplying Babel of artificial 

languages put up as analyses of mathematical practice. There are for example: 

CLASSICAL 

Principia Mathematics 

Zermelo’s set theory and its various extensions 

by further axioms, like choice, regularity, 

replacement, and so on. 

von Neumann - Bernays - Giidel set theory 

Quine’s set theories 

Morse - Kelly set theory 
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Scott’s theory of the cumulative hierarchy 

various languages inspired by category theory 

de Bruijn’s project AUTOMATH 

on the classical side, and 

INTUITIONIST 

Heything’s intuitionistic logic 

Kleene’s and Vesley’s axiomatic analysis 

Bishop’s numerical interpretation 

Myhill’s and Friedman’s constructivist 

set theories. 

Martin - Liif’s intuitionistic theory of types 

Actzel’s type theoretic interpretation of 

constructivist set theory 

Scott’s project of constructivist validity 

on the intuitionist side. To come to terms with these problems, we will have to 

explain such primitive mathematical concepts as 

- set 

- function 

- natural number 
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- the natural number zero 

- the successor of a natural number 

- proposition 

- propositional function, property or relation 

- negation, conjunction, disjunction and implication 

- universal and existential quantification 

- identity 

The explanation of defined concepts, like real numbers, Euclidean space, and cat- 

egory, is handled adequately within mathematics. Such concepts are reduced to 

others, more primitive ones, by explicit definitions. Evidently their explanation 

must be of a different kind. The aim of this paper is to contribute towards such 

a philosophical explanation. 

. A philosophical explanation of mathematical language is given by a Begrin- 

schrift. To engage in coding a Begrifldtrifft is to engage in writing a logical 

depth grammar. It is to engage in a philosophical investigation were the subject 

is a participator. l4 It is done in accordance with Wittgenstein’s principle: the 

sense of a proposition can only be given once, i.e. the sense of a proposition can- 

not be expressed except by repeating that proposition.15 For each fact there is 

necessarily only one proposition which answers to it. As Wittgenstein expressed 

it: “The rules of grammar cannot be justified by shewing that their application 
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makes a representation agree with reality. For this justification would itself have 

to describe what is represented”.16 When we write a logical depth grammar we 

distinguish between a canonical part (syntax) providing the essential explanation 

and the informal part (semantics) providing the informal, verbalized, explanation. 

Informal explanations are used e.g. in different textbooks, but are reductible to 

a canonical form. One can say that a canonical form is a criterion for the use of 

the informal explanations vis-a-vis meaning, whereas the informal explanations 

are symptoms of there being a canonical form regulating their use. The different 

symptoms are complementary to each other vis-a-vis their use. And they are 

complementary precisely in virtue of the canonical form regulating them. Symp 

toms provide the sufficient conditions in order to engage in producing knowledge 

of facts (e.g. by computations or measurements), whereas criteria, or canonical 

forms, are the necessary conditions. What we do when engaging in writing a log- 

ical depth grammar is to show what makes it possible to produce knowledge of 

facts.17 This is the essence of a person program, and for mathematical language 

it looks like what follows: 

B&sR IZSCNR ITT 

71 =X - z is the value (denotation) of a 

w a denotes z 

x=x 

2EX 

- X is the value (denotation) of A 

- A denotes X 

- x is an object of (belongs to, is an element of) 

the type (category, basic set) X 



X is a type 

- x is a proof of the proposition X 

- Theorem: X. Proof: z 

- X is a category (basic set) 

- X is a proposition 

- a is an 71 -valued function 

- u denotes an object (a proof) of the type 

(proposition) denoted by A 

71 is a type - A is a type-valued (propositional) function 

- A denotes a type (proposition) 

- a EE 6 (Curry, Bishop) 

- 0 =&.f b 

- a= b Df (Russell) 

- the A-valued function a and the 

B-valued function b are definitionally equal 

(have the same value) 

- a and b denote the same object (proof) of the type 

(proposition) d enoted by A and B 

A=B - AEB 

- A =&/ B 

- A=BDj 

- the type-valued (propositional) functions 

A and B are definitionally equal 
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0 

w 

N 

A+B 

- A and B denote the same type (proposition) 

- let u denote an arbitrary object (proof) 

of the type (proposition) denoted by A 

- assume A 

- the function which takes an arbitrary object 

of the type denoted by A into itself 

- zero 

- 2’ 

- the successor of z 

- w 

- the type of natural numbers 

- the (Cartesian) product of the family of types 

B(u), u E A 

- the type of abstracts of m-valued functions 

of the A-valued variable u 

- (Vu E A)+) 

- for all u E A, B(u) 

- BA 
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- ?(A;B) (Bourbaki) 

- F(A, B) (Bishop) 

- FAB (Curry) 

- (A)B (Schiitte) 

- (A, B) (Church) 

- (AlEI) (Cantor) 

- the type of functions from A to B 

-A>B 

- A implies B 

- 5 (Frege) ’ 

- 6(A) (Cantor) 

- the abstract (Frege’s Wettuerfaufi 

of the function 6(u) 

- the object of type (IIu E A)B(u) (A -+ B) 

which, when applied to an object z of the type 

denoted by A, yields as value the object that 

6(u) denotes when z is assigned as value to the 

variable u 

- the proof of (Vu E A)B(u) which is obtained 

from the function 6(u) which takes and object x of the 

type denoted by A into a proof of the proposition denoted by 

B(u) when z is assigned as value to the variable u 

- the proof of A C B which is obtained from 
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I 

4% 4 

the function b(u) which takes a proof of the proposition 

denoted by A into a proof of the proposition denoted by B 

- 44 
- functional application 

- universal instantiation 

- modus ponens 

(Cu E A)&4 - c BU uEA 
- the disjoint union (sum, coproduct) of the family of 

types B(u), u E A 

m  the type of pairs (z, y), where z is an object of 

the type denoted by A and y is an object of the 

type denoted by B 

- (3~ E A)B(u) 

- for some u E A, B(u) 

- {u E W(u)) 

AxB - (A. B) (Cantor) 

- the (Cartesian) product of the two types A and B 

- the type of pairs (2, y), where x and y are objects 

of the type denoted by A and B, respectively 

- AtYB 

- A-B 

-Al3 
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A+B 

- A and B 

- (x9 Y) 

- the pair consisting of z and y 

- the proof of (5 E A)B(u) which is obtained 

from the object z of the type denoted by A and the proof 

y of the proposition denoted by B(u) when z is 

assigned as value to the variable u 

- the proof of AEI B which is obtained from the proofs 

z and y of the propositions denoted by A and B, respectively 

- (A, B) (Cantor) 

- the disjoint union (sum, coproduct) of the two types 

A and B 

- AVB 

- AorB 

w i(Y) - the canonical injection of the object z(y) 

of the type denoted by A(B) into A + B 

3. INFORMALEXPLANATIONS 

We use 

a, 6, c, . . . 

for arbitrary objectvalued functional expressions, and 

A, B, C, . . . 
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for arbitrary type-valued functional expressions. We use a parenthesis notation 

in conjunction with these letters and variables 

u, u, w, . . . 

to indicate how they take arguments. Thus 

will stand for an arbitrary object-valued functional expression whose variables 

are among ul , . . . , Uk. similarly 

4~1, . - - , Uk) 

will stand for an arbitrary type-valued functional expression whose variables 

are among ul , . . . , Uk. A different placing of ul , . . . , Uk within the parentheses 

reflects a difference of input place within the functional expression. A single 

occurrence of a variable within the parentheses may stand for many linked ar- 

gument places within the functional expression. Although one writes variables 

over functional expressions in two parts, these being a part for the variables, and 

a part for the expression over and above the variables, these two things cannot 

in any sense be separated in an actual functional expression. One may vary the 

functional expression while retaining the same structure of inputs, but not take 

away what is varied here, leaving the input structure so to speak on its own. 

The following notations are used for arbitrary computations 

Ul = 21 . . . flk = 2k =l = 21 . . . ak = Sk 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

a(ul , . . . , uk) = 2 A(q) . . . , ttk) = x 
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Here the upper lines show the assignments of arguments q , . . . , zk to the vari- 

ables ur ,“‘, Uk of the functional expression, and correspond to an indication of 

what inputs have been fed into what input holes of a machine. 

The result of (I computation! 

fil = 21 . . . ;cik = Zk 
. . . . . . . . . . . . . . . . . . . . . . . . . . 

a(t&l , . . . , Uk) = 2 

is that 

4Ul ,“‘7 uk) = zfotal=zl . . ..izk=zk 

This may be translated as follows 

1. 

2. 

3. 

z iS the VU/t&e of a(ur , . . . , ‘Lk) for argUmt?ntS 21,. . . , zk in the argument 

places ~1 , . . . , uk respectively, or when the variables ul , . . . , uk are as- 

signed values q , . . . , zk respectively. 

2 is the oufput of a(ul , . . . , ‘Lk) for iUpUtS 21,. . . , zk in the input positions 

Ul,..., uk respectively. 

+1, * * a, fLk) denote8 2 when ul , . . . , Uk denote 21,. . . , zk respectively. 

It is similar when we are concerned with the computation of a type-valued func- 

tional expression. We can now realize that the expressions due, output and 

denotation, as they have been used in mathematics, computer science and phi- 

losophy are used in a redundant way as far as meaning is concerned. Indeed, 

they are merely symptom of there being a canonical form: a criterion. 

Of course one may never proceed in a computation using in different places 

assignments of different object expressions as values to the same variable. For 
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A computation is not in the proper venue a proof of ita reault. It ia something 

that produces ita result. It is a process of which its result is the upshot, and not 

an argument for it. One can imagine a notation like the arrangement of addition 

and multiplication sums children are taught which one has no inclination to call 

the successive inference of propositions. The result of a computation is also not 

in the proper sense a relation between the functional expression, its inputs and its 

output, although Church for example refers to ii = z as the name relation when 

u is a variable free functional expression. There is no harm in this terminology, 

provided one knows just what is meant by it. 

The particular forms of object expression that we shall use to begin with are 

0, s(x), (w), i(s), i(y), f(4, 1, -.-9 n, PW~b~~~ ZkA 

respectively. We shall see later why this is indeed what is essential to the notation. 

The use of the ordinary lambda notation is inadequate in this respect, unless it 

is supplemented somehow. For we cannot see from a lambda term what in it 

belongs to its form, and what to the constituents. 

Because of the use of the last form of object expression, functional expressions 

give rise to forms of object expression. We shall see presently that, conversely, 

forms of object expression give rise to new functional expressions. 

The particular forms of type expression that we shall use to begin with are 

N, No, Nl, . . . , Nk, . . . 

Moreover, if A(ul , . . . , uk) and B(ul , . . . , uk) are type-valued functional expres- 

sions, then 
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is a form of type expression. What is essential here is that from A(q). . . , zk)+ 

+1 , * - * 7 zk) we should be able to recover the sign + , the type-valued func- 

tional expressions A(ul , . . . , uk) and B(ul , . . . , uk), and the object expressions 

=1 ,“‘, zk that are associated with the argument places in A(ul , . . . , uk) and 

HUl, - - - 3 uk) indicated by the variables ul 9”‘F uk repectively. 

Also, if A(ul,. . . , uk) and B(ul,. . . , uk, U) are type-valued functional ex- 

pressions, then both 

tnu E &%--, zk))+l,..., Zk, U) 

and 

(cu E A(zl ,---, zk))B(%-, zk, u) 

are forms of type expression. What is essential here is that from 

(nu f A(q ,..., q))B(q,..., zk, u) we should be able to recover the sign 

II, the type-valued functional expressions A(ul , . . . , uk) and B(ul,. . . , uk, u), 

the argument places in B(ul , . . . , Uk, u) indicated by the variable u which are 

governed by the sign II, and the object expressions q , . . . , zk that are associ- 

ated with the argument places in A(ul , . . . , Uk) and B(ur , . . . , Uk, u) indicated 

by the variables ~1, . . . , uk respectively. It is similar with (Cu E A(q). . . , zk)) 

Hz1 9 * * * 9 Zk,U) save that the sign C takes the place of the sign II. 

When there is actually no argument place B(q , . . . , Uk,‘L) indicated by u, so 

that this type-valued functional expression may also be written B(q , . . . , t&k), 

then these forms will be written synonymously 
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and 

respectively. 

Finally, a typevalued functional expression A(ul , . . . , uk) gives rise to a form 

&I )...) Z&) (Xl Y) 

of type expressions. What is essential here is that from IA(zl ,...,Z.)(~, y) we may 

recover the sign I, the type-valued functional expression A(ul , . . . , uk), and the 

object expressions q , . . . , zk, 2, y where q I”‘? zk are associated with the 

argument places of A(ul , . . . , Uk) indicated by the variables ul , . . . , ilk. 

4. THEFORMALPART 

Now we deal with functional expressions employed in the portion of the lan- 

guage to be dealt with first. A functional expression, whether object-valued or 

typevalued, is simple or composite, and a simple junctional expression is ptimi- 

tive or defined. It is primitive or defined in virtue of the kind of computation rule 

laid down for it. We treat primitive functional expressions first. If f(q , . , . , zk) 

is a form of object expression, then f(ul , . . . , Uk) is a primitive object-valued 

functional expression, which operates according to the computation rule 

fll = 21 . . . ‘flk = zk 

fbl ,"', 'Lk) = /(%-, Zk) 

Thus, for example, as special cases of this rule we have 

tz b=o - =X 
44 = s(2) 
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The primitive object-valued functional expression /(ul , . . . , uk) must not be 

confused with the form f(q). . . , q) of object expression, since it iu stipulated 

that something is a form of object expression, and not atipulated, but to be un- 

derstood, that something ia a functional cxprcaaion. One could mark this in the 

notation for the functional expression itself, by for example using (S)u for the 

primitive functional expression arising from the form s(z). However, it will be (in 

a precise sense) always clear from the context whether the functional expression 

or the form is meant. 

Similarily, a form F(q , . . . , 2k) of type expression gives rise to a primitive 

type-valued functional expression F(ul , . . . , q) which operates according to the 

computation rule 

fJ1 = 21 . . . fTk = zk 

F(ul , . . . , uk) = F(zl , . . . , zk) 

Next we treat defined functional expressions. That is, we engage in giving 

the formation - rules. In the portion of the language developed here, there are 

in fact no defined type-valued functional expressions, so we treat only defined 

object-valued functional expressions. The argument places of a defined func- 

tional expression always include one called the principal argument place of the 

functional expression, the remainder being called subordinate. The distinction 

between these is that the computation of a defined functional expression always 

proceeds according to the form of the argument put into the principal argument 

place, while it is always uniform in the remaining arguments. That is, for the 

computation of such a function, we look first to the form of the principal argu- 

ment to see how it is to be computed, while the forms of the other arguments 
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become critical only at later stages of the computation. In this sense, what is 

in the principal argument place, or at least its form, take precedence over what 

is in the subordinate argument places, and indeed also the constituents of the 

principal argument. 

As a matter of convention, in writing 

it is always supposed that the principal argument place is that indicated by 

the variable u, while the subordinate argument places are those indicated by 

Ul,“‘, tlk. Furthermore, instead of writing 

fbl I”‘, Uk, 4 = y for fll = 21, . . . , ?rk = zk, u = 2 

in giving the computation rules for such functional expressions, we write simply 

The rules by which defined object-valued functional expressions arise are given 

by, the following list of definitional schemes. 
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I.1 N-Scheme or Recursion 

From object-valued functional expressions a(ul , . . . , uk) and 6(u, , . . . , uk, II, u) 

there arises an object-valued functional expression f(ul , . . . , Uk, u) defined by the 

rules. 

u1=21 . . . fik = xk 
. . . . . . . . . . . . . . . . . . . . . . . . . . 

a@1 ,‘“, uk) = 2 

El =x1 . . . uk = %k fl= 2 v= y 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

fbl , . . . , xk, t?(x)) = 2 

We may sometimes write 

for the functional expression so defined. Whatever the notation, it is essential 

that we may recover enough information to know how it is computed. 

4.2 II-Scheme 

ap(u, zu) is an object-valued functional expression in two variables defined by 

the scheme 

El = xl . . . flk = xk u= x 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

+l , - - -9 Uk, u) = Y 

dx, (Au) 6 (21~ - - - 9 Sk, u)) = Y 
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This is why what we previously stated to be essential in the object expression 

(W%b.., zk, u) is indeed essential. For, in order to work out the value 

of ap(u, w) for rr = z and IO = (Au) b( q ,“‘, zk, u), we must able to recover 

from (Au) b( 21 , . . . , zk, u), the functional expression 6(q). . . , uk, u), the argu- 

ment places in it to be filled by the subordinate argument 2, namely those shown 

by u, the object expressions q , . . . , Zk and the variable places in b(ul , . . . , uk, u) 

which they are to fill, namely those indicated by the variables ul T--*9 uk- 

4.8 C-Scheme 

Given an object-valued functional expression c(ur , . . . , Uk, u, w) we may de 

fine an object-valued functional expression f(ur , . . . , Uk, u) by the scheme 

‘al = xl . . . uk = zk fT= 2 m= y 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

C(ul , . . . , uk, v, w) = % 

We may sometimes write 

(‘% w) kbl , - - - , ‘Lk, u, t”), u) 

for the functional expression defined in this way from c(ur , . . . , Uk, u, w). 
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4.4 +-Scheme 

Given object-valued functional expressions a(ul , . . . , uk, V) and b(ul , . . . , uk, w), 

we may define an object-valued functional expression /(ul , . . . , uk, u) by the 

scheme 

tll = 21 . . . flk = xk u= 2 
. . . . . . . . . ..*....................... 

4u1 ,“‘I uk, u) = .% 

xk, i(z)) = % 

til = 21 . . . u’k = Zk m= y 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

b(ul ,‘**, uk,w) = t 

f(zl , s-s, Zkr i b)) = z 

We may sometimes use the notation 

(h W) (+I, - - -, ukr u), b(ul ,“‘, Uk, w), U) 

for f(ul , . . . , Uk, u). 

4.5 I-Scheme 

If c(q , . . . , uk, u) is an object-valued functional expression, the we may define 

an object-valued functional expression /( ~1,. . . , uk, u, u, w,) by the scheme 

Ul = 21 . . . fik = xk a= x 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

c(u1 , . . . , Uk, u) = % 

fh 1”‘! xk, 2, 2, 4%)) = % 
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4.6 Nn-Scheme 

Given object-valued functional expressions 

al(ul,...,uk),...a,(ul,“‘, ‘Id , 

we may define an objecevalued functional expression /(ul , . . . , uk, u) by the 

scheme 

al = 21 . . . tzk = zk 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Um Ul , . . . , Uk = 2 m l,...,n = 

fh , . . . , zk, m) = z 

Note that, when n = 0, the scheme is empty. Hence the computation of the 

defined functional expression is in such a case always trivial, in the sense that 

there is no form of principal argument at which the computation of the functional 

expression can begin. 

There remains the notion of a composite functional expression. Firstly, 

if al, . . . . ak and b(ul , . . . , uk) are object-valued functional expressions, then 

h..., ak) is an objectvalued functional expression, which operates according 

to the rule 

fT1 = 21 . . . uk = zk 
. . . . . . . . . . . . . . . . . . . . . . . . . . 

711 = 21 . . . uk = zk hl , -. .Y Uk) = Y 

b(al . . . , ak) = y 

Secondly, if al, . . . Ok are object-valued functional expressions and A(ul , . . . , Uk) 

is a type-valued functional expression, then A(ul, . . . , Ok) is a type-valued func- 

tional expression, which operates according to the rule 
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u1= Xl . . . Uk =zk 
. . . . . . . . . . . . . . . . . . . . . . . . . . 

al = 21 . . . ilk = Zk +I,. . . , ‘Lk) = x 

A(q . . . . ak) =x 

Given functional expressions al, . . . , Ok and COInpUtatiOnS of id1 = q, . . . , irk = 

xk, we may transform  a computation of a(al , . . . , ak) = z into a computation of 

u(ul , . . . , uk) = x for n1 = 21, . . . , flk = zk, and, similarly, a computation of 

A(q . . . , ak) into one of A(ul , . . . , Uk) Ul = 21, . . . , ak = zk. The computation 

of (al . . . , ak) = z consists of computations of certain values for the component 

functional expressions of (al . . . , uk) for various arguments. It is now merely a 

matter of reordering the applications of the rules for the evaluation of composite 

functions, for we can certainly extract computations of the values of al . . . , Uk. 

And, these values will be 21,. . . , xk respectively, she a functional expression 

determ ines its value. What remains will then be sufficient to put together a 

computation of U(Ul , . . . , ?.&k) = z for ul = 21 , . . . , flk = zk. 

The commutability of composition with evaluation is not a mathematical 

proposition that one gives a mathematical proof. For in the first place, unless one 

regards the language meta-mathematically, within some more extensive language, 

neither the object expressions t.hat are the arguments in a computation, nor the 

functional expression one computes, nor the object or type expression one gets as 

its value, are mathematical objects that can figure in a mathematical proposition. 

Secondly, the result of a computation is not a mathematical proposition that 

one can combine with others by means of the usual logical operations to get 
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the commutability thesis, unless, once more, one regards the language meta- 

mathematically. Rather, what we are concerned with is not a theorem and its 

proof, but the statement of a simple mechanical task, and the explanation of 

how to do it. 

6. THENON-FORMALPART 

The non-formal (or teleological) part of the language deals with acntenec~ of 

the forms 

XEX 

X is a type 

IlEA 

71 is a type 

A3 u=63 B 

;4=B 

These may be read informally as follows. First 

x is an object of (belongs to, is an element of) the type (category, basic 

set) X 

x is a (canonical) proof of the proposition X 

Theorem: X. proof: x 

Second 

X is a category (basic set) 

X is a proposition 

Now we can understand Wittgenstein’s comment that “(g)rammar is a ‘theory of 

logical types . ’ ‘18 What Wittgenstein is alluding to is the non - formal part of the 
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depth grammar of mathematical Language. Indeed, a philosophical investigation 

provides an extension of Russell’s doctrine of types, according to which a type in 

the range of significance of a propositional function, because, =... every function, 

and thus, in particular, every propositional function, will indeed have a type as 

its domain. A type is defined by prescribing what we have to do in order to 

construct an object of that type. This is almost verbatim the definition of the 

notion of set given by Bishop”.lg Furthermore, this is the first place at which a 

redundancy of a rather striking kind in the informal language is eliminated from 

the formal one. The informal notion of proposition and that of act (or, at least, 

one constituent of that notion) are the same, and their separation within informal 

language, and the traditional formal languages, constitutes a redundancy. The 

true reason why these notions are the same is not the formal similarity of the rules 

in the traditional languages governing the generation of objects of given types, 

and of proofs of given propositions. That similarity was what struck Curry and 

Feys in the domain of posit,ive implicational 10gic,~ and Howard showed how 

to extend as for as intuitionistic first order arithmetic.*l Rather it is that the 

explanations of what is expressed by 

2 is an element of X 

and 

x is a proof of X 

which we shall give later on, are the same. 

Third 

u is an x-valued function 



the value of a is an object ( a proof) of the type (proposition) which is the 

value of A 

Fourth 

A is a type-valued function, that is, a function whose values are types 

A is a propositional function, that is, a function whose values are proposi- 

tions 

Fifth 

acb, U=&,fb, a=bDf 

the X-valued function a and the B-valued function b are definitionally equal, or 

equivalent.22 

Sixth 

A= B, A=def B, A=BDf 

the type-valued functions A and B are definitionally equal, or equivalent. 

A sentence in the Language is an expression of one of the above six forms. 

That is to say: the depth grammar of the Language only requires expressions 

of these six forms. Note that the constituents of the first two forms of sentence 

are object or type expressions, whereas in the last four forms they are functional 

expressions. Accordingly, while the first two forms are of rather the same kind as 

the forms of object and type expression, the latter four are essentially different. 

The sentences of the language will ezpresa certain tuuks, or objectivea, which 

we must explain before ezplaining how the rule8 of the language are understood. 

However, that is not what is essential to a sentence, rather it is t.hat it is one of 

the forms shown above. 
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A sentence of one of the latter four forms that contains variables will always 

be derived from assumptions which assign ranges to these variables, and to indi- 

cate an arbitrary such derivation, we use t.he notations 

Ul E 711 . . . flk E Ad’4 , - - - I uk-1) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4~1,. . . , uk) is a type 

Ul E 711 . . . flk E A&4, - - - , uk-1) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A(Ul, * * -, uk) 3 +l, - - a, ‘Lk) = b(ul,. . . , ‘Lk) E +l, . . . , Uk) 

Ul E 711 . . . uk E Ak(ul , -. -, Uk-1) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A(ul , . . . , tlk) = B(Ul , . . . , Uk) 

The upper line 

shows assumptions including those with which the derivation begins. The vari- 

ables occurring in such a figure serve to link together and distinguish the various 

argument places of the functional expressions occurring in the figure, through 

their identity and difference. (They link and distinguish not only the argument 

places in a single functional expressions throughout the figure.) This might be 

achieved by many other devices than the use of variables. That however is what 
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is essential to the use of variables here. The above figures are rendered into 

informal terms as follows 

1. a(ul,..., uk)isanA(ul,..., uk)-valued function of the&-valued variable 

Ul, “‘, the Ak(ul , . . . , q-1 )-valued variable uk 

2. the value of a(ul , . . . , Uk) is an object of the type which is the value of 

4~1,. . . > Uk) when ul is assigned a value from the type which is the value 

of A(q). . . , uk) is assigned a value from the type which is then the value 

of Mu1 , - - -9 uk-1) 

and similarly in the other three cases. 

What is expressed by a sentence of one of the latter four forms which contains 

variables ul , . . . , flk is always explained r&tiVe to aSSUIUptiOnS Ul E ii1 , . . . , 

uk E Akht--9 u&l). Accordingly it would be more suitable, so far as the 

depth grammar is concerned, to recast the language so that we are concerned 

with sentences of the forms 

+1, * * a, uk)EA(ul,..., uk)foral E &, . . . . nkEAk(Ul,..., U&l) 

etc. 

rather than those displayed above. This might with justice be called a sequent 

formulation of the Language, while the one we are giving might be called its nat- 

ural deduction formulation, by analogy with the Gentzen systems.23 The natural 

deduction formulation is preferred here for its compactness and its greater prox- 

imity to the informal languages. 

We shall write 

71 = x E Xfora=zandz E X,and 

xEX= 7z for z E X and 7f = X. 
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Furthermore a definitional equality 71 3 ;d = 5 E A in which the outer terms 

are the same will be written synonymously ZT = 6 (A). 

6.1 The N-Rule Family 

OEN ZEN N is a type 

s(z) E N 

OErn -Em IV is a type 

8(U) E m 

The fourth and fifth rules here will be called the inttoductory rules /or N. Fur- 

thermore, if 

Ul E Al . . . uk E &h-v w-1) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

a@1 7 - - - , uk) E 4~1, - - et “kc 0) 

ul E & . . . uk E Ak(U1,. . . , “k-1) ‘II E m fJ E A(Ul ,. .., Uk, U) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

bl 7 * * * 9 Uk, U, ‘J) E Ah, - - -9 Uk, S(u)) 

Ul E Al . . . ak E A&Q, . . . . u&l) @  E N 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Au1 9 - * *) uk, u) is a type 

and f(ul , . . . , Uk, u) is defined from a(ul , . . . , Uk) and b(ul , . . . , Uk, u) by the 

N-scheme, then 
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which is the elimination rule for N, and 

Ul E 711 . . . uk E A&l,. . . , u&ml) 
4~1 ,‘.‘, uk,W f(ul,..., ~0) = 4ul,..., ud E A(ul,..., uk,O) 

Ul E 711 . . . uk E Ah,..., ~-1) fl E IV 

4Ul I * * *, “kr B&L)) 3 fh 3 . - - 9 Uk, 8(u)) 

= +l 3. - - I Uk, % fbl 9 -. - 3 Uk, u)) E A@1 T - - - 9 “k, 8(u)) 

The forms of object and type expression treated in these rules may be trans- 

lated in the informal language as follows 

0 

44 

N 

- zero 

- the successor of x 

- W, 

- the type of 

natural numbers 

6.2 The II-Rule Family 

If 

al E & . . . flk E Ak(ul,. . . , u&.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Ah,. . . , uk) is a type 

al E 21 . . . ‘tlk E &(Ul,. . . , u&l) u E A(Ul,. . ., Uk) 

b(ul ,.“, uk, u) E +l , - - -, uk, u) 

then 
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21 EXl =& . . . Zk E Xk = Ak(q ,..., uk)fornl=z ,..., IZ~-I=Z~-~ 
owh,..., “k, 4 E 0 E Ah,. . -9 q))Bh,. . . , zk, 4 

which is called the rule of abstraction, and 

II1 E A1 . . . =k E Ak(W , . . . , Uk-1) 
(XU)b(Ul,. . . , Uk, u) E nu E A(ul , . . . , uk))B(ul , . . . , Uk, U) 

which is called the II-introduction rule. 

Furthermore, if 

al E & . . . vk E A&l ,. . . , U&l) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4~1 p - - - y uk) is a type 

El E Al . . . nk E A&Q, - . . , Uk-1) fZ E A&, . . . , “k) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

%l 9 - - - 9 uk, u) is a type 

then 

21 E Xl = Xl . . . zk E xk = Ak(Ul , . . . , ilk-l) for vl = 2, 
“‘9 flk-1 = xk-1 

(nu E A(zl ,. . . , zk))B(zl ,. .., zk,u) is a type 

IT1 E Til . . . nk E Akh , . . . , uk-1) 

(b E A(Ul ,..., U#?(Ul,..., Uk,U) i!3a type 

AlSO 

ul E & . . . uk E A&l,..., U&l) u E A(ul,..., “k) 
tJ E (nU E A(ul,..., Uk))B(ul ,. . . , Uk,u) 



and 

Ul E & . . . flk E A&l,. . . , uk-1) u E A(q). . . , Uk) 

%l 9 * - * f uk, u) 3 a?‘(% (A u)b(ul , - - -9 “k, u)) 

= b(u1,. . . , uk, u) E B(ul, - - -I “k, u) 

provided 

Ul E 711 . . . fTk E Ak(“l ,“‘, u&l) u E 4~1, - - -9 uk) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

bl I * * * 9 uk, u) E B(ul , . . . , uk, u) 

This last is called the rule o/X-conversion. 

The forms of object and type expression treated in these rules may be trans- 

lated into the informal language as follows (we suppress all variables that are not 

critical in the form we are considering). 

- the (Cartesian) product of the 

family of types BU, u E A 

- the type of abstracts of B(u)-valued 

functions of the A-valued variable u 

- (Vu E A)B(u) 

- for all u E A, B(u) 

Here is another place where a redundancy in the informal language is eliminated 

from the formal one. Again, the reason why the separation of catte&rn producta 
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from unioersal quantification is a redundancy is not merely that the rules gov- 

erning them are formally similar, but that the explanation of these rules is the 

same. 

Furthermore, in the case when B(u) does not depend on u, when we write 

A + B synonymously with (IIu E A)B(u), the following are informal translations 

of (IIu E A)B(u) 

&, ?(A, B), W&B), f-m, (A)& (A, B), (A IB) 

the type of functions from A to B 

A>B 

A implies B 

Here is another redundancy in the informal language and the traditional logical 

systems, namely the separation not just between the notions of Cartesian product 

and universal quantification, but also between these and the notion of implication. 

(A zl)b(u) may be translated by 

- s b(u) in Frege’s notation 

- b(A) in Cantor’s notation 

- the abstract (Frege’s Wertverlauf ) of the function b(u) 

- the object of type (lIu E A)B(u) (resp. A + B) which, when applied to 

an object z of the type which is the value of A, yields the value of 6(u) 

when u is assigned the valued x 
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- the proof of (Vu E A)B( u w ic is obtained from the function b(u) which ) h’ h 

takes an object z of the type which is the value of A into a proof of the 

proposition that is the value of B(u) when u is assigned the value 2 

- the proof of A > B which is obtained from the function b(u) which takes 

a proof z of the proposition which is the value of A into a proof of the 

proposition which is the value of B 

Although in ordinary mathematics one doea not distinguish between functiona 

and their abstracts, that is, functions proper and functiona as objects, the dis- 

tinction is vital in our analysis of the ordinary practice. The notion of function 

as object cannot be understood unless we already have the notion of function in 

the proper sense. It would be futile to try to dispense with the latter notion, not 

least because application at any rate can only be understood as a function in this 

prior sense. 

The defined functional expression ap(u, w) allows us to translate the informal 

notation w(u) for functional application, and also universal instantiation and 

modus ponens. The paranthesis notation W(U) for functional application is in 

full accordance with the confusion in ordinary mathematics between the two 

notions of function. 

6.3 The C-Rule Family 

If 

al E & . . . uk E A&q,. . . , ‘L&l) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A(ul , . . . , uk) is a type 

fll E & . . . uk E A&Q,. . . , uk-1) fz E A(ul,. . . , u&l) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
%l , * * - I uk, u) is a type 
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then 

. . 
Zk E Xk = Ak(q , . . . , uk-1) for 81 = 21, . . . , ~-1 = q-1 
SEX = A(q). . . , uk) for fll = 21, . . . , nk = zk 
y E Y = B(ul , . . . , uk, u) for al = zk, u = z 

ul E A1 . . . flk E Ak(U1 ,. .., “k-1) U E A(ul ,..., uk) 

v E &l,..., uk,u) 

which is the C-introduction rule, and 

21 Exl =& . . . Zk Exk =Ak(Ul,..., U&l)fOrul=2, 

(cu (ii 4x1 , . . . , zk)) B(zl , . . . , zk, u) is a type 

a1 E 711 . . . uk E Ak(q , . . . , u&l) 

(cu E A(ul,. . . , uk))B(ul , . . . , uk, u) is a type 

Furthermore, if 

El E xl . . . uk E A&q,. . . , Uk-1) fi E +l, -. . , u/E) 

fl E B(ul , -. -, “k, u) 

C(U1 ,“‘, uk, %u) E +l, --- I uk, (u, 0)) 

al E A’1 . . . fzk E A&l ,..., u&l) 
fli E (cu E A(ul,..., uk))&l,..., uk,u) 

C(‘lll9 * * * 9 uk, w) is a type 
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and f(~1, . . . , uk, w) is defined from c(ul , . . . , Uk, u, V) by the C-scheme, then 

a1 E & . . . uk E Ak(t.41 ,..., U&l) 

UJ E (CU E +I,..., uk))B(ul ,‘.‘, uk, U) 

which is the C-elimination rule, and 

Ul E 711 . . . uk E Ah1 ,“‘, uk-1) u E Ah,..., Uk) 
u E B(q,..., Uk,U) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Cbl 7 - - - 9 uk, (u, v)) 3 f(ul , - - -9 uk, (u, u)) 
= 4”l 7”‘7 Uk, u, v) E cbl, - - - > Uk, (‘h d) 

The forms of object and type expression involved in these rules may be trans- 

lated into informal terms as follows 

- c BU uEA 
v the disjoint union (sum, coproduct) of the family of types BU, u E A 

- the type of pairs (5, y) where z is an object of the type which is the value 

of A and y is an object of the type which is the value of B(u) when u is 

assigned the value z 

- (3~ E A)B(u) 

- for some u E A, B(u) 

Similar remarks to those about redundancies eliminated by the rules apply here. 

There is one further notion of informal mathematics synonymous with the notions 

of disjoint union and existential quantification, namely the notion of aucA that 

- {u E A P(u)) 
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- the type of all u E A such that B(u) 

The notion of set used in ordinary mathematics is really a mixture of notions, 

namely of property and type, B(u) and (C u E A)B(u) respectively. These must 

be sharply distinguished in our analysis of the ordinary practice. (There are still 

other elements to be discerned within the informal notion.) An object of the 

type (Cu E W( ) u is an object z of the type which is the value of A together 

wit/~ a proof y of the proposition which is the value of B(u) when u is assigned 

the value 2, not merely, so to speak, the object z just happening to satisfy B(u). 

This way of handling the notion of comprehension, or separation, is quite crucial 

throughout mathematics. For an example, which Myhill discusses, we may take 

the definition of the inverse function on the type of real numbers different from 

zero {u E R 1 u # 0). For the function depends not only on a given real number, 

but essentially on the proof that it is different from zero. 

In the case when B(u) does not depend on u, so that we write A X B synony- 

mously with (Cu E A)B(u), the following may be taken as informal translations 

- (A . B) in Cantor’s notation 

- the Cartesian product of the types A and B 

- the type of pairs (2, y) where z and y are objects of the types which are 

the values of A and B, respectively 

- AtYB, A B, A.B, AB, A and B 

(2, y) may be translated as follows 

- (?Y) 

- the pair consisting of z and y 
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- the proof of (3~ E A)B( ) h h u w ic is obtained from the object z of the type 

which is the value of A and the proof y of the proposition which is the 

value of B(u) when u is the assigned the value z 

- the proof of A& B which is obtained from the proofs z and y of the 

propositions which are the values of A and B respectively 

6.4 The +-Rule Family 

If 

a1 E x1 - -. uk E A&Q, -. . , uk-1) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Ah , - - - y Uk) is a type 

then 

Zk E xk = A&q ,. . ., u&l) for fll = 21, . .., t&l = xk-1 

2EX = A(q , . . . , ?&) fOrv1 = 21, . . . , uk = zk 

i(Z) E A(q , . . . , Zk) + f+l, . . . , Zk) 

zk E xk = Ak(Ul ,. .., u&l) for fll = 21, . . . . akBl = irk-1 

y E Y = B(ul , . . . , uk) for al = 21, . . . , uk = zk 



of which the last two are the +-introduction rules, and 

ul E Al . . . uk E Ak(ul , . . . , Q-~) u E A(ul , . . . , ukj 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

i(u) E A(q ,... , uk) + B(ul,..., uk) 

81 E & . . . ‘flk E A&l,. . . , U&l) fl E B(Ul,. . . , Uk) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

i(v) E +I,. - - , uk) + B(ul, - - -9 uk) 

Zl Exl =& . . . 2k Exk =/i&l,..., Uk)fOrfTl=Z, 

“‘, uk-1 = zk-1 

A@1 , -. . , zk) + B(zl , . . . , zk) is a type 

al E & . . . uk E A&l,. . . , U&l) 

44, - * *, uk) + B(ul , . . . , uk) in a type 

Furthermore, if 

U1 E & . . . uk E Ak(“l ,- .., U&l) u E +I,. . ., Uk) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

ul E & . . . uk E A&l, - . . , u&l) I-’ E &l, .-. , ‘Ik) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Ul E 711 . . . uk E Ak(ul t - - -7 Uk-1) 
?D E A(ul ,. . . , ilk) + +I, . . . , Uk) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Ch,..., uk, w) is a type 

and f(Ul , . . . , uk, W) i!3 defined from U(Ul , . . . , Uk, U) and b(ul , . . . , Uk, W) as in 

the +- scheme, then 

Ul E 21 . . . uk E Ad’4 , - - -9 uk-1) 

fll E 4~1,. . . , Uk) + &I,. . . , Uk) 

fbl , * * - 9 uk,w) E oh,-, Uk,“‘) 
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which is the +-elimination rule, and 

ul E & . . . q E A&l ,.. . , ukq) u E A(q ,. . . , uk) 
cb-4 9 * * *, fck, i(u)) 3 f(ul? * -*, uk, +)) = +l, - - -, uk, u) E c(ul , . . . , uk, i(u)) 

The forms of type and object expression involved here are translated as fol- 

lows. We may translate A + B by 

- (A, B) in Cantor’s notation 

- A+B 

- the disjoint union (sum, coproduct) of the two types A and B 

- AVB 

- AorB 

we may translate i(z) and j(y) by 

w  the canonical injection of the object 2 (resp. y) of the type which is the 

value of A (resp. B) into A + B 

- the proof of A V B which is obtained from the proof x (resp. y) of the 

proposition which is the value of A (resp. B) 
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6.5 The I-Rule Family 

If 

Ul E 711 . . . flk E A&l f.. . , w-1) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A(Ul I . . . . uk) is a type 

then 

. . . 

xk E xk = Ak(ul , . . . , tfk-1) for al = 21, . . . , wk-1 = zk-1 

‘fx) E IA(q ,..., uk) by d 

al E 711 . . - uk E Ak(Ul , . . . , U&l) u E A(q , . . . , uk) 

‘-b) IA(ul ,..., uk) by u, 

which is the I-introduction rule, and 

. . 

xk E xk = Ak(ul ,..., ukml) for al =zl, . . . . uk-1 = zk-I 

2E-X = A(ul , . . . , Uk) for ul = 21, . . . , zk = zk 

YEX = A(ul,. . . , ‘Lk) for al = a&, . . . , fz = 2 

IAh )..., Zk) (x9 Y) is a type 

Ul E Al . . . Ilk E uk E Ak(ul ,-. . , u&l) u E Ah,. . . , uk) 

‘-+I ,..., Uk) (u, 4 is a type 
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Furthermore, if 

~1 E & . . . ‘II~ E &@I,. . . , ~-1) fl E A(ul,. . ., uk) 
.,.............................................................. 

C(Ul ,“‘, uky u) E cbl,. . . , uk, % us f(U)) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Ch t - * - 9 uk,u,U,w) is a type 

and f(q). . . , ‘Ik, u, u, w) is defined from c(ul , . . . , Uk, u) by the hchcmc, then 

zll E Al . . . ak E Akh , . . . , ‘Ik-1) 

g E +l Y---Y uk) 17 E A(q , . . . , “k) m E IA(q ,..., uk) (% v) 

f Ul,---, uk,u,u,W) E c(u, 9”‘, “k, u, u w 

which is the rule of I - elimination, and 

u1 E Al . . . uk E Ak(ul,---, uk-1) u E A(Ul,..-, uk) 

we may translate IA (2, y) by 

X= Y 

- the proposition that x and y are identical objects of the type which is the 

value of A 

and r(z) is translated by 
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- the proof that th object z of the type which is the value of A is identical 

to itself 

From the elimination rule for I we may obtain the usual eliminatory rule for 

identity 

as follows. The latter rule is interderivable with the rule 

This is obvious in one direction, and in the other we may take C(u, u) to be 

A(u) + A(v). The second rule above is a special case of the rule of I-elimination. 

6.6 The N,-Rule Family 

leNn . . . n E Nn Nn is a type 

TEN, . . . A E m, lV, is a type 

The latter are the N,-introduction rulea. Furthermore, if 

Ul E & . . . uk E A&Q, - -. , u&l) 
. . . . . . . . . . . . . . . . . . . . . . . . . m l,...,n = . . . . . . . . . . . . . . . . . . 

4u1 ,“‘, uk) E 4211 ,“‘, “k, m, 

al E & . . . fzk f A&q,.. . , ‘L&l) u E & . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4~1,. . .y uk, u) is a type 
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and f(ul , . . . , uk, u) has 

by the Nn-scheme, then 

been defined from al(ul,.. . , uk), . . . ,un(ul ,. . ., uk) 

. . . flk E A&l,. - - , U&l) u E %I 

a1 ,“‘, Ukr U) E 4~1, - - - Y uk, U) 

which is the rule of IV,,-elimination, and 

Ii1 E Xl . . . uk E Ak(ul ,“‘, uk-1) 

4~1,. . -7 uk, m) 3 f(ul, . . . , uk,m) = a&l ,. . ., uk) E A(ul, . . . , uk,m) 

for m = 1, . . . . n. 

One may translate No by 

- the empty type 

- L 

- A 

- absurdity 

- falsehood 

One may translate IV1 by 

- the one element type 
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- T 

- truth 

One may translate Nn by 

- the standard type with n elements 

Incasen= 0, the elimination rule for Nn is the formal rendering of the informal 

rule 

called ez Ialso quodlibet, or absurdity elimination. 

~.GENERALRULESOFFUNCTIONFORMATION 

From the rules for introducing simple functions, we build up composite func- 

tions by means of the rules 

Ul E 21 . . . ak E Adal , - - -9 ak-1) 
a(a1 . . .) ak) E A@1 ,-A) 

in which it is supposed that 

Ul E 711 . . . nk E Akh , -.-, ‘Lk-1) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

a@1 ,'.', uk) E Ah , - - -9 uk) 

and 

Ul E Al . . . u&k E Ah,. 0 - 7 ak-1) 

A(a1 "'2 ak) is a type 
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in which it is supposed that 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Ah,. . . , uk) is a type 

Next there is the rule of assumptions, according to which if 

71 is a type 

then 

IZEX 

that is, if we have derived 71 is a type, then we make the assumption II E X This 

corresponds in informal mathematics to saying 

Let u denote an arbitrary object of the type denoted by A 

or simply 

Assume A 

Finally there is the rule of replacing the range of a function by one to which 

it is definitionally equal 

By this rule, the rules of function formation are linked with the rules definitional 

equality. We have already given those rules of definitional equality that relate 

directly to the particular simple functional expressions that we will use in the 

language to begin with. Besides these are the following. 
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8. GENERAL RULES OF DEFINITIONAL EQUALITY 

713U=UEB 

71 is a type 
X=X 

;a =B B=C 
A 77 = 

- Reflexivity 

- Symmetry 

- Transitivity 

Preservation under composition 

. 

4&l , -. -9 Ok-11 3 ak = Sk E Ak(h , . - - , b&l) 

Ah 9 . *. , ak) 3 +l *-a, uk) = a@, , - - -, bk) E A(b, , . . . , a,) 

in which it is supposed that 

and 

A&, , - - -, ak-1) 3 ak = 6k E Ak(h , . . . , b&l) 

4~1, - . -9 Ok) = A(h) - - -9 bk) 
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in which it is supposed that 

al E & --. flk E A&l ,..., Uk-1) ,.................,....................... 
4~1,. . -3 uk) is a type 

9. CONCLUSION 

With this the depth grammar of mathematics is complete. We have given sub- 

stance to Wittgenstein’s claim that “grammar is a ‘theory of logical types”‘,24 

by showing how a philosophical investigation in an extension of Russell’s doc- 

trine of types. This is not surprising when one recalls the inlluence of Russell 

on Wittgenstein. Furthermore, we have shown how Martin-L6f’s intuitionistic 

theory of types, being an extension of Russell’s doctrine of types, can be further 

extended to become a logical depth grammar in Wittgenstein’s sense, in accor- 

dance wit,h the proposition-as-rules idea.25 It meets Wittgenstein’s requirement, 

as expressed by Hide Ishiguro, that a “theory of types (is) a necessary truth about 

symbolism and language: something which can be grasped as evident, if we cor- 

rectly understand the nature of symbolism. It (is) not a philosophical position 

which we can argue for or against in a non-circular manner. Nor on the other 

hand is it something we are free to decide by stipulation”.26 These requirements 

become obvious once it is realized that a philosophical investigation provides 

the logical depth grammar of mathematical Language which we UJC in correct 

mathematical practice. It provides the logical /otm of mathematical Language. 
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10. APPENDIX: THE AXIOM OF CHOICE 

As an example we shall prove the born of choice following Martin - Liif 

( 1973).27 This is to engage in judging (asserting) a proposition of the form “p is 

true”. We compute the axiom of choice in virtue of a person program which is 

the depth grammar of mathematical language. In order to prove the axiom of 

choice 

(flu E A)(Cu E &))C(VJ) 

+ (Cw E (nu E A)B(u))(nu E A)C(~,ap(u,w)) 

we must construct an object of this type, provided 

iIis a type 

~~~ . . . . . . . . . . . . . . . . . . . . . 
(21, is a type 

fz E 71 fl E B(u) . . . . . . . . . . . . . . . . . . . . 
C&Tjis a type 

First we define functional expressions p(w) and q(w) by the C-scheme so that 

Pm, YN =2 

!7k YH = Y 

Now assume 

Vl E & 

7 E (nu E A) (Xv E &))C(u, t’) 

Then by one of the II-rules (rule of application) we get 

(1) 

(2) 

(3) 

Then from this we get by the C-rules 

P(aP(% f)) E m) (4 
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I 

?liaCm E wbP(~P(u, no 
From (4) we get by a II-rule 

(5) 

and by another 

B(u) 3 UPh (~4P(UP(U, 1))) = P(fJP(% f)) E a4 (7) 

Then by the rule of the preservation of definitional equality under composition 

C(u, UP(% (WP(UPb, f)))) = C(u, PbP(% f))) (8) 

From (5) and (8) we get by the rules about the symmetry of definitional equality 

and the replacement of a range by one to which it is definitionally equal 

!?(UP(% f)) (5 C(% aP(% wP(aP(% f)))) 

From (9) and a II-rule 

(Wd~P(~~ fN E mu E Wh aP(% (WP(fJP(U> fM 

Then from (6) and (10) by a C-rule 

wdP(aP(% fh 04~(~P(~~ f))) 

E (Cw E (flu E A)B(u))C(wp(u, w)) 

Finally from (11) by abstraction 

(VWd~(a~(ut fh (W+p(w f)N E @u E 4 

PJ E w4 

C(u, u) --+ (Cw E (nu E A)&))(~u E A)C(u, ap(u, w)) 

Q. E. D. 

(9) 

(10) 

(11) 
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