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ABSTRACT 

A new scheme of electron acceleration, employing relativistic electron 
bunches in a cold plasma, is analyzed. The wake field of a leading bunch is 
derived in a single-particle model. We then extend the model to include finite 
bunch length effect. In particular, we discuss the relation between the charge 
distributions of the driving bunch and the energies transformable to the trail- 
ing electrons. It is shown that for symmetric charge distribution of the driving 
bunches, the maximum energy gain for a driven electron is 2-yomc2. This lim- 
itation can be overcome by introducing asymmetric charge distributions,12 in 
which case energy gains up to 1+(1- ; + kp 1~0 I)2 qomc2 are possible. 

I. INTRODUCTION 

The main theme of this Workshop is concerned with new acceleration mech- 
anisms that employ lasers in certain ways. Since the first Workshop, there has 
been tremendous progress towards further understanding of the plasma beat- 
wave accelerators lS2 both theoretically and experimentally, as was revealed dur- 
ing this Workshop.3 However, it is also clear that in order to realize the plasma 
beat-wave accelerator at a scale beyond laboratory test-of-principle experiments, 
significant advances in laser technology are needed. For example, the beat-wave 
acceleration scheme requires fine tuning’ between the plasma frequency wp and 
the beat-wave frequency of the laser in order for the wake plasma wave excited 
by the laser beat-wave to grow linearly. This in turn either puts constraints on . 
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the uniformity of the plasma density and the linearity of the plasma oscillation, 
or relies on very high power lasers to shorten the time of growth. In addition, it 
may be necessary to deliver the laser energy in a pulse shorter than 10 picosec- 
onds in order to avoid competing instabilities.‘.Questions of laser efficiencies are 
also of considerable concern. 

It turns out that if one replaces the lasers by high energy electron bunches 
traversing the plasma, large energy gradients can still be attained. The idea is 
to inject a sequence of bunched high energy electrons into a cold plasma. As in 
the two stream instability, the streaming electrons lose energy to the background 
plasma by exciting a wake plasma wave. If a late coming electron bunch rides 
on the wave at a proper phase, it will be boosted to a higher energy due to the 
longitudinal electric field in the wave. 

Chen, Huff and Dawson’ first studied this scheme using a single particle 
model under the electrostatic approximation. Later this model was improved 
by taking full electromagnetic effects into account.7 Ruth et aZ.,8 on the other 
hand, made an important contribution by recognizing the similarity between this 
scheme and the wake field acceleration scheme using EM cavities. Once this is 
seen, the “fundamental theorem of beam loading” ’ known in accelerator physics 
can be readily applied to the “plasma wake field accelerator.” Indeed, computer 
simulations 6’7 have indicated that the maximum energy gain for driven electrons 
cannot exceed 270mc2, in full agreement with the theorem. But is this really 
the upper limit of energy gain using wake field acceleration? 

In this paper we will review the single particle model with care taken in 
its detailed derivation, which is a generalization of the nonrelativistic electro- 
static method given by Kruer. lo We then discuss the wake field generated by 
bunches with finite length. Attention is paid to the relation between the charge 
distribution of the driving bunch and the maximum energy transformable from 
the driving bunch to a test charge. We show that the energy gain limitation 
described above can be surpassed and large energy transforms are possible. 

Since the plasma wake field accelerator makes use of already existing accel- 
erators as the source for providing electron bunches, the technical barrier may 
be lower than that of the plasma beat-wave accelerators. In addition, the acces- 
sible free energy of electron beams is comparable to that of the most powerful 
laser beams. It is thus reasonable to hope that this scheme can meet the more . 
immediate needs of the particle physics community. 

II. SINGLE PARTICLE MODEL 

Consider a system in which a relativistic electron bunch with initial PO = 
ub/c s 1 streams through a cold, uniform plasma along the s-axis. Assuming 
that the size of the bunch is much smaller than Xg, where X, is the plasma 
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wavelength (27ru~/wP), we can then treat the whole bunch containing q particles 
as a single particle with charge Q = eq. 

To the linear approximation the equation of motion and the equation of 
continuity for the cold, nonrelativistic background plasma are 

a*v’ppl = ----& e 21 , (1) 
and 

atnpl + npOV - $1 = 0 , (2) 

where ir is the total electric field contributed from the plasma and the beam: 
,?!?I = &,r + &I, and where the plasma velocity G” = 6’~ + $1, $0 = 0 and the 
plasma density np = nPo + npl, nPo >> nPl are assumed. The charge and current 
densities of our beam-plasma system are 

Pl(q = -enPI - Qb(z’- 30) , (3) 

and 

& (3) = -enpO $1(Z) - Qi$ S(Z - 6,) , (4 

respectively, where jc’o is the instantaneous position of the beam: & EE Ubte3, 
and 5 = per + ze3, in cylindrical coordinates. 

We are interested in the wake field I!& excited by the beam in the plasma. 
Our approach is to solve for the scalar potential 41 and the vector potential 
Ar first. In what follows it is more convenient to introduce a new variable 
cr z - ubt which measures the distance behind the bunch. For the case of an 
ultra-relativistic electron beam where PO k: 1, it is a good approximation to take 
ub constant over many plasma wavelengths, even though a substantial amount 
of energy can be transferred to the plasma wave. Under this assumption we put 
& = -?&as and a, = a,. 

In the Coulomb gauge we have a Poisson equation for the scalar potential, 

v2cp1 = -4np1 , (5) 

and an inhomogeneous wave equation for the vector potential, 

v2 ii1 - ; a~.& = -f J7. + 1 v+#q . 
C 

In terms of the new variable c, and neglecting the term involving the factor 
(1 - PO”), Eq. (6) can be reduced to 

where Vt is the two dimensional Laplacian in the transverse direction, and the 
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symbol DO in the last term is saved for the purpose of clarity even though we 
had assumed DO B 1. 

First we solve for 41 in Eq. (5). Taking <-derivative twice and combining 
with Eqs. (l), (2) and (3) we get, with the gauge condition V . xr = 0, 

v2(d;+k;)& =47rQ$6(2’-Zo) , (8) 

where kp E wp/ub = (4rnpoe2/mu~)1/2. Since 47rrS(Z- 30) = -V’(l//z’- Sol), 
the solution of this equation requires that we solve 

One may wonder whether by dropping the Laplacians from both sides of Eq. 
(5) we risk omitting the homogeneous solutions that satisfy either V2A(5) = 0 
or (a,” + ki)A(Z) = 0. Actually if we assume that the plasma is quiescent before 
the bunch entered in the infinite past, then A(Z) = 0 identically, so no problem 
arises. 

The solution of Eq. (9) is (see Ref. 10) 

&(P, I) = -Q /mds1 k;’ sin s(s’ - s) . i$ d& , 

s 
(10) 

where IZ- Zol = dm has been used. Integrating by parts twice we get 

h(P, S) = Q - d--& + k, /mdsI sin Icp(” - $) 
drn 

. 01) 
s 

Next we turn to the vector potential 21 in Eq. (7). Taking the c-derivative 
on both sides of the equation and invoking the equation of motion for the current 
term, we obtain 

a, (V: - @ k;) & = -PO v (8; + k;) 41 + 47rQ PO a, 6 (Z - zoo> . (12) 

Combining with Eq. (8), the above equation decouples entirely from the scalar 
potential. Removing the c-derivative common to each term, the equation further 
reduces to a inhomogeneous modified Helmholtz equation in two dimensions for 
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each component of 21: 

( V: - Pi k;) J& = Q PC, vd, +4x9$36(3-Zo) (13) 

When concentrating on the longitudinal component of Al, we get 

We are actually interested in the wake field trailing behind the bunch on the 
z-axis, i.e., at position Z= ze3. In that case 

where A, = 2rk,‘, and the corresponding potential in Eq. (14) reads 

00 

Al,(c) = -F P; / dp’ K#okpp’) - 
I2 

[p’2 +” 22]3/2 ’ (16) 
P 

0 

where Kr is the modified Bessel function of order one. 

Plots of ~$1 and Al, as functions of I<] are shown in Fig. 1. Notice that 
Al, diminishes monotonically whereas $1 remains oscillatory. The longitudinal 
electric field is computed by taking the c-derivative since El, = c3,(PoAlr - $1). 

We first show that the expressions we get in Eqs. (15) and (16) give the 
correct physical limit when the background plasma is “turned off.” To see this 
we examine a point right behind the bunch, i.e., kpj<[ < 1. In that case 

Al&) -N -Qpo,Q@k;ls/ ‘y+ln(Pokpj<I)-l+~ ’ 
Id I 2 Pokplll ’ 

(17) 

where 7 is the Euler’s constant. When turning off the plasma by taking the 
limit k, (or wp) + 0, only the first terms in Eqs. (15) and (17) survive, i.e; _ 

Thus we recover the well-known expression for the longitudinal electric field of a 
relativistic charge moving in vacuum with speed /30c. The remaining terms thus 
correspond to the plasma response to the presence of the relativistic beam. 
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Figure 2 shows a plot of ,331, without making the kpjcl < 1 approximation. 
It can be seen that El, is maximum at 111 II (n + ;)A;, where n is any non- 
negative integer, and the contribution to the maximum comes predominantly 
from the scalar potential. If the separation between the driven bunch and the 
driving bunch is such that 1~1 H (n + i)Xp, th e energy gradient attainable for 
each electron in the driven bunch is 

As an example, consider a plasma of density npe = 1016 cmW3 (which corresponds 
to A, z 0.33 mm). If the driving bunch consists of q = 5 x 10” particles, Eq. 
(19) shows that G N 4.8 GeV/m. Note that this treatment ignores nonlinear 
plasma effects and self-consistent effects that act to slow the driving bunch. It is 
only valid if the electric field does not approach the cold plasma wave-breaking 
amplitude, and if the electric energy is small compared to the free energy of the 
driving bunch. The first condition provides an upper limit on the maximum 
allowed energy gradient: G,, N @  eV/cm = 10 GeV/m. Comparing with 
G N 4.8 GeV/m, our linear theory is probably still reasonable. The second 
condition requires that (E9/87r) . L < q70mc2/Area, where L is the allowable 
length of the beam-plasma acceleration. Taking the area to be xc2/w~ and 
solving for L for the above case gives L = 0.12570 cm. For 70 = lo5 (50 GeV) 
L equals 125 m, so that our constant velocity assumption is extremely well 
satisfied. 

O.E1 , , , , , , / , , 
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Fig. 1. Potentials as functions of 
distance behind the driving bunch. 
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Fig. 2. Longitudinal electric field 
as a function of distance behind the 
driving bunch. 
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III. THE TRANSFORMER RATIO 

A. WAKE FUNCTION AND TRANSFORMER RATIO 

In the previous section, we have calculated the longitudinal electric field in 
the wake plasma wave excited by a point charge. It is obvious that the electric 
field per unit charge is a characteristic of the beam-plasma system. Following 
the analogous situation in the wake field acceleration in metallic cavities, we 
shall call it the (longitudinal) “plasma wake function”: 

K(s) = -Q-%(S) , SlO. (20) 
For a bunch with finite length, the current density associated with the bunch is 
in general a function of c, and each charge in the bunch leaves behind it a wake 
field characterized by WZ(<). Phy sically, a trailing charge will either gain or lose 
energy according to its phase relationship, cp = kpc, with the leading charge 
that generates the wake. On the other hand, the trailing charge in addition 
will lose energy by exciting its own wake. The net electric field generated by a 
longitudinally finite size bunch is a convolution integral of W, and the current 
density 1(c): 

(21) 

where kV,(s - 5’) acts as a Green’s function. 

Let the bunch extend from < = 0 to c = (0. If lcoj is sufficiently large com- 
pared to the plasma wavelength, A,, then in general the electric field inside the 
bunch acts to retard some particles and accelerate others but on the average 
is retarding in the bunch, and E(c) behind the bunch is oscillatory. Let the 
maximum retarding electric field inside the bunch be &G and the maximum ac- 
celerating electric field induced behind the bunch be f;. The ratio R G &Z/&G 
is called the transformer ratio. The physical implication of the transformer ratio 
is as follows: if a monoenerge.tic driving bunch with particles of initial energy 
yomc2 excites a plasma wake field, and if within the length L where the particles 
in the bunch that experience the maximum retarding field &, come to a stop, 
i.e., 7omc2 = e’L&;, then the maximum possible energy gain for a test charge 
behind the bunch will be Ryomc2 in the distance L. 

It is well known in accelerator physics9 that the transformer ratio for a 
point charge is equal to two. This fact has been called the fundamental theorem 
of beam loading. One can also prove that,” assuming only one mode in the 
cavity, R 5 2 for all finite length bunches with symmetric current distribution. 
Thus it has been the worry that there is a fundamental limitation on the driven 
electron energy gain in collinear wake field acceleration. 
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This limitation is also observed in the computer simulation6’7 of plasma 
wake field accelerations. Using a one-and-two-halves dimensional (2, vZ, vy, vZ) 
relativistic particle code (physically this corresponds to a one dimensional beam- 
plasma system where both the beam and the plasma extend infinitely in the 
transverse directions), it was found that, for the driving beam with current 
density profile I(z) - 1 + sin kx, the driven beam gains energy only up to 
AU s 270m~2 (see Fig. 3). 

I I I 
- Driven Beam 
- - - Driving Beam 

Fig. 3. Momentum distribution 
of the driving and driven electron 
beams when the latter has attained 
its maximum upper limit. The den- 
sity profiles for both driving and 
driven electron beams are l+sin kx, 
18u” out or phase. 

B. THE OPTIMAL TRANSFORMER RATIONS 

Can this limitation of energy gain be overcome? It turns out that this can 
be done. If the current distribution is asymmetric with respect to the mid- 
point of the bunch length, then the generalized fundamental theorem of beam 
loading (i.e. R < 2) for finite length symmetric bunches can be evaded. A 
simple physical way to look at how this can be accomplished is as follows. If the 
plasma electrons can move out of the way as the bunch charge builds up, the 
fields within the bunch can be kept very small. If the bunch charge is suddenly 
terminated the plasma finds itself very non-neutral just behind the bunch, and 
a large plasma oscillation exists. 

To illustrate this issue further let us consider a one dimensional beam-plasma 
system. For an infinite thin disk moving with speed pot in the normal direction 
the vector potential ~?r in Eq. (16) vanishes and’ 

0 c>o 

El*(S) = -Qh(S) = m?fT <=o (22) 

4nea cos k,c c<o. 

8 



The corresponding plasma wake function is thus W*(c) = -(ea)-‘El,(c) = 
-47r cos k,<. Consider a triangular bunch with current distribution I(<) rising 
linearly at the head of the bunch and cut off at the tail, i.e. 

0 c>o 

I(c) = IokplSI 02$LSo, IO>0 (23) 

0 co>> * 

Let the bunch length be /<cl = 2rN/kp, then it is straight forward to show, from 
Eq. (21), that inside the bunch, 

0 

&-(<) = 4rkpIo 
I 

c’ cos kp (c - c’) & = F (cos k,< - 1) , 0 2 c 2 co (24) 
P 

f 

whereas behind the bunch, 

0 

&+(<) = hrkpIo 
J 

c’ cos k,(< - 5’) d<’ = - 
tb210N 

k sinkpc , so > s - (25) 
P 50 

Thus 

R=-=rN. 
ftii 

. 

(26) 

This simple calculation was checked by a computer simulation13 (Fig. 4) which 
agrees very well with the prediction. Notice that R is proportional to the number 
of ripples, N, of &-. This can be easily understood because the smoother the 
&-, the more particles experience l; which bring them to a stop. Thus it allows 
more energy to be transformed to the driven electrons. The question naturally 
arises as to whether the triangular bunches give the best transformer ratios. 

To look for a better current distribution, it is more convenient to turn the 
convolution integral of Eq. (21) inside out. If we specify the desired E-(c) 
and &+(c) in the entire domain, the corresponding current density I(c) can be 
obtained. This can be done by first making a Laplace transform of Eq. (21). The 
convolution (Faltung) theorem says that the Laplace transform of a convolution 
integral is equal to the product of Laplace transforms of the functionals in the 
integrand, i.e. 

Furthermore, it can be proved that the inverse Laplace transform of L: {I($)}, 
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Fig. 4. The electric field gen- 
erated by a bunch with trian- 
gular density profile moving to 
the right of the picture. The 
bunch is one wavelength long, 
and the transformer ratio is R = 
&A/&,- = 7r. 
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i.e. the I(<) itself, can be expressed in the complex plane as 

(28) 

where 7 is some negative quantity which avoids the integration to be carried 
along the imaginary axis. To find I, our ansatz is that there exists some smooth 
function & - inside the bunch and a sinusoidal function &+ behind the bunch. 

Ideally, one would like to have a constant &- such that all particles expe- 
rience the same retarding field and stop at the same distance. But it can be 
shown by carrying out the calculations in Eq. (28) that the solution of I(c) for 
such a situation does not exist. This is actually not too surprising because we 
had insisted that &- be the same nonzero value at c = 0, and this is impossible 
to prepair. Notice that even a delta-function current at the head of the bunch 
can only provide E-(O) = i&-(0+) [cf. Eq. (22)]. 

We should thus relax our ansatz by allowing for some smoother fall of &- 
at the head of the bunch. For instance, if we let 

f-(c) = I 
’ 4rIo 

- sinkp< , 
kP 

om-$, IO > 0 
P 

4rIo -- 
L kP ’ 

-&red, 
P 

(29) 

. 
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it can be shown that the corresponding current distribution is 

I 
IO 9 OZsL-g , 

I(s) = 
P 

$0 kplsl 9 -+rS, - 
P 

The transformer ratio in this case becomes 

R= l+ l-;+kpl~ol)2. 
\I ( (31) 

For l<ol = 2rN/kp, R = 41 + (1 - g + 27rN)2. We see that the R in this case 
is larger than the R for the corresponding triangular current distribution. 

At first thought it looks like the energy transformation can be indefinitely 
improved by increasing the bunch length. However, the absolute value of &A 
will not increase proportionally unless the charge density in the bunch is kept 
constant. Thus one faces the technical limitation of a maximum possible peak 
current which one can provide near the tail of the bunch. The ultimate limit, 
however, comes from the cold plasma wave-breaking limit which e&z cannot 
exceed. But before reaching this limit, nonlinear plasma effects have already set 
in, and the previous calculations have to be modified. 

IV. DISCUSSION 

The single particle model described in Section II is useful for finite size 
bunches since it gives Green’s functions for them. The scalar and vector poten- 
tials can be obtained by integrating the Green’s functions over the finite size of 
a bunch. This is exemplified by the discussion of finite length bunches and the 
corresponding transformer ratios in Section III, although for the sake of simplic- 
ity we studied the one-dimensional case. A more realistic situation to consider 
is a bunch with a finite cross-section. In that case the contribution of Al, to W, 
at small distance becomes important when we look for E-(c) inside the bunch. 
We have not discussed the transverse plasma wake function in this paper, it is 
important for the study of beam dynamics and should be pursued further. _ 

In summary, large energy gradients over long distances of acceleration are 
attainable in the plasma wake field accelerator. The study of beam-plasma 
interaction deserves more attention in the plasma beat-wave scheme as well - 
because it also affects the accelerated electron bunch and will play an essential 
part in its beam dynamics. 
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