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ABSTRACT 

We study the fermion mass matrix in the case of four fermionic flavors u, d, c, 

and s. The original Lagrangian of the effective gauge theory respects the full four 

flavor symmetry and fermions are massless. We analyze a vacuum expectation 

pattern of the elementary Higgs field multiplet @ab ((a,b) = u, d, c,,s). Nonzero 

vacuum expectation values of @ spontaneously break the original flavor symmetry 

with fermionic masses being directly proportional to these vacuum expectation 

values. In the Higgs potential, hard terms in @ respect the global symmetry 

SU(4)L x SU(4) R o f f our flavors while soft terms in Q break this symmetry down 

to the effective anomaly free gauge group SU(2);” x SU(2)Fp. These soft terms 

are due to radiative as well as nonperturbative effects. Such a symmetry structure 

of the Higgs potential can be motivated by the underlying preonic dynamics. The 

desired solution, i.e., the proper inter- and intra-family hierarchy as well as the 

desired Cabibbo mixing angle, can emerge as a consequence of a subtle interplay 

between the soft terms and certain hard terms of the Higgs potential. Although 

quantitative values of the fermionic masses depend on the parameters of the 

Higgs potential the important outcome of the analysis is a result that once the 

magnitude of the Cabibbo mixing angle is chosen to be 8, = O(c) (e.g., c = 0.2), 

the interfamily hierarchy ratio is necessarily determined to be m,/m, = 0(c2), 

which is in agreement with experiments. 
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1. INTRODUCTION 

The fermion mass hierarchy problem is very complex. It can be subdivided 

into the following three questions: (i) the origin of the hierarchy between fermionic 

families e, p, 7.. ., i.e., the interfamily hierarchy m, > mp > m,; (ii) the origin 

of the hierarchy within each family, i.e., the intrafamily hierarchy rnd > m,, 

mc 2+ n-b, m, > mb, and (iii) origin of the Cabibbo mixing angles between 

fermionic families. Within realistic models of gauge theories serious attemptslm6 

have been made in order to get at least a partial answer to this problem. These 

attempts usually suffer from one or a few of the following deficiencies: enlarged 

gauge symmetry structure,6 the unusual and often proliferated representations 

of the Higgs fields,4 exotic fermions2’3 and extra parameters which are put in 

the theory by hand. 

At present, gauge theories alone do not seem to provide an ultimate answer to 

this problem. It was argued’ a long time ago that the fermions and possibly other 

particles of the gauge theories are composites of the more fundamental entities, 

preons. Gauge theories are, then, only effective interactions of the underlying 

preonic dynamics. It is widely believed that the composite structure of fermions 

within effective gauge theories, together with the effects of the underlying preonic 

dynamics, should offer an explanation for the origin of the fermion masses. 

It seems to us that a full resolution of the fermion mass hierarchy problem 

may have its origin in general in one or several following possibilities: 

1. A nonperturbative solution for the vacuum expectation values (VEV’s) of 

the Higgs fields or the dynamically generated fermionic condensates in the 

presence of perturbative-radiative effects. 899 
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2. Hierarchy in sizes of the fermion families9 

3. Additional symmetries, e.g., supersymmetry (SS), which may protect the 

mass of one family compared to another. 10,ll 

In this paper we present a mechanism for the pattern of the fermionic masses, 

which has a potential to shed a new light on the problem of the inter- as well as 

the intra-family mass hierarchy. We analyze an effective gauge theory with the 

full fermionic flavor symmetry, i.e., the intrafamily (c t-) ~1 ts r . . .) as well as 

the interfamily (u +-+ d, c +-+ s, t ++ 6.. .) symmetry, and fermions are massless. 

This flavor symmetry is based on the global symmetry SU(nF)t x SU(nr)~l 

with nF being the number of flavors. A spontaneous symmetry breaking (SSB) 

of the flavor symmetry is due to the nonzero vacuum expectation value of the 

elementary Higgs field multiplet @& ((a, a) = u, d, c, s, . . .). This multiplet couples 

to the fermionic fields via the following Yukawa type interaction: 

(1) 

Here $ILtR are left-handed and right-handed fermion fields, respectively and sum- 

mation over the flavor indices (a, b) has been suppressed. The full flavor sym- 

metry ensures that there is only one Yukawa coupling h and thus, the fermionic 

masses are directly proportional to the VEV’s of the Higgs multiplet (P. Our 

main goal is to study how a desired VEV pattern of @  arises as a consequence of 

the symmetry structure of the Higgs potential. 

In our approach fermionic and Higgs fields are treated as elementary, ‘point- 

like” fields. However, it should be understood that they are composites made 

out of preons and the gauge interactions are only effective interactions of the 
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underlying preonic dynamics. Actually, masses of (composite) fermionic fields 

should emerge dynamically’ due to the formation of condensates (f,fF). Here 

preons fiLSR) are fermions of the flavor type a = u,d,c, s and (L, R) stand for 

the left-handed and the right-handed preons. On the other hand, these preons 

are constituents of the (composite) Higgs fields @& - fffbRS Heuristically, one 

may expect that the condensates (ftrd2> are proportional to the VEV’s (@&,) 

of the Higgs fields @&. Thus, in our picture with Higgs fields being elementary, 

the VEV’s of the Higgs fields play a role of the preonic condensates. This can 

be justified as long as the VEV’s of the Higgs fields are much smaller than 

their inverse size A. In this case the Higgs fields which were originally formed 

as composites act as elementary objects interacting among themselves with an 

effective Higgs potential and having a Yukawa type interaction with fermions. 

We shall restrict ourselves to the analysis of the desired VEV pattern (@&) in 

the case with four flavors ((a, b) = u, d, c, s), only. This can serve as an instructive 

example for the explanation of the fermion mass hierarchy in the case of two 

families, only. On the other hand, a motivation for the study of the two family 

case is the following. It has been recently observed13 that experiments restrict 

sizes of quarks and leptons belonging to different fermionic families if quarks and 

leptons are composites which acquire masses through preonic condensates. The 

e-family and the p-family can be of one size, while the r-family and the possibly 

existing fourth family (r/-family) should have a different size. This observation 

suggests that one can treat the e- and p-family on the same footing while the r- 

and r’-family could be a replication of the first two families. A mechanism for 

such a family replication is realized in the recently proposed preonic model.g At 

the preonic level this model has only four distinct flavors u, d, c, and s. However, 
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distinct flavors u, d,c, and 5. However, a hierarchy in sizes for the composite 

fermions allows for a structure of four families, i.e., eight flavors. The e- and 

p-family emerge as composites of one size < 1 TcV-‘, while the r and r’-family 

appear as objects with the 8amc quantum numbers az the (e,p)-families, but 

have a much larger size, i.e., they are of order (1 TeV)-‘. It turns out that 

the fermionic masses for the (e, p)-families and for the (7, r ‘)-families are both 

proportional to the condensate matrix (fffr) oc (aa*) with (a, a) = u,d, c, s. 

Therefore a structure of (a=*) ((a, b) = u, d, c, s) is crucial for an explanation of 

the full fermionic four family mass matrix. 

Another comment relevant for our analysis is in turn. Any approach which 

is based on an underlying preonic dynamics with the spontaneous breakdown 

of the flavor symmetry faces a stumbling block of the Vafa-Witten constraint. 14 

This constraint is relevant for the vector-like theories, which are CP conserving 

gauge theories with bare fermionic masses and no interaction between scalars and 

fermions. It states, that in the vector-like theories no global vectorial symmetry 

can be broken spontaneously. This is very restrictive because aesthetic arguments 

almost force us to assume that flavor symmetries should be broken spontaneously. 

Then the vector-like theory, as a promising candidate for the primordial preonic 

force is ruled out by the Vafa-Witten constraint. However, this constraint does 

not say anything about the supersymmetric vector-like theories. It has been 

shown I5 that the Vafa-Witten constraint does not apply to the supersymmetric 

version of the vector-like theories. Thus a theory with a primordial interaction 

being supersymmetric vector-like interactions does not forbid a scenario where 

at the level of composite fermions flavor symmetry is spontaneously broken, so 

that fermions of different flavors acquire different masses. Then, within such a 
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The paper is organized as follows. In Section 2 we present the symmetry 

structure of the Higgs potential, discuss the desired VEV pattern of @  and present 

the vacuum solution. Conclusions are given in Section 3. In the Appendix we 

give explicit algebraic expressions for the vacuum solution. 

2. STRUCTURE OF THE FERMION MASS MATRIX 

2.1 SYMMETRY STRUCTURE OF THE HIGGS POTENTIAL AND THE PAT- 

TERN OF THE VACUUM EXPECTATION VALUES 

, We shall analyse only the part of the Higgs potential which involves the Higgs 

field multiplet Cp whose VEV pattern determines the structure of the fermion mass 

matrix. l6 Based on the idea of the furl flavor symmetry of the original Lagrangian 

we assume that at some stage the Higgs potential respected the following global 

symmetry of four flavor: 

G E SU(4)L x sum . (24 

However, the effective gauge symmetry should be anomaly free and in accordance 

with GIM mechanism. It has the following form: 

H E SU(2);+p x SU(2)7 . ( 26) 

The symmetry structure of the global group G and local gauge group H may 

have its origin in the underlying preonic dynamics.r6 The breakdown of G down 

to H is realized in our scenario by the nonzero VEV's of certain Higgs fields”“* 

as well as by the induced Yukawa couplings of certain composite fermions to the 
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Higgs multiplet @. l6 It is important to note that all the four flavors are treated 

on the same footing in the original Lagrangian. However, the SSB of G down to 

H gives a particular distinction between the flavors (u,d) of the e-family and the 

flavors (c, s) of the p-family. lg 

The leading corrections to the G invariant Higgs potential which break G but 

respect H symmetry are assumed to be soft, i.e., of dimension two with respect 

to the Higgs fields of the multiplet a. The reason for this is that the terms 

quadratic in Q fields in general receive large radiative corrections proportional 

to the square of the cut-off scale parameters, while terms quartic in Qi in general 

receive corrections only logarithmic in the cut-off parameters.g In Section 2.1 

we shall see how such a restricted structure of the Higgs potential determines the 

desired VEV pattern of @. 

The Higgs field multiplet @  transforms as ($3) under G (see Eq. (2a)) and 

can be written in the following way: 

UL 

dL 
a = 

-at 
(3) 

with 4ii ((i,j) = e,q2’ transforming as (2_,2J under the local gauge symmetry 

H (see Eq. (2b)). 

We seek the following VEV pattern of @, consistent with the charge conser- 
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vation: 

with the following hierarchical requirement: 

For simplicity we choose all the parameters in the VEV pattern to be real, i.e., we 

do not consider spontaneous breaking of CP. This VEV pattern (4) ensures the 

fermionic mass spectrum with the proper hierarchy; between the two families the 

hierarchy is of order u, within each family, of order c2, while the Cabibbo mixing 

angle 8,, = e,, - Bg, is of order 6. Such a VEV pattern ensures the proper values 

for the Cabibbo mixing angle eep, for the interfamily hierarchy ratio mu/m, 

and for the hierarchy ratio m,/m, within the p-family. However, the hierarchy 

ratio m,/md within the e-family is not in agreement with experiment. One 

should realize that m,,d masses are very small compared to m,,, masses. Our 

approach may not account for the magnitude of the m,/md ratio because there 

may be other sources which would reverse the intra-family hierarchy within the 

e-family. l6 On the other hand, the hierarchy between the heavy families, i.e., 

the r- and the r’-family, may be properly reproduced by the VEV pattern (4). 



2.2 MINIMIZATION OF THE HIGGS POTENTIAL 

In order to see how a desired VEV pattern (4) emerges as a consequence of 

the minimization of the Higgs potential we shall discuss the nature of the vacuum 

solution as it appears in three different steps. 

1. We start with the Higgs potential containing only G invariant terms. 

2. We insert VEV’s of those fields which break G -+ H, thus generating soft 

G-breaking germs in the potential for a. 

3. In addition to the above terms, soft terms which are induced through radia- 

tive corrections are also added. These corrections emerge as a consequence 

of the induced Yukawa type interaction of the fields 4ij and the new induced 

fields sij E i r24tj(i rz)t with the fermions. Here 72 is the Pauli matrix, and 

(i, j) = e, p. 

1. The G invariant Higgs potential is given by 

V = --M2tr at@ + Ar(tr at@)’ + Aztr @+a@+@ . (6) 

For the purpose of future discussions, we insert the VEV pattern (a) (see Eq. 

(4)) in the Higgs potential (6) w ic h h can now be written in the following way: 

V = -M2C0 + (Al + A2)C; + V, (7) 

with 

v, = -262 {Cc’ + [(KeK, - ST)” + (K:K: - (K:)“)]} (8) 
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where 

co=c+c’ 

c = ret +fc;+2tc: (9) 

c' = (lc:)2 + (I$)'+ 2(4)2 . 

The only vacuum solution consistent with the hierarchy is the following:21 

;{M2,A1 +A2,-AZ) >O. (10) 

We have seen so far that with only G invariant terms of the Higgs potential, 

we obtain the mass matrix where only c-flavor fermion acquires nonzero mass 

while all other fermions remain massless. It is interesting to note that although 

the Higgs potential (6) obeys the full flavor symmetry G, a vacuum solution (10) 

which breaks the four-flavor symmetry consistent in the fermion mass hierarchy is 

an allowed solution. However, other terms which break G invariance, and which 

should be responsible for the nonzero mass of the other fermions are needed. 

2. Now we study how the VEV pattern of 9 is changed when G is sponta- 

neously broken down by the following nonzero VEV’s of the Higgs fields <i2 - 

(g5,L) and $‘” - (L,L5):r7 

(&R) = cl x , (&) = b x 

Here we have assumed that (CL) = (&) (i = 1,2), so that the gauge symmetry 

H respects the left-right discrete symmetry. One needs both c1 and c2 fields in 

order to ensure the proper SSB pattern. 17 
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Once the G symmetry is spontaneously broken by the VEV’s (ll), this will 

manifest itself in the Higgs potential of the Q sector. In terms which couple c 

and 0 fields in a G invariant manner, the value of < is replaced by their VEV’s. 

These terms which now depend only on Q fields, appear as nonperturbative terms 

which break G symmetry. This pattern should emerge as a consequence of the 

minimization of the total Higgs potential. We assume that such a pattern is 

permissible. 

If we include only renormalizable terms in the total Higgs potential we see 

that terms which couple < and Q are soft and only of dimension two in @  fields. 

In addition, we assume that the relevant leading terms contain only one power of 

the fields ~2” or ~2”. Then the part of the potential with the couplings between 

fields 5 and @  is the following: 

2 2 

(12) 
i=l i,j=l 

with X12 = A2r. V2 contains almost all the renormalizable terms; the only extra 

couplings would contain two powers of <y or 12 fields. 

When VEV’s (11)22 are inserted in Eq. (12) one obtains the following form 

of the nonperturbative soft breaking terms: 

v, = 6M2Co + M$r d!edee + Mitr 4;; %; - Ml(tr 4!, q& + tr 4:&e + h.c.) 

+ M52 [tr 4!e(4eF + tie) + h-c.1 + MS [tr &,($e; + %e) + hx.] 
(13) 

with 

M; = 4225; , M: = %2(c(2 + hzh) , M: = 2<2(-442 + A12<1) . 
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From Eq. (13) we see that now V2 breaks e H JJ symmetry explicitly since 

MC2 # Mi and Mi # Mi. This can now account for the difference in masses 

for u- and c-flavor fermions, i.e., now one can obtain n, # 0 az well as 6, # 0. 

However, we will see that only together with the G invariant terms of VI (see 

the second term of Eq. (8)) th e d esired solution with nl # 0 und IC: = O(n,n,) 

which gives the proper Cabibbo mixing angles, can naturally emerge. In other 

words, we encounter a subtle interplay between l-5 and the second term of VI, 

i.e., term -2A2(/ceKp - K:)“. From the minimum constraint of the step l., i.e., 

A2 < 0, we see that the term -2A2(/cenp - K:)~ should be as small as possible. 

If its value is different from zero its positive contribution to the potential has to 

be balanced by the contribution of the soft terms (13). 

The above qualitative arguments for the structure of the vacuum solution are 

supported by the quantitative results. In the limit {Mt, Mt} < (Mf, Mi, Mi}23 

we obtained the following form for (a): 

with /cP defined in Eq. (10) and 

c2 = c + O(r2) 

Cl = [{(l + me) + mg + 0($2)]“2 (164 

c = mr + 2m3 
. 

me 
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Here we have introduced the following dimensionless parameters: 

From the solution (15) we see that hierarchical constraints (5) impose the follow- 

ing restriction on the parameters: 

{ $,g$$}so(;). (184 

Constraints for the minimum of the Higgs potential follow from the requirement 

that the 32 x 32 matrix for the second derivatives of the potential (V + V2) is 

semi-positive definite. These constraints (see Appendix) eventually reduce to the 

following restrictions: 

{ M2,M$ -M;,M;+2M,2,Al+A2,-A2} >O. (194 

From expressions (14) we see that (19a) can be satisfied provided {Arr, -X22} > 0. 

On the other hand, hierarchy constraint (18a) is satisfied provided 

{ ($y2 g ,(;;;;;;;)1’2} so (5) . (20) 

Therefore, apart from one Umini”-fine tuning of parameters, i.e., we have to fine 

tune ~1 and Arr$r in one part of 25, the desired hierarchical structure for the 

u- and c-flavor fermionic masses, and the proper Cabibbo mixing angles emerge. 

These results are parameter dependent. The magnitude of these parameters may 

have its origin in the underlying preonic dynamics. On the other hand, it is 

important to note that once a magnitude of the Cabibbo mixing angle is chosen 

to be of order 6, the inter-family hierarchy ratio mu/m, has to be necessarily of 

order c2. 
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3. Up to this stage we have not gained an understanding of the intrafamily 

hierarchy, i.e., the origin of {rc:, n:, n:} # 0. For this purpose we introduce fields 

&j = i&,tj(ir2)+ ((i,j) = e, jZ) which transforms as (2_, 2,) under the gauge group 

H. The soft terms of the type Jlj#ij which are invariant under H would then 

induce nonzero n&r once r~~,~,r are nonzero. 

It might seem to be unnatural to have Jij fields in the potential, since in 

the original theory with the global G invariance these fields are not permissible. 

However, once G is broken down to H, &ii fields are a legitimate representation 

of the gauge group H.24 Those fields can couple in a similar way as 4ij fields (see 

Eq. (1)) to th e- f ermionic fields in the Yukawa type interactions, which are then 

of the following form: 

with the fermionic fields $fVR transforming as $J: - (2,,1,) and (c)iR - (1_, 2,) under 

the gauge group H. 

Although we introduced the Yukawa interactions (21) which ezplicitly break 

the original G symmetry, one could assume that the flavor symmetry is not broken 

to such an extent as to give different values for Yukawa couplings hijw Namely, 

the first term of Eq. (21) retains G invariance when hij = h((i, j) = e, 9, 

i.e., it is of the form h$&qbL with $L = (a;) - (4_, &) and likewise +R. 

Parameters hij are dimensionless parameters, which acquire radiative corrections 

only logarithmic in the cut-off parameter. Therefore putting hij = h ((i, j) = e, 9 

even in the case when the effective gauge symmetry is only H, is a reasonable 

assumption. 
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On the other hand, we do not have any convincing argument to determine 

the structure of parameters Xijs The only general argument may be the smallness 

of “hij compared to h, i.e., (Xii) < h. We choose 25 

In this case we assume that only the fields &ii (i = e, E), which are diagonal in 

(i, j) indices have an appreciable coupling to the fermionic fields, and that flavor 

symmetry is not broken in the leading order of the Yukawa couplings Xii (i = e, 3. 

This type of f y induces at the one-loop level new soft terms in the Higgs 

potential, which couple &i and 4ii fields. They are of the following form:26 

v3 = -(M’)’ C tr Jii4ii + h.c. 
i=e,'; 

(23) 

with Ml2 oc & A2 and A the natural cut-off parameter of the inverse size 

of @  fields. Quadratic dependence on the cut-off parameter A suggests again 

that the soft symmetry breaking terms of the Higgs potential give the leading 

contribution. The V3 term introduces only one new parameter M’. 

The total Higgs potential V = V + V2 + l-5 allows for the complete desired 

structure of the vacuum solution of the form (4) with n:cr, and c defined by 

(Isa), while u, c:, and L ’ have the following form: 

2 
U =m’, tf-0, (c’)~= 

l+m, ’ WJ) 
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Here m’ is defined as the following dimensionless ratio 

Ml2 
m’ = (-2A2) /c; Pb) 

in the same was as me,P,.+, which are defined in Eq. (17a). Hierarchical constraints 

(5) impose in addition to (18a) the following restriction on the parameters: 

(W2 < 0 1 
M2- 5’ 

0 
(18b) 

This constraint is not unnatural, because if one assumes that M2 > $$, (18b) 

leads to the restriction ; a 0 (;). Th’ 1s is consistent with the previous arguments 

(see Eqs. (22)). F&q uirement for the local minimum of the total Higgs potential 

imposes in addition to (19a) also the following restriction: 

(M’)2 > 0 . w 

Final expressions for the quark masses and the Cabibbo mixing angles are: 

mu = m,(c2 - 6:) 

md = mcu(f’)2 

m, = m,u 

e ep E eu# - @dc - ~1 

with {u, c, ci, c’} 5 0(1/S) defined by Eqs. (16). 

We see that this prediction is parameter dependent; however the proper struc- 

ture, i.e., the desired hierarchy und the proper Cabibbo mixing angle, are pre- 

dicted by the model. 
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3. CONCLUSIONS 

We have studied the fermion mass matrix of four flavors (u,d, c, 8) within 

a gauge theory whose original Lagrangian obeys the full flavor symmetry and 

fermions are massless.’ We studied the vacuum expectation pattern of the 

elementary Higgs fields @& ((u, b) = u, d, c, a) as it emerges az a consequence 

of the minimization of the Higgs potential. We showed that a desired vacuum 

expectation pattern of 9, which in turn provides a proper hierarchical picture 

of the fermionic masses and proper Cabibbo mixing angles, can be reproduced 

due to the symmetry structure of the Higgs potential. The origin of the obtained 

hierarchy lies in a subtle interplay between certain hard (dimension four in a) 

terms, which respect the global symmetry G s sum x Su(4)R of four flavors 

and the soft (dimension-two in 9) termz, which respect only the effective gauge 

symmetry H E SU(2)Fp x SU(2):‘. The soft G breaking terms arise though 

the coupling of Q! with the fields which break G spontaneously, and they are 

responsible for the desired interfamily hierarchy and the proper Cabibbo mixing 

angle. On the other hand, the intrafamily hierarchy is a consequence of radia- 

tively induced terms in the Higgs potential which arise through loop corrections 

coming from induced Yukawa couplings of the @& fields with the fermions. 

Within this approach we were able to obtain a qualitative understanding 

of the fermionic mass matrix. Although, quantitative predictions for the mass- 

matrix are parameter dependent, the important outcome of this approach is the 

following: (i) a hierarchical solution con emerge as a spontaneous breakdown of 

the original flavor symmetry, and (ii) once we choose the Cabibbo mixing angle 

to be 8,, = O(z) (e.g., c - 0.2), the interfamily hierarchy ratio is forced upon us 

to be m,/m, = 0 (c2), which is in accordance with experiments. 
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On the other hand, we are aware that the approach with quarks, leptons 

and @& Higgs fields being elementary and “point-like” may not provide the 

complete answer to the fermion mass hierarchy problem. We believe that in a 

complete picture @& fields need not be “point-like” and then they should be 

treated as composites of preons which form condensates due to the underlying 

preonic dynamics. Formation of condensates would in turn break the original 

flavor symmetry dynamically and give masses to quarks and leptons which are 

composites of preons as well. However, the ambitious task of deriving such a 

nonperturbative solution to the nature of the condensate matrix still remains. 
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APPENDIX 

For the sake of completeness we shall state the extremum equations for the 

system, described in Section 2. The extremum equations are of the following 

form: 

av av avo -=-= 
aneCc anlre 

2 
I 

w + 2A2(Ken, - K:) - Mi 
1 

‘~1 = 0 
0 

av 
ig = 2 { [-2A4 + M;]Ic; - Mf2ne}+0 ($) =O 

[-2A24n: - M’2n,)+0 (5) =0 

(A.lu) 

(A.lb) 

(A.lc) 

(A.ld) 

(A.le) 

av av -z-z 
anip anhe 2 [-2A4](-4 + Mf2rcl + 0 1 } ($) =O. (A.lf) 

Here we have used the following notation (same as in Section 2): 

with 

Potential V = V + V2 + V3, with V,V2,V3 defined in Eqs. (6), (12), and 

20 



(23), respectively. Vi is a part of V which depends only on CO = C + C’, with 

C = n! + n; + 2/c: and C’ = 6’; + K’; + 2~‘; (see Eq. (7)). 

The extremum solution which is evaluated within one approximation ~~j < 

"ij ((Cd = e, jX) and is of the following form: 

n: = (1: <)2 {l+2m3- (“641;:) (m,+2m3) &} x2, (A.4a) 

I 
2 % n:= (2 c 

+(me+2m3) l+c +m3 n2, 

I 

(A.4b) 

Kc 
C”r Z---K (A.4c) 

n 

nl=m’+, (A.4d) 

n; = mh , (A.4e) 

m’ 
4 = (1+ m,) k * (A.4f) 

Here 

(A.Sa) 

ml = 
Ml2 

(-2A2)n2 

c = mp + 2m3 
m,+2m3 ’ 

(A.Sb) 

(A.Sc) 

We see that when {mg, m,,/m,) 5 0(1/25), the desired hierarchical solution 

and K; = 0 ( nclcP) really emerges. 
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In order to satisfy constrains for the minimum of the Higgs potential the 

matrix of the second derivatives of the total Higgs potential should be semi- 

positive definite. The eigenvalues of this matrix in the directions of the neutral 

fields are the following form: 

m,2 = (-2Azn:) (me + 1) , 11:~ = (-2A24 (me + 1) , (A.6a) 

rl3=0, 9: = (-4b:) (*!$!a) , (A.6b) 

q4,5,6 = (-2112~;) , v:,5,5 = (-2Azn;) 7 (A.6c) 

1)~ = (-%@m3 , ‘7: = (-W$) (-2mJ , (A.6d) 

rl; = (-2A2+~1) ej . (A.6e) 

From (A.6b) we see that we have one massless neutral Goldstone particle 

which is absorbed by the Higgs mechanism. The positivity of other eigenvalues 

in turn demands that: 

{ M2, me, -mp, m3, m’, -Az,Al + A4 > 0. (A.7a) 

The eigenvalues of the matrix of the second derivatives with respect to the charged 

fields can be written in the following way: 

rll,z = (-2A24 (me + 1) , 9:,2 = (-2b$) (me + 1) , (A.8a) 

tl3,4 = 0 , d,r = 0 9 (A.8b) 

q5,6 = (--2A2) 1 (4 - m,n:) - nf + ((2(m::;l))l+m41’2] , 2(me + 1) 
(A.~c) 
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‘?7,8 = t-262) (‘+ - m,n:) - 2tmK:, 1) 
c 

- ((q,$+ l~)2+‘&~)1’2] , (A.8d) 

t/&7,8 = 424 - (A.8e) 

We see from (A.8b) that we end up with four charged massless Goldstone particles 

which are again absorbed by the Higgs mechanism. The only nontrivial additional 

constraint which arises from the positivity of eigenvalues (A.8) is then 

(A.7b) 

This completes the evaluation of the constraints for the minimum of the Higgs 

potential. 
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