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ABSTRACT 

An extension of the stochastic algorithm as applied to Hamiltonian lattice 

field theories is developed. This new scheme will converge in problems that have 
T - m 

intrinsic negative signs in the matrix elements. As an example, this scheme is 

applied to a two chain polymer problem with (spinless) fermions that have a 

pairwise interaction. Because of the multiple connected structure of the double 

chain, this problem has intrinsic minus signs. It cannot be transformed into 

a bosonic problem with only positive matrix elements. Numerical results from 

this application of the new algorithm are presented for the energy and certain 

correlation functions for moderately long chains. A discussion of a modification 

of the method which will allow the treatment of much larger systems is discussed. 
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1. Introduction 

For large p, the operator exp(-/3H) can be used to project onto the eigen- 

state of H with the minimum eigenvalue. The available-number of stochastic 

algorithms that can be utilized to perform this projection range over a virtual 

continuum. Starting from the population method, well described by Kalos and 

collaborators’ and Ceperley and Adler,2 they extend to the modified projector 

methods3’* and on to the projector method.s 

The algorithm to be described here is applicable to a large number of prob- 

lems which possess negative matrix elements that cannot be interpreted as prob- 

abilities nor eliminated by a transformation such as is available for most one- 

dimensional fermion models. The advantage of this method is that the evaluation 

of the fermion determinant (as found in conventional treatments of such prob- 

lems) is avoided. Efficiency is thereby increased as well as accuracy, simplicity 

and generality (many non-local potentials can be directly treated). In this paper 

we will apply the algorithm to a simple but non-trivial example- a double chain 

spinless fermion system with ‘Coulomb’ interactions. 

The Hamiltonian of the system of interest is (see Figure 1 for site labels and 

the definition of x and y) 

H = K+V, (14 

where both the hopping term K and the potential V can be broken up into terms 

operating in the x and y directions. The hopping terms are 

Kz = -tZ c K(i, i + 1) 
iodd 

P-2) 
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and 

Kv = 4, c [K(i,i + 2) + K(i + 1,i + 3))) 
i odd 

while the potential terms are- Y - 

- 

Vz = -v, 
c 

Ni Ni+l 
i odd 

and 

vv = -vy Cl NiJvi+2 + Ni+l Ni+3] 7 
i odd 

where 

W, j) = CiCj + CJC+i 

(l-3) 

(1.7) 

t The operators Ci and Cj satisfy the usual anticommutation relations. 

Following standard procedures, the Hamiltonian here is broken’ up into a 

liriear checkerboard6 as shown in Figure 2. Each of the operators HI and Hz 

is a sum of commuting Hamiltonians for a square. Since the x-terms must be 

shared (divided) between the two Hamiltonians, the Hamiltonian for each square 

is of the form 

h =k+v, (1.8) 

where 

k = -ftz [K(1,2) + K(3,4)] - t, [K(1,3) + K(2,4)] (1.9) 
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and 

u = fvz [NINz + &N4] + uy [NlN3 + N2N4]. (1.10) 

In order to implement the stochastic method, the projectiog operator is usu- 

ally’ sim$f&d by using the above breakup of H . Then the first step is to 

subdivide p into J subintervals of width A = p/J and make the approximation 

e-m = e-A(H~+Ha) ’ 
> = py = (U(2)U(l))J , (1.11) 

where U(k) s e -AHk. The accuracy of this approximation was studied in ref.4 . 

Since the Hamiltonian Hk in U(k) is a sum of independent blocks, the matrix 

elements of U(k) are easy to evaluate in terms of the elements of the matrix U 

for the four site square. A method for the accurate numerical evaluation of the 

four site matrix elements in terms of the simple two site problem is presented 

in Section 2 together with the resulting probabilities and scores. In this section 

we also give an algorithm for uniquely labeling all possible configurations of the 

system. In Section 3 we formulate the implementation of our new, stochastic 

algorithm in the presence of negative scores, and describe how the corresponding 

measurements of energies and correlation functions are carried out. In Section 4 

a modification of the basic method is described which allows one to treat larger 

systems with more degrees of freedom. Section 5 contains the results of the 

application of the method to the problem of two fully interacting chains. In the 

conclusion, Section 6, we discuss the advantages and limitations of the method 

an& possible new applications. 
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2. Four Site Problem-Probabilities and Scores 

Matrit Elements: 

In order to obtain numerical values of the non-vanishing matrixelements for the 

problem of the square, it is convenient to use the Trotter product formula and 

let the computer do the work.’ Writing h = k + u , as defined above, we then 

approximate the general matrix element of U(k) between the states F and I by 

choosing a finite value for s in the Trotter Product Formula: 

(Fj tTAh -(A/‘6)‘e-(A/6)ke-(A/zd)v 
> 

’ 11) . (24 

The basic matrix elements with A/s can be evaluated analytically and then 

the matrix multiplication necessary to raise it to the s power can be carried 

out explicitly and easily by the computer. The states F and I are diagonal in 

fermion occupation numbers. The potential term v is therefore also diagonal. 

The hopping terms will be split up and evaluated separately. 

First define 6, = At,/2s and bv = At,/s and then write to the same order 

as before 

,-6k = e661K(1,3)+K(2,4)]e6~l~(1,2)+K(s,4)] . 
(2.2) 

Each of these exponential operators factors exactly and can be easily evaluated. 

For example, the matrix elements of the K(l,2) term are symmetric and for the 

single particle move of (1 + 1) 

( 1 e6.*(ly2) I) = cosh(6,) (2.3) 

while for the move (1 + 2) 

( 1 e6SK(182) I ) = sinh(&). (2.4 
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For the y-move (1 + 3) , we find 

( I e6wK(lg3) I) = sinh(&,). (2.5) 
Y- - e  

The above relations and approximations allow one to evaluate the necessary 

matrix elements in order to compute the probabilities for each possible move 

and its associated score. In numerical experiments, it was found that s = 8 

was sufficient to insure better than one part per million accuracy in all matrix 

elements. It is a simple matter to load up the matrix (FI U(2)U(l) 11) and raise 

it to the 8th power by squaring it three times. However, first we must turn to the 

problem of labeling of states, since this will be necessary in order to implement 

the stochastic algorithm. 

Labeling of States: 

A convenient way to label fermionic states is by the occupation numbers but 

expressed as a unique binary number. We define the label L of our states to be 

L = c 2 i-l ni 9 (2.6) 
i 

where the sum is over all sites and ni is the eigenvalue of Ni. The label L will be 

used to describe our complete lattice as well as the basic square. In this latter 

case, the label L can range from 0 to 15 exactly corresponding to the 16 possible 

fermionic states on four sites. 

For example if there is a fermion on site 1, then the move described in 

eqn.(2.5) will be written as 

(41 e6wK(1Jl 11) = sinh(&), P-7) 

where K(i,j) is labeled by sites and the state vectors by L. For the complete 



lattice, the label L cannot take on all possible values because the total number 

of fermions is conserved (approximately one out of four L values is allowed for 

the cases to be discussed later). 

Some Sample Labels: 
Y- - m 

In order to load a given initial configuration, it is necessary to compute the label 

L for that arrangement of fermions. In this paragraph we will compute L for 

some interesting states. One must simply choose the set of TQ and evaluate the 

sum in eqn.(2.6) . We will restrict ourselves to the half-filled band only. With 

N the number of rungs, and M(= 2N) the total number of sites, then define the 

number J = 2N . The ‘strong coupling’ state (Coulomb repulsion) in which sites 

1,4,5,8,9, etc. are filled has the label 

Ll = ; (J2 - 1) . 

fts left-right reversed partner is 

L2 = ; (J2 - 1) . 

(2.8) 

(2.9) 

The reader should have no difficulty in proving that these labels are integers. The 

minimum and maximum label occurs when all the fermions are at the bottom or 

the top of the ladder. These labels are 

L min = (J - 1) 
(2.10) 

L max = J(J- 1) . 

Finally, the labels for the states in which the fermions are all on the left or all 
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on the right side of the ladder are 

heft = ;(J2 - 1) 

Light 7 i(J2-1) . ,_ _ _ 
(2.11) 

- 

Probabilities and Scores: 

The sum over intermediate states implicit in Eq. (1.11) is evaluated stochastically 

with importance sampling. We write 

(FI U(U) 11) = SFI@+) PFI@) 3 (2.12) 

where F and I are the appropriate L labels and SFI is the score. The probability 

is denoted by PFI , which satisfies 

xPFl(k) = 1 - 
F 

(2.13) 

The choice of the probabilities is not completely fixed. Once they are chosen 

however, the scores are computed via eqn(2.12) . The probabilities should be 

chosen to minimize the fluctuations in the final measured quantity of interest, in 

part by “smoothing” out the breakup of H into HI + H2 . We will choose our 

probabilities to be those appropriate for the four site problem with ‘trial’ values 

for the hopping parameter and the Coulomb strength. 

Configurations: 

The generation of random configurations with the same score will be carried out 

essentially as described in ref.4 but populations will not be generated and stored 

as separate entities. This cannot be done efficiently if there are negative signs in 

the scores. * 

9 



Our states of the full lattice will be written as 

14) = c ww IL) (2.14) 
L 

Y - m 
where N(4, L) is the number of configurations with label L in the state C$ . These 

- 
are the expansion coefficients for a general state 4 in terms of the fermion position 

eigenstates. We will normally keep the total number of configurations, 

Not = c N(W) 9 (2.15) 
L 

large, so that the fact the N(c$, L) is an integer will introduce a very small error. 

The states will be stored as an array of numbers N($, L), which as we shall see 

can be positive or negative. 

Decoding the Labels: 

The occupation numbers of the fermions can (and will) be decoded from L by 

using modular arithmetic. Let us introduce a label L(1) that is the natural label 

starting from site I and going to M: 

L(I) = 22’-‘ni . (2.16) 
i=I 

Then the lattice label L = L( 1) . Denoting an ‘integer divide’ by square brackets, 

we have 

L(I + 1) = [W)/21 , (2.17) 

and hence 

w = L(I) - 2L(I + 1) . (2.18) 

Since an ‘integer divide’ by two is a shift, the process of decoding is very rapid. 
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3. Implementation 

The Algorithm: 

Our stochastic algorithm proceeds in the following way. To proceed one further 
,- - - 

elemental time step, from the state 4 to the state 4’, one operates on the configu- 

ration I a total of N(d,I) (independent) times with the operator U = U(2)U(1). 

One such application to I leads to a final configuration F with probability P(F, I) 

and with score S(F,I) . The total probability and score (for the transition of 

the entire lattice) are products of the basic probabilities and scores for the moves 

carried out on each elemental square in H1 and Hz . The score is accumulated as 

one goes through the lattice. The total score for every final state configuration 

generated is accumulated and stored; i.e. the total score for each is the algebraic 

sum of the scores from all initial states I that are hit and that lead to the par- 

ticular configuration in question. Thus the final score for the configuration F 

is 

S(F) G cS(F,I) . (34 
I 

Since some of the paths that lead to F from the I’s can interchange the order 

of fermions, minus <signs will arise in the matrix elements. We see that this 

accumulated score allows the individual positive and negative scores to cancel as 

much and as accurately as possible (within statistics). The final task for this time 

step is to turn these accumulated scores into an integer population distribution. 

We have chosen to do this as follows. Compute the total absolute score 

Got = x IS( , 
F 

(3.2) 
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and form the ratio (which may be negative) 

R(F) = g . (3.3) 
c - e  

Then the new integer population distribution for the next intermediate state 4’ 

is given by 

W’,F) = Integer [R(F)&t] , 

where the operation Integer can be performed several ways. We have chosen 

to throw a random number and to round the product [R(F)Ntot] to the nearest 

integer accordingly. Note that the expansion coefficients N(#, F) can be positive 

or negative. 

Fermion Signs: 

The problem of computing the signs of the relevant matrix element for a fermion 

move is a simple and local task. The signs that arise in most of the moves at a 

particular square are taken care of by the basic scores computed above. There is 

only one case that requires a special calculation of the fermionic sign in our site 

numbering system and that occurs when moves are carried out on the boundary 

square that connects the bottom to the top rung. This rung also feels the effect of 

the overall periodic or antiperiodic boundary conditions that have been imposed. 

For this particular square, extra minus signs can arise when a fermion is 

moved from one of these rungs to the other. One must then count whether it 

bypassed an even or an odd number of (ordered) fermions during the move. Note 

however that the number of fermions that have been bypassed is given by the 

initial number loaded on the lattice minus the number in the boundary square. 

Thus it is a local algorithm and very easy and fast to implement. 
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Measuring Energy: . 
In measuring the energy one can choose the final overlap state (xl with a wide 

latitude’ so long as it has an overlap with most of the final generated configura- 
r - - 

tions. T-he simplest choice in our case is probably 

which is inspired by the discussion in ref.5 . The final formula for measuring the 

energy eigenvalue Eo is 

e-AEc, = CF IS(F) I 
Not 

. (3.6) 

Other choices are possible, and for details see the arguments and discussion in 

ref.4 . 

Measuring Correlation Functions: 

It is not necessary but we will restrict our discussion to diagonal correlation 

functions. The three that we shall measure are: 

c, = ;(NlN2 + N3N4) 

Cv = i(NlN3 + N2N4) (3.7) 

The correlation functions will be normalized per square, and they range between 

zero and one-half for a half filled band. 

-Instead of measuring these correlation functions for each Enal configuration, 

they are computed beforehand and stored as functions of the final configura- 

tion label F: i.e.&(F), C,(F) , and Cd(F) . Then the correlation functions are 
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evaluated as 

(c > CFS(F)2cdF) 
k = 

Not 
. (3.8) 

Numerical results will be given later, but note that the energy-and all of these 

dragonal correlation functions can be measured simultaneously. 

4. Extension to Larger Systems 

The array N(r$, L) , which is used to store the distribution of the population, 

takes up memory space proportional to the number of basis states or to the 

total number of possible configuration labels. The rapid growth of this number 

with the number of sites in the system means that implementation of the above 

algorithm for very large systems is not possible. lo An alternative approach which 

avoids this problem in selected examples is suggested by considering Table 3. For 

the physically interesting regime of strong Coulomb repulsion, much of the array 

N(4, L) is simply storing zero. The number of important configurations actually 

generated is considerably smaller than the number of permissible ones.Thus it 

seems reasonable to attempt to store only those states L which do occur in the 

population. 

We now consider a modified version of the algorithm which does exactly that, 

by replacing N(q%, L) by a pair of arrays L(+, j) and N6(4, j) , where j runs from 

one to the size of the population. As before, q5 specifies the state at a certain 

time step and is not an index that must be stored. However the index j now 

only labels the individual members of the population. The information stored 

in L($, j) and N,($, j) is the configuration label and the integer score of the jth 

configuration in the population. Thus, finite computer storage will imply limits 
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on the size of the populations that can be handled rather than limits on the size 

of the Hilbert space ( and hence lattice size ). 

If a state L occurs 1 times in the population, we can allocate I values of the 

index j to this state or combine all occurrences of the state into one value of j . As 

with the-previous method, we will use the latter strategy so that negative weights 

are cancelled against positive weights; a bonus of this scheme is an improvement 

in accuracy in that important configurations will not use storage which would 

otherwise be available for smaller terms. Thus L(& j) # L(t$, jr) if j # jt. The 

number N,(+, j) is then the cumulative integer score for the state j . 

It is precisely this consolidation of states and the associated combining of 

scores that differentiates this algorithm from the usual (see Refs. 1 and 2 ) 

population method. The thinning of configurations with negative scores is an 

essential feature in our algorithm. 

Now we will describe the application of our stochastic algorithm to popula- 

tions stored in this way.l’ To apply the operator U to the population 4 , operate 

on the state with label I = L(+, 1) a number of times given by IN,(q5,1) I . The 

result of each of these operations is a potentially different state and the transition 

to-a final configuration F occurs with probability P(F, I) . As each of the final 

states are generated from the lN6(4,1)l initial states, their configuration labels 

and associated scores are written separately into a temporary work area. No care 

is taken at this point to combine separate instances of any particular final state. 

One continues to step through the entire population in this way, acting on each 

configuration the appropriate number of times. 

-The final population consists of c1 IN,(q5, I) 1 states with their associated 

labels and scores, all written into a temporary work area. The final step is to 

15 



consolidate the separate occurrences of particular final states and their scores, and 

write this information back into the arrays L(qh, j) and N,(&,j) . TO accumulate 

this nondegenerate population, there are several sorting methods which can be 

used. We have implemented several different versions which will ,be described in 

detail elsewhere. 

The length of time required to apply the operator U to the population and 

write the results into the temporary work area is proportional to the size of 

the population. However, the length of time required to perform the sorting 

and consolidating grows as the square of the population. Techniques have been 

implemented for decreasing the contribution of this latter factor to the running 

time by binning the configurations as they are being stored in the temporary 

work area. This decreases the number in each bin that must be sorted. The 

introduction of B bins results in a decrease in the coefficient of the quadratic 

term in the running time on the order of l/B , and a concomitant slight increase 

in the linear part. Overall time for this algorithm is comparable to but larger 

than that required by the earlier algorithm, in the regime where the size of the 

population is roughly the same as the size of Hilbert space. 

- For the same population and parameter set, the statistical fluctuations should 

be the same in this method and the one previously described. However, it is clear 

that this second version can be applied to larger systems for which the earlier 

algorithm is not applicable due to computer memory restrictions. 
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5. Numerical Results 

In order to test the algorithm we first compute the energy density in the 

absence of a Coulomb interaction, as a function of tZ for fuced t, for systems 
e 

containing M = 4, 8, and 16 sites using both periodic and antiperiodic boundary - 

conditions. This problem can be solved exactly by Fourier transform for any 

value of tZ and t,. In particular, for zero transverse hopping (tZ = 0), the 

problem separates into two independent linear chains of length N = M/2, and 

by relabelling, one could eliminate all negative matrix elements. The comparison 

of the energy density for different values of the hopping parameters with the 

exact result in the absence of a Coulomb repulsion is a severe test of our method. 

Table 1 shows the values of the energy density E/M for tZ = 0,0.5, and 1.0 for 

ikced t, = 1.0. The results for periodic and antiperiodic boundary conditions are 

given. Table 2 shows the values of the energy density E/M for tZ = 0.5 and 

tY = 1.0 for M = 4, 8, and 16 sites, again for both periodic and antiperiodic 

boundary conditions. 

The ground state energy density for the case tZ = t, = 1.0 as a function of the 

strength of the Coulomb interaction, uz = uy with symmetric and antisymmetric 

boundary conditions is shown in Figures 3 and 4 . In Figure 5 we show the 

variation of the energy density as both tZ and uz = uy are varied with t, fixed. 

In Figure 6 , we plot the three correlation functions, defined in Eqn.(3.7) as 

functions of the Coulomb coupling uz = uy . The approach to the strong coupling 

limit (Cz = Cy = 0; Cd = 0.5) is clear. 

Finally, Table 3 shows the variation of the number N, of distinct configura- 

tions in the ground state wave function as generated by our stochastic method for 

different values of the hopping parameters and the Coulomb coupling. The rapid 
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decrease of NC with increasing uz = uy and decreasing t, (for fixed ty) should 

be noted. This suggests that the method may be applicable to larger systems 

without a drastic increase in the number of configurations that must be included, 
e 

at least for the case of a small interchain hopping parankte; and a large Coulomb 
- -- 

interaction. 

6. Discussions and Conclusions 

The method presented in this paper provides an extension of stochastic 

Monte Carlo methods to the study of fermion systems in slightly more than 

one-dimension. Even though the infamous minus signs in the matrix elements 

or weighting functions cannot be eliminated in this case, the method seems to 

converge well. Its main advantages and limitations are: 

1. It is simple to implement, requiring only local operations and a small num- 

ber of memory lookups. 

2. The square (four site) matrix elements are computed essentially exactly 

with the Coulomb terms present. These are then used to determine accu- 

- rately the probabilities and scores. 

3. The splitting of the Hamiltonian into HI and Hz, chosen so that they 

can be applied independently as a direct product, does not introduce any 

significant errors. 

4. Each sweep through the set of configurations in the population produces an 

improved trial wave function which is closer to the exact ground state solu- 

tion. One may then take two possible approaches to improve the accuracy 

and limit the statistical fluctuations of measurements: 
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(a) In the first one starts with a population of Ntot strong coupling con- 

figurations and applies the U projection operator L+ AL times. Mea- 

surements are carried out only during the last AL time steps. This 

is then repeated by start.ing with the same initial population, thereby 

- generating a set of statistically independent averages. 

(b) In the second approach one does not start the repetition of the pro- 

cess by reloading the initial population but retains the distribution of 

configurations that has been generated. 

5. Even for values of tZ comparable to t,, where there are sizable cancellations, 

the measured values given by the accumulated score method converge well 

in the presence of fermionic minus signs. However, to obtain reasonably 

accurate results, one must use populations that are sufficiently large. In- 

deed, for no Coulomb interaction, the number must be of the order of the 

maximum possible number of configurations - (2N)!/(N!)2. This number 

becomes unmanageable for lattices only slightly larger than the - 16 to- 

tal sites treated here. While this is indeed a serious drawback of the first 

method as implemented in this paper, this criticism does not apply to the 

second method as discussed in Section 5. However the necessary sorting 

requires additional computer time. 

6. One can see from Table 3 that the number of distinct configurations that 

are generated stochastically decreases markedly in certain regions of pa- 

rameter space. This can be used as the starting point for several different 

implementations of the basic algorithm. The reduction in the number of 

- important configurations in the Coulomb regime means that the modified 

algorithm can be applied effectively. We have found that by starting the 
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system off with a strong Coulomb term and reducing it in steps as the 

Monte Carlo proceeds, one gets good results without a large increase in the 

number of configurations generated. This feature in turn will permit the 

treatment of much larger systems without a prohibitive increase in the nec- 

essary-computer memory or in the population required to get statistically 

significant results (and hence the computing time required). 

In summary, we have found that double fermionic chains can be treated by 

our new algorithm. The accumulated score method as implemented here seems to 

converge well even in the presence of fermionic minus signs. The numerical fluc- 

tuations are reasonable and measurements can be performed quite efficiently12 

for both energies and correlation functions. An application of the method de- 

scribed here to determine the ground state properties of the Periodic Anderson 

Model is presently underway, and results will be reported elsewhere. 
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Table 1 

I Periodic Boundary Condition I Ant iperiodic Boundary Condition I 

tz E/M Exact E/M Exact 

0 -0.605(2) -O.&S6 -0.656( 1) -0.6533 

0.5 -0.667(3) -0.6661 -0.659(2) -0.6533 

1 -0.732( 3) -0.7286 -0.721(2) -0.7119 

Stochastic and exact energy densities for 16 sites and for selected tZ values. 

This data is for no Coulomb interaction and t, = 1.0. A conservative estimate 

of the statistical uncertainties of the last digits are given in the parentheses. 

Table 2 

M ( E/M Periodic ( Exact 1 E/M Antiperiodic I Exact 

4 -1.001(3) -1.0000 -0.248(3) -0.2500 

8 -0.625 (4) -0.6250 -0.712(3) -0.7071 

16 -0.667(3) -0.6660 -0.659(2) -0.6533 

Size dependence of the stochastic and exact energy densities for no Coulomb 

term, tZ = 0.5, and t, = 1.0. A conservative estimate of the statistical uncer- 

tainties in the last digit is given in the parentheses. 
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Table 3 

t, vz = xv NC 
0 7490 

-1 4 3178 

8 1104 

0 5182 

0.5 4 1962 

8 791 

0 3598 

0 4 1255 

8 487 

Y - 

The number of distinct configurations NC generated for 16 sites at various 

values of tZ and vz = vy, with t, fixed at 1.0. The maximum possible value of NC 

is 12870. 
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FIGURE CAPTIONS 

1. The double chain and the labeling of sites. The total number of sites is M, 

and the total number of rungs is N (= M/2) . _ _ _ 

- 2. The double chain and the breaking up into Hamiltonians Hr and Hz . 

3. Plot of the energy per site as a function of the Coulomb coupling vz = try 

for a lattice of size M = 16 sites with symmetric boundary conditions. 

4. Same plot as Fig.3 but with antisymmetric boundary conditions. 

5. Plot of the energy per site as a function of the transverse hopping parameter 

t, with the longitudinal t, fixed, and as a function of the Coulomb coupling 

v, = vY for symmetric boundary conditions. 

6. A plot of the three correlation functions defined in the text is given as a 

function of the Coulomb coupling v, = vy . The hopping parameters are 

both fixed at one. 
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