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1. INTRODUCTION 

The magnet support system for the SLC Arcs will be a 
long series of pedestals with each pedestal supporting the ends 
of two adjacent magnets. --It has been pointed out by several 
authors’?* that random magnet vibrations in the Arc with am- 
plitudes larger than 0.1 pm rms are potentially harmful for 
the SLC operation. In order to assess the vibrational behav- 
ior of the Arc magnet system, we need to understand: (1) the 
sources and characteristics of the ground disturbances, (2) the 
coupled vibrational modes of the composite pedestal-magnet 
system and, (3) the response of the system to ground distur- 
bance. This note is an attempt to study item (2). 

Because the relevant vibration frequency for SLC is be- 
tween 1 to 40 Hz,*13 in the following effort to identify the nor- 
mal modes of the magnet-pedestal support system, we will pay 
particular attention to the frequency range from 1 to 40 Hz. 

It has been estimated that’ a single pedestal loaded by 
. a single magnet (W = 1200 lb) will vibrate at a frequency of 

~,,JJ = 74.3 Hz and fr,y = 330 Hz. In addition one finds that a 
welded Arc magnet (model number EM 4004), which is 2.5 m  
long and weighs 1200 lb), when simply supported rigidly at 
both ends, sags under its own weight by the amount of 6~ = 
12.9 mils and &J = 9.3 mils.’ Therefore, according to Eq. (13) 
the transverse flexural vibrational frequencies of the magnet 
can be estimated to be f~,n = 31.02 Hz and f~,v = 36.54 Hz. 
With the vibrational frequencies of single magnet and pedestal 
known, we will calculate the coupled vibrational modes of a 
string of magnets and pedestals. 

2. MAGNET AS A SIMPLY SUPPORTED UNIFORM BEAM 
It is well known5 that the differential equation governing 

the transverse vibration of an uniform beam is the Euler equa- 
tion, 

a’ll a*ll EI azr = --pat? . (1) 
where p is the line mass density, E is the Young’s modulus, 
and I is the moment of inertia of the beam cross section about 
the beam centerline. Note that we have assumed the cross sec- 
tion of the beam remains rigid under deflection. The treatment 
therefore excludes those modes in which the magnet cross sec- 
tion deforms. Those modes presumably are not strongly driven 
by ground diiturbances. 

* Work supported by the Department of Energy, contract 
DE-AC0376SFOO515. 
t Now at Central Design Group, SSC at LBL, Berkeley, 
California, 94720. 

Consider the whole beam vibrating at mode frequency w, 
then Eq. (1) becomes 

r - s 

EI 2 -p w’y=O 

or 

The general solution of Eq. (3) can be expressed in the 
following form: 

v(z) = Acoshaz+Bsinh/Iz+C cos@+D sinpz. (4) 

The vibrational frequency w is related to the constant p, and 
the coefficients A, B, C and D are determined by the prescribed 
boundary conditions (BC). 

For SLC, the magnet will be close to that of a simply- 
supported system, the BC requires that at both ends of the 
magnet y and its second derivative should be zero. The only 
possible solution is 

A =B=C=O and sin &! = 0 . (5) 

Therefore, the normal modes are given by 

g(z) = Dsin&,z , (6) 

where &! = ns, or 

EI n*g* (,+= -- 
$ P t* (7) 

It is important to.be aware of the fact that the frequencies 
are proportional to n*. This is very different from the modes 
of a string under tension for which w,, is proportional to the 
mode number n. This quadratic behavior of wn on n comes 
from the fact that the equation of motion, Eq. (l), is fourth 
order. 

Now we sue in a position to find the relationship between 
the vibration frequency and the sag of the magnet. For a mag- 
net under its own weight, the Euler’s equation (1) becomes 

EIZ = pg 

where g is the gravitation constant. Now the general solution 
can be put in the form: 

Y 
1 P9 4 = A + Bz + Cz* + Dz= + zs EI z . (9) 
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The simply supported BC gives 

Y = & g t’ (;) [l- (;)I [1+ (F) - (;)‘I (10) 
which implies the sag at the middle of the magnet: 

h! 
6=v i =zz 

0 
5 “e’. 

Combining Eqs. (11) and (7), we can relate the lowest mode 
vibrational frequency to the Bag as: 

- , (12) 

The frequencies derived from Eq. (12) using the measured sag 
ss input agree with the measured frequencies to about lo%.’ 

3. A SINGLE MAGNET ON TWO PEDESTAL 

So far we have discussed the transverse vibrational prop- 
erties of magnets on rigid supports. But, as mentioned in the 
introduction, the pedestal itself could vibrate with its own fre- 
quency. The problem now is to calculate the modes of the 
combined system. 

A magnet supported by two pedestals can be analyzed by 
the model as shown in Fig. 1. The pedestals are represented 
as springs with spring constant k. The solution can still be 
expressed by Eq. (4), but now the boundary condition becomes 

M(0) = 0, and M(f) = 0 

F(0) = ky(0) = -El y”’ (0) 

F(L) = ky(L) = El y”‘(f) 
(13) 

where F(z) and M(z) are the force and moment acting on the 
element at position 2. 

Fig. 1. A magnet supported by two pedestals. 

Equation (13) implies that 

A-C=0 

Acosh PC + Bsinh /IL - Ccos PC - Dsin PC = 0 

A + C = -a(B - D) (14) 
Acosh B.! + Bsin PC + Ccos PL + Dsin PC 

= a(Asinh PL + Bcosh p! + Csin PA! - Dcos /St) 

where - 

From Eq. (14) we can first express A and C in terms of B and 
D, then for the system to have a unique solution the determi- 
nant formed by the coefficients for B and D should be zero. It 

is then found that the normal mode frequency satisfies 

det = 2sin /If rinh &! - Za(sin /If cash pf - cos /?f sinh a!) 

- a*(cos@cosh/Yf - I) = 0 . 06) 
‘It is interesting to see that Eq. (16) agrees with Eq. (5) for the 
simply support c-e (a = 0). 

4. THE M-MAGNET AND (M + 1) PEDESTAL SYSTEM 
Now let us consider the M-magnet-(M + I)-pedestal sys- 

tem as shown in Fig. 2. Let the general solution to the x’~ 
magnet be 

fi . ..A  . ..fj 
Fig. 2. M-magnet-(M + l)-pedestal system. 

where t is measured from the left end of each magnet, and IJ 
stands for the transverse deflection of the magnet at position 
2. Applying the boundary conditions to be satisfied for simply 
supported ends, we obtain 4M coupled algebraic equations. 
Again, the Ai’s and Ci’s can be expressed in terms of the Bi’s 
and Di’s, aa 

A, = c, = D; sinpf - Bi sinhpl 
t I cash Be - COB pt ’ 

i = 1, 2, . . . , M  (18) 

and the equations for the Bi’s and Di’s can be summarized in 
the matrix form: 

KF = 0 (19) 
where F is a state vector, and when transposed is 

y= = (&,Dl, B2,D2, . . . h,Dw) (20) 
and K is the 2M x 2M coefficient matrix. For complete deriva- 
tion and expressions of the matrix K please see Ref. 3. 

In order to have non-trivial solutions to Eq. (lQ), the de- 
terminant of the matrix K should be‘equal to zero, i.e., 

det K = 0 . (21) 
The discrete values of w,, which satisfy Eq. (21) are the normal 
mode frequencies of the composite system. 

5. SOLUTIONS OF THE NORMAL MODES 
To find the proper value w to satisfy Eq. (21), we have 

to know all the constants needed in the matrix K. The basic 
input parameters required are the constants P and P. From 
Eq. (3), B is related to w by 

/3 = (A )“’ J/2 

and o is related to u through Eq. (15), 

(15) 

For the model magnet E M  4004, we have 6h = 12.9 mils, 
p = 0.03182 lb/in, and L = 97.6 in, which give 

PL = 0.2251 wr/* r (22) 
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u = 0.00002039 w3/* (23) 

After the K matrix is constructed, we use the drive routine 
DGEFDI of LINPACK to find the determinant of the matrix 
K. We then numerically look for the zeros of the determinant 
by scanning w in order to find the normal mode frequencies. 

For example, let us look at the case of a single magnet. For 
a.magnet simply-supported on rigid pedestals, the frequencies 
of the lowest two modes derived from the sag by Eq. (7) are 
w1 = 194.899 (31.02 Hz) and w2 = 779.596 (124.08 Hz). In 
comparison, for the rigid support the condition of determi- 
nants equal to zero by Eq. (16) gives w1 = 194.782 (31.00 Hz) 
and w2 = 779.128 (124.00 Hz), almost identical to the .ana- 
lytic calculation. It is especially interesting to see that the 
n* dependence of the frequency is correctly predicted. If we 

t use the realistic stiffness constant of the pedestal, the frequen- 
cies are shifted to w1 = 188.155 (29.95 Hz) and w2 = 676.036 
(107.59 Hz). This is no longer exactly 4 x ~1. 

With w known, the expansion coefficients A, B, C and D 
for the beam deflection can be found through Eq. (14), and 
the corresponding patterns are plotted in Fig. 3 for the first 
three modes. It is worth emphasizing that there are (n - 1) 
nodes in the nrh mode. 

Next let us look at the caSe of ten magnets on eleven 
pedestals as an example to illustrate the behavior of the com- 
posite magnet and pedestal system. The requirements that 
the determinant equals zero gives ten W ’B clustered around the 
fundamental mode w1 = 188.155 and another ten w’s clustered 

. around w2 = 676.036. Specifically, the ten fundamental modes 
now range from 182.23 to 194.49. Again, the first three cases 
of the fundamental mode are plotted in Fig. 4. 

For comparison, we lit in Table 1 the results of the calcu- 
lation of the first two modes of a single magnet and a coupled 
magnet-pedestal system. 
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Fig. 4. First three deflection 
patterns of the first mode of 
the 10-magnet system. 

Table 1. Summary of Normal Mode Frequencies 

Single Magnet (M = 1) 
Magnet-Pedestal 
System (M = 10) 

Rigid Support ._ On Pedestal On Pedestal 
Numerical Numerical Numerical 
Eq. 06) Eq- (16) Eq. (21) 

Mode Q= 0 a#0 a#0 
29.00 30.07 
29.11 30.36 

n= 1 31.00 Hz 29.95 29.28 30.61 
29.51 30.82 

- - e 29.78 30.95 - 
94.96 107.75 
96.16 119.20 

n= 2 124.00 Hz 107.59 98.07 116.15 
100.71 120.07 
103.96 122.92 

Since each magnet is 97.6 inches long, the pedestals are 
located at 97.6 inches intervals. It is interesting to see that 
the deflection of the pedestals form a pattern like that of the 
magnets, i.e., there are (L-l) nodes in the CL” case of the n = 1 
mode. However, the deflection of the magnets themselves in 
the n = 1 mode is always one with half sine waveform. The 
pattern formed by the pedestal will be of importance when 
the response of the system under the ground vibration is to be 
estimated. 

In summary, we have proved that if the pedestals are stiff 
enough, the coupled system does not vibrate at any lower fre- 
quency than the single .magnet frequency; therefore, we only 
have to concentrate on the lowest mode without worrying about 
the lowering of the vibration frequencies from the higher order 
modes through coupling. Any method to stiffen a magnet to 
raise the vibrational frequency beyond 40 Hz will make the 
coupled system vibrate at a higher frequency, as well. 
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Fig. 3. The deflection pat- 
tern of the first three modes 
of a magnet. 
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