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ABSTRACT 

The polarization and charge asymmetries in the scattering of longitudinally 

polarized electron by proton are considered in the context of a supersymmetric 

extension of the standard model. The contribution of the subprocess eq + e”i 

followed by the fast decay of e” + e;i is computed for various sets of superpartner 

masses at energies corresponding to the ep collider at HERA (30 GeV x 820 

GeV) and to an hypothetical ep machine at SSC (30 GeV x 20 TeV). 
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1. Introduction 

Despite the striking success of the standard SU(3) x SU(2) x U(1) gauge 

model of the strong, weak and electromagnetic interactions, many questions re- 

main unanswered: the problems of. fermion generations is n”ot addressed; one 
- 

would like to include gravitational forces; and, in general, there are too many pa- 

rameters in the theory (in the form of coupling constants and fermion masses and 

mixings). An obvious way to reduce the number of parameters is by introducing 

more symmetry to the theory. Such is the case in supersymmetric extensions of 

the standard model. 

Supersymmetry l” (SUSY) is a natural extension of gauge theories which is 

less divergent and mathematically better behaved. One of the major properties 

of SUSY is to associate to each particle, a partner which spin differs by l/2. 

Up to now no supersymmetric particle has been found, the present experimental 

status permitting only to set lower bounds on some of their masses. When one 

reaches higher energies, and superpartners are produced, clearly the whole spin 

content of the theory is changed. Keeping this fact in mind, it would be most 

instructive to examine polarized processes in SUSY extensions of the standard 

model. 

Perhaps the best place to look up for such effect is in neutral current pro- 

cesses, for example in deep inelastic 

e&p-+e-X 9 (14 

ITthe past, this process has proven to provide a good test of the standard model 

and a way to determine the Weinberg angle, Bw.~ 
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In this work we examine how polarization effects are expected to differ from 

the standard model predictions when one consider the contribution of the sub- 

process 

eL,R + q + it- + i I- - (l-2) 
- 

to (1.1) where e” and i are the selectron and squark respectively. Unlike previous 

studies 495 of process (1.2) th e selectron is assumed to decay very fast into 

e - + e-5 (l-3) 

with a very light photino, 7, going undetected. The result is a process which, 

experimentally, looks much like electron-quark scattering except for the missing 

momenta carried by the photinos. Based on experimental evidence and depending 

on the SUSY breaking mechanism, the e” and i masses are believed to be in the 

range 20 GeV 2 m,-, mi 2 100 GeV. The electron ring at HERA will have 

the ability to produce longitudinally polarized electrons with sufficient energy to 

span at least part of this range when it starts running in 1990. 

The paper is organized as follows: We review the basic elements of deep in- 

elastic ep scattering and define various polarization and charge asymmetries in 

Section 2. In Section 3, we address the question of gauge fermion mass mixings 

and then examine the contribution of (1.2) - (1.3) to the e;,R p ---) e*X. Nu- 

merical results are presented for various sets of superpartners masses in Section 

4. We examined two experimental scenarios, the first one is HERA, the second 

one, an hypothetical ep collider at the Superconducting Super Collider (SSC). 

Section 4 also contains some general conclusions. 

3 



._ 

2. Polarization in Deep Inelastic ep Scattering 

We begin by defining the usual kinematical variables associated with deep 

inelastic scattering: 

- - 

x = Q2J2Mps , r- - m 

Y = Q2 Jxs , 
with 

s = (P+Pd2 , 

Q2 = -t = -(p3 - p1)2 , P-1) 

where p, pl, p3 are the momenta of the proton, and the incoming and scattered 

electron respectively, q G p3 - pr and Mp in the mass of the proton. 

In the quark parton model, polarized -ep scattering (e,$ p + eX) is inter- 

preted as electron-quark collisions: 

(2.2) 

When the quark and the electron are both left- or right-handed, one finds the 

differential cross section 

2 

(2.3) 

where a and bAB are defined as: 

a = QeQi 

b/m = Q:,Q& 
(2.4 

with A,B=L,R. 

&r d enotes the electric charge of the fermion f and, Qgr and Q& the right- 

and left-handed 2’ charges respectively. Variables denoted by a hat are as usual 
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associated with an elementary subprocess (e.g. s^ = -xs). When the quark and 

the electron have opposite handedness 

- (1 - y)2 , A # B . 
,- - d 

- 
The e-p cross section is then 

da(-) d&l s -& = s c x f;(x, Q2) % . 
i 

(2.5) 

P-6) 

The summation runs over the quark flavors i, fi(x, Q”) are the parton distribution 

functions in the proton and d&A/dt^ is the cross section for the subprocess (2.2) 

and therefore involves the average over left- and right-handed quarks. 

The weak properties of the standard model are known to be directly exhibited 

in the polarization asymmetries A*: 

da(*) _ &$I 
A*(x’ ‘) = hi) + do?) ’ (2.7) 

where we have generalized (2.6) to the case of the positron, with the obvious 

notation. 

. Following Ref. 6, we also define other useful tools to test the theory: The 

polarization asymmetries BLrR 

BA(x,y) = 
do:) - da$+) 
&.&) + da(+) ’ A = R’ L ’ 

A 

and the charge asymmetry for unpolarized e’p + e*X scattering 

q&Y) = 
da(-) - da(+) 

&k-) + da(+) ’ 

(2.8) 

(2.9) 
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3. Supersymmetric Effects 

Let us first briefly review some of the characteristics of supersymmetric ex- 

tensions of the standard model. They can be summarized as follows: A new spec- 

trum of particles is introduced, the superpartners (e.g. -selec&ons (i?), squarks 
- 

(i), photino (q), zino (2) , higgsino (fi), etc... ). Their couplings with other 

particles are fixed . SUSY also predicts that the mass of the new particles should 

be equal to the that of the corresponding standard partners. But, since super- 

partners are yet to be found, one must assume that SUSY breaks down in the 

low energy limit. In general, this introduces more parameters in the theory such 

as the mass mixing between gauge fermions and the fermionic superpartners of 

the Higgs bosons, the higgsinos. In a minimal SUSY extension of the standard 

model, there are at least four neutral state mixing: X;i, Xi, $h, and ?,l& which 

are respectively the photino, zino and the two higgsino states. This means in our 

case (two Higgs) that in eq + Et, the interactions can be mediated by the four 

mass eigenstates. 

One can write the most general mass term as follows:7 

+ f (M cos2 ew + M’ sin2 ew )x3x3 + (A4 - M’) sinew cos ew x2x;, 

+ i(M’ Cm2 ew + Msin2 ew)xqxg + /L$+Q!$& + hsc. 

(34 
where g and g’ are defined as usual 

g’cosew i gsinew = e . 
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Furthermore, ~1 and ~2 are the vacuum expectation values of Higgs bosons Br 

and H2 respectively, and M, M’ and p are mass parameters. 

Let us consider, for simplicity, the case where ,U = 0 and M = M’ in (3.1). 

Working in the convenient basis ,- - m 

the mass terms of (3.1) can be rewritten 

-;(t,l~“)~ Yt,b” + h.c. (3-4 

with 

Y= Y= 
-Mz 0 0 -Mz 0 0 (3.5) 

The mass eigenstates are then easy to find by analyzing the non-trivial 2 x 2 

submatrix of Y. One finds the mass eigenstates Xi: 

with mass eigenvalues M, f (mo + M), f (mo - M) and 0 respectively where 

mo = (4Mg + M2)li2 , 

In the limit M N 0, the masses of the gauge fermions are equal to that of 

their standard partners. Experimentally, the M N 0 limit (very light photino) 
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could be tested at HERA and we will base our discussion on that fact. The 

higgsino mixings in Xt essentially disappear for that limit and the zino becomes 

an eigenstate of mass Mz. That as may be, we shall not restrict our analysis to 

the sole case of Mi = Mz. The contribution from diagrams izvolving higgsinos 

as-mediating the interactions will be ignored here; in eq + e”G scattering, the 

higgsino couplings with the fermion and its superpartner can be neglected with 

respect to the gauge coupling for all practical purposes. 

Consider now the subprocess 

ew(Pd + %(P2) + e”(ps) + i&((pd), (3.8) 

where the SUSY electroweak interactions are mediated by the photino 7, and the 

zino, 2 (see Fig. l(b)). Th e interaction vertices are described by the Feynman 

rules of Fig. 2.7 Summing over the final states helicities one finds the matrix 

elements: 

for initial particles having the same handedness and for A # B, 

2 

[TABI = 4e4. [-( mi -i13)(mi - i?13) - S13] - a bAB _ 
t13 - M; 

+ 
iI - M; 1 , (3.10) 

where mg and rn4 are the selectron and squark masses respectively and ir3 = 

(~1 - ~3)~. As before, we neglected the electron and quark masses with respect 

to mg and rn4 (20 GeV 2 ma, rn4 2 100 GeV). 

* In (3.9-lo), 7 and 2 are assumed to be the mass eigenstates discussed earlier. 

In general when M # M’ in (3.1)) ;U- and ,? are no longer decoupled but (3.9) 



and (3.10) can be generalized easily for gauge fermion mass eigenstates (2: and p 

as follows: 

a+a=Q$,Q$it 

bAB --) bAB = Q2, Qii , ‘- - m (3.11) 
- - 

Under the assumption that the photino is the lightest and most stable SUSY 

particles, both the squark and selectron will decay and end up producing 5’s. 

Furthermore, the measured quantities in deep inelastic ep scattering are the lab- 

oratory initial and final electron energies E and E’ and the scattering angle 8 

from which one determines the invariants x, y and Q2. Then if the decay e” + eq 

is fast enough, one can still associate E, E’ and 0 to the final electron, which 

means integrating over the possible e” momenta. We start by writing the cross 

section for the two step process 1 + 2 + 3 + 4 followed by 3 --+ a + b : 

1 
c7 = 4X1j2(s, ml, ma) s 

dfi3d64 2 (c2+34(2 (24464(p1 + p2 - p3 - p4) 

+a di% (M3-d2 
ts; _ m;)2 + m2,r2 (2r)464(p3 - pa - Pb) 3 

(3.13) 
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with M, the decay amplitude for 3 + ab, ss = pi and where 

X(s,ml,m2) = [s - (ml + m2)2][s - (ml - m2)2] , (3 14 : 

(3.15) 

We use the narrow resonance approximation which consists of replacing the 

Breit-Wigner resonance by a b-function and integrating over ss immediately: 

Neglecting final state masses in e” --+ eq, one can write the differential width 

as (a = e, b = ;T) 

dr = d3pa ami -- 
E3E, 27r b+(Pi) 3 (3.16) 

which corresponds to a total width for e” --+ e;i, 

am3 
lY(iT+e~) = 2. (3.17) 

Finally, using the b-functions one finds in the electron-quark center of mass 

Ifi1 
d’ = (2742343 J 

* dtl;m* lT12+3412 b+((p3 -p )“) 
Ea 

a , 

where 

I$331 = [ (‘+~$mz)2-m$]1’2 . 

(3.18) 

- The remaining &function in (3.18) corresponds to the requirement that the mass- 
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less photino be on-shell: 

(P3 - PaI2 = mi - 2E3Ea + 2p’3 * ga 

- - 
E3 - E, 2 0 . 

(3.20) 

(3.21) 

Usually one associates the z-axis with the beam axis by setting 

fi 
P1,2 = $1; fl, 0, 0) - 

In our case, it is more convenient to set the z-axis parallel to ga. This amounts 

to a simple rotation; then 

Pa = I&1(1; 1, 07 0). 

Accordingly, 

p1,2 = --(I; *c038,*sid, 0) , 
(3.22) 

p3 = (E3, iti31 cose3, )P i ‘3 sin e3 cos b3, lfi3 I sin e3 sin 43) , 

with dflgrn* = d& d(cos e,), dS2trn. -+ 2rd(COS 0) and 

(Pa -Pa)’ = mi - 2I&J(E3 - l&Icos&) = o . (3.23) 

Futhermore, in ep + eX scattering, one measures Q2 which corresponds here to 
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ial = (pa - ~1)~ not il3 (see Fig. 3). Since 

$a1 = -&I&l(l - case) , 

it is easy to recover the appropriate differential crosssection _ 

We then write $13 as 

t;3 = a+pcosq53 , (3.26) 

(3.24) 

(3.25) 

with 

~=m&hE3+d&IcosB cos&, 

(3.27) 

/3 = dilp’31 sin8 sine3 , 

and 8 , 03 and lp’sl given by (3.24), (3.23) and (3.19) to obtain a more convenient 

form for (3.25): 

The integration over fr3 can be performed analytically. We present the result in 

the Appendix. Obviously, ir3 is constrained to values CI - p < fr3 5 c11+ p in the 

integration.Moreover, for A # B, the expression in (3.10) must be positive, thus 

requiring 

max{ cr-p,r]-Xx) <t;3L min{ a+P,rl+x} (3.29) 

with 

(3.30) 

x = i(rj2 c 4rni m4) 2 l/2 . 
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We integrate over lp’,l numerically. The limits of integration are set by rela- 

tions (3.20 - 3.21) and (3.24) 

-ial 

Finally, the total cross section 

E3 - lFI31 
I IFal 5 

E3 + 114 

2 ,_2 I. 

associated with subprocesses (2.2) 

(1.3) is obtained by substituting 

d6iA 
dE+ 

d&iA d&fA 
-+- 

di di 

(3.31) 

and , (3.9) and 

(3.32) 

in equation (2.6). 

4. Results and Discussion 

The cross sections are evaluated using the parametrization of fi(z, Q2) given 

by Gliick, Hoffman and Reya.’ The choice of parameterization is not crucial 

here (as long as it extends to energies expected at SSC) since we only require the 

quark distributions which are fairly well accounted for in most parametrizations. 

Moreover, we present here only results for various asymmetries which are less 

sensitive to the magnitude of the distributions than the cross sections are. 

We choose, somewhat arbitrarily, to compute the asymmetries for x = h at 

center of mass energies of HERA (30 GeV x 820 GeV), i.e. fi = 314 GeV, and of 

a 30 GeV x 20 TeV facility at SSC which corresponds to fi = 1550 GeV. This 

last choice is motivated by experimental restrictions on the polarized electron 

beam energy: Electrons in accelerator rings acquire polarization naturally due 

to a mechanism related to quantum fluctuations in magnetic fields,g but above 

40 GeV, little useful polarization remains. 
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In Figs. 4a-c, we present the results for the asymmetries A*, BLsR and C 

for the selectron and squark masses mg = rn4 = 20 GeV and for gauge fermion 

masses such as described in Section 3, i.e. Mq = 0 and Mi = Mz. The notation 

is the same for all curves in-Figs. 4 (and also to Figs. 5. and&): The standard 

model predictions are represented by the dotted and dashed lines for HERA and 

SSC respectively whereas the solid and dot-dashed lines show the calculations 

including the contribution of (3.9) and (1.3). The supersymmetric effects on A- 

are rather small, not larger than 6% for HERA and of the order of 1% at SSC. 

The polarization asymmetry for positron scattering, A+, is more interesting. In 

this case, we clearly see a dip in the asymmetry which corresponds to deviations 

of up to 11% at HERA and N 4% at SSC. Both in the limits of y + 1 and y + 0, 

the supersymmetric effects vanish. This behaviour can be understood on the 

basis of the phase space available. The small y region corresponds to cose N 1 

in which case ,0 in (3.27) 1 a so b ecomes small and the interval of integration over 

t^rs set by relation (3.29) vanishes, On the other hand, the behaviour as y + 1 is 

characterized by relation (3.31). According to (3.31), one must have 

-fal E3 + 114 

2&’ 2 

which corresponds (for ms = m4) to: 

(4.1) 

The same behaviour shows up in BLpR and C (see Figs. 4b-c) since this is 

essentially a property of the cross sections. In fact, the quantities B LsR and C 

seem to be more sensitive to the introduction of SUSY interactions. However, 
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they require that data on both e-p and e+p collisions be available in order to be 

able to make a statement. Finally, another characteristic of the A* is that the 

effects appear to decrease as the energy increases; this is apparently not the case 

for BLpR and C. ,- - m 

- Next we vary two of the input parameters: the masses of the selectron and 

squark and the mass of the 2. First, we increases the mass of the scalar partners. 

Figs. 5a-c show the results for rn3 = m4 = 50 GeV. The effects of gauge fermion 

exchange are of the same order of magnitude as in Figs. 4a-c. As expected 

from relation (4.1), they vanish for y 5 ymax where ymax is smaller than before 

especially at HERA where rni/& is small. 

We repeat the calculations with a different 2 mass keeping ms = m4 = 20 

GeV (see Figs. 6a-c). The effects of changing Mi seems to more important at 

y N 0 and for the HERA case. Such mass effects are understood on the basis of 

equations (3.9-10) h w ere the 2 mass effects are typical of the ratio Mi/813. 

Whether or not the SUSY effects on the asymmetries can be detected at 

HERA and SSC depends strongly on the assumptions one is willing to make on 

the expected luminosity at these facilities and on the cross sections which are 

steep functions of x and y. For x = f, and assuming an accuracy of a fraction 

of a picobarn in the determination of the cross section, the SUSY effects on A* 

could be seen at HERA for a limited range of y’s but not at SSC. On the other 

hand, the variations of BLsR and C should be large enough to be detected at 

both facilities. For smaller z’s, prospects are even more encouraging because of 

higher statistics. 

We conclude by making the following comments. With HERA being built 

with a polarized electron beam, the process e 2 Lp + e*X will certainly be the , 
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most thoroughly investigated and should give us a much better idea of the extent 

to which the standard model can be trusted. Other modifications to the weak 

interaction theory than that studied in this work (e.g. a second 20, composite 

structure at higher scale, SQCD...) are also bound to s,how-up in_ the asymmetries. 

Finally,- we are aware that the ep machine at HERA is not the first or even 

the best available experiment to test the presence of gauge fermions or SUSY 

in general. In terms of the center-of-mass energy required to produce SUSY 

particles , both e+e- and pp machines should reach HERA’s capabilities before 

it comes in operation and, it is believed by most high energy physicists that the 

best signal for SUSY could come from missing pi analysis. But missing pT’s are 

certainly not exclusive to supersymmetric processes and one must also look for 

other manifestations of SUSY. Furthermore, polarized- e*p scattering is certainly 

one of the best way to test the weak properties of new particles. It is for these 

reasons that we believe this work is important. 
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Appendix 

The integration over t^ in (3.22) takes the form 

- 

I= 
J 

dr 
[(P” - cr2) + 2ar - r2y2 (A-1) 

where Pi is at most a polynomial of degree 2 in u. (Al) is easiest to perform 

with the change of variables 

1 u=------ 
T-7 * 

Then one gets integrals of the type 

R, = J du z m 

(A-2) 

(A3) 

where n = 0, 1, . . . and r(u) = A + Bu + Cu2 with A, B and C given by 

A = -1, B = 2(a - 7) and c = p2 - (cl! - 7)2 (A4 

Integrating by parts 

R--m BRo 
1 ___-- 

C 2c 

R2=(&--3 J;(;I+($$) I&-,,... 

(A51 

and 

Ro = & In 2dm+2Cu+B (A61 

where C > 0. Finally, the coefficient of P2 in (A.l) are given by rewriting ITAA12 
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and ITAB12 as 

l~AAl2 = 4e4s^ a2Mt 2abAAMyMz 
(i13 - M;)” + (M; _ M;)(i13 _ M;) > + (Mi * M+ a * bAA) 1 

jTAB I2 -1 de4 { (a+ bAB)2 + (a2w(Mj,Mi) + 2ubf!%$i + (r”i”zGi2) - 

(Mz * MT, a - bAd 
I 

W) 
with 

a(Mi, Mj) = MfMf + MzM: + Mfw(Mi, Mj) . 
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FIGURE CAPTIONS 

1. Diagrams contributing to e*p -+ e*X scattering: (a) diagrams for e*q -+ 

e*q and (b) diagrams for e*q + e”*@. 

2. Feynman rules for qiq-and qG2 vertices. f stands for any ,quark or lepton 
- 

and ? for gauge fermions ;i and 2. 

3. Kinematics of the reaction ep + eX via the production of the selectron in 

eq -+ e”i followed by the decay e” + eq. 

4. (a) Polarization asymmetries A*(x, y) and (b) BLyR(x, y) and, charge asym- 

metry C(X,Y) , in e&p -+ e-X as a function of y for z = 113, ms = m4 = 

20 GeV and Mi = Mz. The dotted and dashed curves denote the predic- 

tion of the standard model for the ep machines at HERA (& = 314 GeV) 

and SSC (& = 1550 GeV) respectively ; the solid and dot-dashed curves 

are for the predictions including SUSY interactions. 

5. Same as in Figs. 4 with rns = rn4 = 50 GeV. 

6. Same as in Figs. 4 with Mi = 60 GeV. 
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Fig. 2 
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