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ABSTRACT 

We show that the conformally invariant 0 (N) nonlinear a-models with 

a Wess-Zumino term with coefficient k, have the same current and confor- 

ma1 algebras with a theory of N Majorana fermions with a hidden (gauged) 

0 (k) quantum number. These latter are interpreted as N particles obeying 

the free Dirac equation but quantized with (nonlocal) parafermi statistics 

of order k, an interpretation that we verify by deriving the exact finite- 

temperature propagator, thereby explicitly relating the anomalous scaling 

dimensions to non-standard statistics. 
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1. Introduction 

Thanks mainly to the emergence of strings as potential cures to (practically) 

everything, a lot of attention has been recently drawn on conformally invariant 

two-dimensional field theories [l]. An interesting class of such theories consists 

of the nonlinear a-models with action: 

S=l 
4x2 J 

Tr dpg #‘g-l d2x + k I’(g) (1) 

where g is an element of O(N) [or U(N) ] * and I’ is the Wess-Zumino term 

[2] with quantized coefficient (k = 1, 2, . . . ,). Witten [3] has shown how at 

X2 = 4n/k these theories become scale-invariant, and, for k = 1, equivalent to 

N free Majorana fermions. In this paper we will generalize Witten’s result, by 

showing that for all k these theories have the same conformal and current algebras 

as N (Majorana) fermions with an internal (hidden or gauged) O(k) quantum 

number. This provides us with a fermionic representation of the infinite conformal 

(Virasoro) and current (Kac-Moody) algebras of the nonlinear a-models (1). 

Besides its mathematical interest, this representation might prove useful in the 

study of candidate theories of strings. We should nevertheless point out that our 

result does not necessarily imply the quantum equivalence of these models, since 

the representation of the current and conformal algebras need not, in general, 

be unique. 

* We will limit ourselves to the group 0 (IV), b u our discussion is also applicable to U (IV) if t 
one replaces Majorana with Dirac fields in what follows. 
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Another possible interpretation of these models is in terms of N particles 

obeying the free Dirac equation but (nonlocal) parafermi statistics of order k [4,5]. 

We will in fact explicitly exhibit the relation between anomalous scaling dimen- 

sions and nonstandard statistics by deriving the exact finite-temperature propa- 

gator of any conformally covariant field. This interpretation is also made plausible 

by a formal transformation from the gauged-fermionic model. 

In sect. 2, we prove the equivalence of the algebras of the a-model (1) with 

those of the theory of gauged Majorana fermions. In sect. 3 this latter is for- 

mally transformed to a theory of Majorana particles quantized with anomalous 

(parafermi) statistics. In sect. 4 we show how to obtain the finite-temperature 

Green’s functions of any scale-invariant theory, by means of a conformal mapping, 

and show how anomalous scaling dimensions are related to anomalous statistics. 

Finally, sect. 5 has some concluding remarks. 

2. Equivalence with a Gauged Theory of Fermions 

Let us begin by recalling that the O(N) currents of the a-model (1): 

JT ta Ei ; g-l (a+g) 

J: ta G -; (LLg) g-1 



have the commutation relations [3]: 

[JT(x+), Jf(x:)] = 2if47 JT(x+) 6(x+ 

[P(x-),J!(xL)] = 2i p7 JZ(x-) 6(x- 

[J;(x+),JP(d)] = 0 

- 

- 

- 

- 

4) (24 

xl_) (24 

(24 

where t” and f*Pr are the generators and structure constants of O(N), and we 

have used light-cone coordinates (u* = uc f ~1 for any vector u). The energy- 

momentum tensor, on the other hand, is of the Sugawara type [6]: 

T++ = 
1 

(- -1 2(N + k - 2) 
: J*+J*+ : (3) (- -) 

(where normal ordering is with respect to the current quanta), so that the con- 

formal generators: 

L, E -$ 
f 

qn--l T++ (x+> 

satisfy the algebra: 

[Ln, Lm] = (n - m) Ln+tn + +j (n3 - n) &2,,-m (44 

with 

1 N(N - 1)k 
’ = ?i N-i-k-2 (44 
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as shown by several authors [7-91. The algebras Eqs. (2) and (4a) are known as 

Kac-Moody [lo] and Virasoro [ll] algebras, and are uniquely characterized by 

the coefficients of the anomalous terms, k and c respectively. 

We will now show that these same current and conformal algebras can be 

derived from a theory of N Majorana fermions, with an internal gauged O(k) 

symmetry: 

(5) 

Here and in what follows, i, j = 1,. . . , k are the 0 (k) (“color”) indices, a = 

1 ,“‘, N is the 0(N) (“flavor”) index, X&. are the antisymmetric generators of 

0 (k), and summation over repeated indices is implied. A kinetic energy for the 

gauge fields AL has not been introduced, and will not be generated by renormal- 

ization in two dimensions. * Therefore, the A: are not real dynamical variables, 

but rather Lagrange multipliers whose equations of motion ensure the vanishing 

of all (normal-ordered) 0 (k)-currents: 

In the language of constrained systems [13], th ese are second-class constraints 

that modify the canonical free-field commutation relations of any two operators 

according to: 

[01,02] = [01,021f - / d2xd2y[Ol,j~(x)]fM’J1~y(Z,Y)[j~(Y)~021f c7d 

* Bosonization of this model, with dynamical gauge fields, has been discussed in Ref. [12]. 
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where [ , ]f stands for the canonical commutator calculated as if the fermions 

were free fields, and M is the inverse matrix of commutators of the constraints: 

/ 
dzy MIJW (5,y) [“i~(Y),jpK(~)]f = 6’Kq4c2)(s - 4 * (74 

Here the free commutators are defined with an 0(lV)~ x 0(lV)~ symmetric 

regularization, in which left and right fermion currents commute [ 141. It should, 

furthermore, be pointed out that Eq. (7 a may, in principle, require modifica- ) 

tion when dealing with composite operators, due to operator ordering problems. 

Nevertheless, this won’t be necessary for the purposes of our present discussion. 

A couple of conclusions follow immediately from Eqs. (7a,b): firstly, the 

0 (k)-currents j;f commute with everything, as they should for the consistent 

implementation of the constraints (6). Secondly, if the operator Or is such that 

its free-field commutators with all 0 (k)-currents vanish, then for all 02: 

[01,02] = [01,02]f - 

The 0 (N)-currents: 

in particular, satisfy [JF,jL]f = 0, so that their algebra can be calculated us- 

ing free-fermion contract ions. The result is easily seen to be the same as Eqs. 

(2a,b,c), since each color will make an equal independent contribution to the 

anomaly, whose strength will thus be trivially equal to k. 



To calculate the algebra of the energy-momentum tensor we will use a trick. 

We consider the operator 

T 
1 1 

++=2(N+k-2) : J+*JY :+qN+km2) : j:j: : * (8) 

As can be easily shown, its free-field commutators with the 0 (N) and 0 (Ic) 

currents, as well as with itself, are identical to the corresponding free-field com- 

mutators of the energy-momentum tensor. In particular the central charge of the 

Virasoro algebra is 

1 N(N - 1)rc 1 k(k - l)N 
ii N+k-2 

1 Nk . 
+ii N+k-2=2 

which is the correct anomaly for Nk free Majorana fermions. The first and second 

terms on the left-hand side correspond to the first and second terms in expression 

(8). 

Since for calculating the actual (modified Dirac) algebra all one needs are 

these free-field commutators (see Eqs. (7)), we can legitimately use expression 

(8) in place of the real energy-momentum tensor of the theory. 

We are now almost done. Indeed, as explained above, the 0 (k) currents jr 

have vanishing Dirac commutators with everything,* while the 0 (N) currents 

Ja have identical Dirac and free-field commutation relations, and in particular 

satisfy the algebra (2a,b,c). Hence, the modified Virasoro algebra is identical to 

* The careful reader might want to verify that operator orderings do not destroy this result, 
that is that the composite operator : jljz : also has vanishing (modified) commutators with 
everything. 
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(4a,b) and in particular the central charge is i N(N - l)k/(N + k - 2), which 

completes our proof. 

Let us note in passing that the fermionic Lagrangian [Eq. (5)] can be trivially 

supersymmetrized by adding “color”-singlet free fermions in the adjoint repre- 

sentation of 0 (N); the supersymmetry is then non-linearly realized, but this will 

not be discussed any further here. In the remainder of this paper we would like 

to give an alternative interpretation of the conformally invariant models [Eq. (5)] 

as theories of parastatistical particles. 

3. Parastatistics 

Parastatistics were introduced more than thirty years ago by Green [4,5], 

who noticed that canonical (anti)commutation relations were not the only ones 

consistent with the axioms of field theory. For instance, assuming a unique 

vacuum, the most general quantum field [15] satisfying the free Dirac equation 

can be written: 
k 

where the auxiliary mathematical entities \k(i), called Green components, are free 

(Majorana) fields that obey normal equal-time anticommutation relations for the 

same Green index, while commuting for different Green indices: 

%I = YO = - (7oC) f5 (Zl - y1) 

ql = !a) 
= 0 if ;#j 

(94 
w 



Here C is the charge-conjugation matrix. Note that only K&(z) has a direct 

physical meaning, and all observables should be built out of it; k is called the order 

or parastatistics and is the maximum number of particles that can simultaneously 

occupy a state. If the parafields also carry an 0 (N) “flavor” index, the anomalous 

commutation relations can be extended in an 0 (N)-invariant way by modifying 

Eq. (9a) to: 

while retaining Eq. (9b) for all possible “flavor” indices. 

We should here clarify that although the field \k obeys the free Dirac equa- 

tion, it really corresponds to a particular interacting theory; the interactions are 

manifested through the nonstandard statistics. 

Now the 0 (k)-gauged fermionic model [Eq. (5)] can be formally transformed 

into a theory of parafermions of order k. The transformation, which is nonlocal in 

the fields, but local in all gauge-invariant bilinear observables, can be constructed 

in two steps as follows. We first define new fields by attaching path ordered 

exponentials to the fermions: 

pTi(x) E Pexp +yjCx) 

ij 

00) 

pri(x) = P exp +!jCx) * (11) 
ij 

where $+, $- are the left and right handed components of $J respectively. The 

fields pii obey the free Dirac equation, and have a global (space-time indepen- 
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dent) gauge-transformation law, as can be easily seen. There now exists a well 

known Klein transformation [ 16,171, that converts such fields to free parafermions 

(with anomalous commutation relations): 

where 

To check the validity of this formal transformation, a more careful treatment 

would be required. We here only point out that this interpretation of the gauged 

fermionic model [Eq. (5)] is not very surprising, since in two dimensions the gauge 

symmetry has no dynamical content, but simply provides a hidden quantum 

number that modifies the particle statistics. A familiar analogy may help make 

this clear: suppose that the scale of real-world chromodynamics (AQ~D) is sent 

to infinity. Confinement would then be local and glueball states will disappear 

from the spectrum. One would be left with a theory of free flavor currents 

with modified statistics-the only souvenir of the unobservable color. It is in 

fact amusing to recall that color was historically first introduced as the hidden 

Green index of paraquarks, that explained the observed symmetry of baryon 

wavefunctions [ 181. 
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4. Scale Invariant Theories at Finite Temperature 

One can also arrive at the above interpretation of the a-models by what 

appears to be a completely different route, namely by considering these theories 

at finite temperature. Let us begin by recalling that in a scale-invariant Euclidean 

two-dimensional theory, a conformal transformation: 

f$; (Z’,Z’) = (-gAl (-g)“’ h(G) (12) 

leaves the field equations invariant, while in general changing the boundary 

conditions. Here z = zr + izo and B = zi - izo are the imaginary-time light- 

cone coordinates, z’(z) is holomorphic and Al f A;L are the scaling dimension 

and spin of the field, respectively. Finite-temperature Euclidean Green’s func- 

tions, on the other hand, obey the field equations with periodic (antiperiodic) 

boundary conditions in the time direction for integral (half-integral)-spin fields, 

respectively [ 191. 

Consider now, in particular, the mapping:* 

z’ = & e427rrTz + 1) 

of the entire complex plane onto the strip 0 5 z; 5 T-l. It follows from Eq. (12) 

that, under this transformation, integral (half-integral)-spin fields become pe- 

riodic (antiperiodic) in time with period T- ‘. Zero-temperature Green’s func- 

tions are thus automatically transformed into their finite-temperature counter- 

parts. Consider, for instance, a free fermion; in the chiral representation the 

* This mapping has also been used by Cardy 1201, t o explain the observed universality of 
finite-size scaling amplitudes in two dimensions. 
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upper and lower components have A = l/2, d = 0 and A = 0, Li = l/2, 

respectively. The Dirac operator is: 

3= 
(a/L “‘o”“> 

and its inverse: 

0-1 = (. 
0 (274 -1 

> \ (274-l 0 - 

Applying transformation (13) yields: 

Df erm,T = 
( 

0 T/ sin h (T Tz) 

T/sin h (?r 2’~) 0 > 

which is indeed the finite-temperature free-fermionic propagator. 

More generally, for any field de with nonvanishing+ scaling dimension q = 

A, + &, the zero-temperature propagator is (up to a normalization constant): 

(qL+y (2, z) qqo)) = ,c2*t F2Al 

and the finite-temperature propagator becomes: 

D~,T = (TT)~~ -sin hm2*e (Gz) - sin hm2’e (7~2’~) . 

t Mapping Eq. (13) can actually also be used to obtain the finite-temperature free-boson 
propagator. The calculation is, however, in this case subtle and must be carried out in 
momentum space with an infinitesimal-mass-prescription that cures infrared divergences 
(211. We only mention this in order to make an interesting comment: since the same 
mapping transforms both bosons and fermions to finite-temperature, supersymmetry is not 
explicitly broken by a heat bath 1221, at least in the case of two-dimensional scale-invariant 
theories. 
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At large distances this falls off exponentially with an effective mass proportional 

to the scaling dimension: 

meff = 27rTq . (14 

This is the energy required in order to create a zero-momentum excitation at 

finite temperature. It vanishes, as expected, for free bosons (7 = 0), while for 

free fermions (11 = l/Z), b ecause of the exclusion principle, it equals the average 

energy of the nearest unoccupied level: 

meff = ?rT . 

For parafermions of order Ic, one would of course expect: 

since up to k particles can occupy the same state. 

Now the critical exponents for the nonlinear a-models have been computed 

by Knizhnik and Zamolodchikov [7]. In fact their calculation only makes use of 

the conformal and current algebras, and the transformation properties of fields, 

but not of the specific form of the Lagrangian. For fields transforming in the 

fundamental 8 trivial representation of 0 (N)L x 0 (N)R, they find: 

A= 
N-l 

Z(N+k-2) ’ 
ii=o. 
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Putting N = 2, one indeed recovers the answer expected of a Dirac parafermion 

of order k, Eq. (15). For N > 2, on the other hand, the parastatistics of N 

different species of Majorana particles is considerable more complicated, 

as shown by the formula for the effective mass: 

meff = 
dF(N - 1) 
N+k-2 ’ 

Note that the fact that the critical exponent is neither integer nor half-integer, 

implies that the propagator has a cut, which is due to the nonlocal character of 

the parafermions. 

5. Conclusions 

In conclusion, we have argued for the equivalence of the scale-invariant nonlin- 

ear 0 (N) a-models with theories of massless Majorana particles with anomalous 

statistics. The coefficient of the Wess-Zumino term was identified with the order 

of parastatistics. An alternative, equivalent, representation that can be trivially 

supersymmetrized is in terms of fermions with a gauged (hidden) 0 (k) quantum 

number. We have also derived the most general finite-temperature propagator 

of a conformally covariant field, and thereby explicitly related anomalous scaling 

dimensions to anomalous statistics. 
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Note added in proof : After submission of this paper there appeared a preprint 

by Goddard, Nahm and Olive [23] w h ere it is shown that for some exceptional 

values of the Wess-Zumino coefficient, the a-models have the same algebraic 

structure as theories of free fermions. This should be contrasted to the present 

work where the Wess-Zumino coefficient is left arbitrary but the fermions are not 

necessarily free. We cannot however conclude that for these exceptional values of 

the Wess-Zumino coefficient the gauged fermionic model is quantum equivalent 

to a theory of free fermions, since as we already pointed out the representation 

of the current and conformal algebra, need not in general be unique. 
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