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ABSTRACT 

A resolution of ambiguities that arise in relating the chiral angle to the vac- 

uum charge is presented; their relationship is studied and clarified. A recently 

developed formulation is applied to a simple one-dimensional example with frac- 

tional charge. This example provides a setting in which the breakdown of the 

adiabatic approximation and the winding of the chiral angle by multiples of 27r 

can be studied. We find that the above situations do not a priori imply a change 

in the vacuum charge nor any ambiguity in its definition. However, a mathe- 

matical and physical criterion for the occurence of level crossing, leading to an 

integer change in the charge of the vacuum, is provided. The results are given 

and analyzed from a physical point of view and their generality is discussed. 



1. Introduction 

The physics of fractional quantum numbers of the vacuum in theories with 

fermions that interact with topologically non-trivial background fields (b.f.) is by 

now well established and well studied. The remarkable work by Goldstone and 

Wilczek’ indicated that the vacuum charge (density) can be a transcendental 

function of the b.f. This work was based on the seminal paper by Jackiw and 

Rebbi2 who discovered the phenomena of fractional charge in the charge conju- 

gate case. These papers sparked great interest in the subject and many authors 

have reproduced their results using a variety of techniques.3-8 

Using the adiabatic method, which is an expansion in the ratio of the deriva- 

tive of the chiral angle to the position dependent mass, the vacuum charge in one 

spatial dimension was found in Ref.1 to be given by 

Q 
A8 =- 
2lr ’ (1.1) 

where A8 = e(z = +OO) - e(~ = -oo) is the total net change in the chiral angle 

between the infinite spatial boundaries. 

However, application of this result to specific examples leads immediately to 

several quest ions. What happens if the local mass term in the Hamiltonian is 

zero in a finite region of space? In this region the chiral angle is not defined and 

the adiabatic expansion certainly breaks down. Does a winding of A8 by 2?rn 

indicate the presence of n extra units of charge in the ground state? 



Charge, Spectrum and Spectral Flow: 

In Ref.5 it was shown that the ground state charge is a property of the fermionic 

spectrum that is given by 

Q=+ (1.2) 

where the spectral asymmetry q is the asymmetry between the number of positive 

and negative states of the spectrum which consists in general of both bound state 

and continuum parts. 

Also in this reference, it was shown that the quantity r) can be written in the 

form 

where r]v is the spectral asymmetry obtained from the simplest Hamiltonian Hv 

that incorporates the same asymptotic behavior as the true b.f. The important 

quantity r)SF measures the %peCtral flow”, i.e. the net number of energy levels 

that cross zero in the process of deforming the b.f. in Hv to those of the Hamil- 

tonian of interest H (this is a local change). The “relative” asymmetry QSF was 

shown to be an even integer or zero in Ref.5 . 

The ground state charge associated with w is given by 

Qv = z -Ir<Aev <+a. (1.4 

(Note that Qv lies between - f and +i.) 

Since the charge is only a property of the counting of states in the spectrum, 

it will be modified only when states cross zero. The reader might expect that 

when the (position dependent) mass becomes zero in a finite region in space or 
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when A8 winds by 27r , such level crossing may be induced. However we shall 

see that this is not the case in general. Indeed, if the mass (hereafter denoted by 

p(s)) vanishes or if A8 changes by 2~ in a distance d, the spectrum will not be 

significantly changed unless d becomes sufficiently large, typically of the order of 

the inverse of the local mass (in our later example no). 

In this paper we will study a simple example of a problem in one spatial di- 

mension that will (hopefully) illuminate the physics that is occurring by showing 

that the ambiguities due to the vanishing of p(z) or to the branches of A8 do 

not affect the ground state charge, which is always well defined. In a sense, we 

will try to choose the most ambiguous example possible that is at the same time 

mathematically simple. 

General Formulation: 

Following the spirit and discussion of Ref.5 , we introduce the fundamental de- 

terminantal ratio 

B(E) = det s . [ 1 (1.5) 

From this ratio, which is a direct comparison of the positive and negative spec- 

trum, auxiliary quantities follow directly: 

G, = 
I 

= f & tn B(E) (1.6) 

and 

Podd = $IIIG,(E+~~) , (1.7) 

where Podd is the odd part of the density of states. The spectral asymmetry is 
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then given by 
00 

t7 

0 

(14 

2. Model Hamiltonian and Its Spectral Asymmetry 

The one-dimensional Hamiltonian describing the interaction of a fermion with 

a b.f. that we propose to analyze is 

H = -ia 2 + d(z) + 0344 , (24 

with 

H$J= EI,!J. (2.2) 

By writing 4(z) = pcos 8, n(z) = psin B , and performing a chiral rotation $ = 

eiuae/2x , the Hamiltonian is transformed as 

with 

H, = -ia2 & + blP(S) + ; 2 . (24 

It was shown in Ref.5 that 

B(E) = T(E) 
T(-E) ’ (2.5) 

(2.3) 

where T(E) is the transmission coefficient of the scattering states of H, with 

conventional boundary conditions of a unit incoming wave from the right and a 

purely outgoing wave to the left. 



Spectral Asymmetry: 

Above thresholds, we write 

B(E) = j13(E)Ie’6(E) , 

then the asymmetry is given by 

q = N+ - N- + +o) - S(O)], 

(2.6) 

(2.7) 

where N* is the number of positive or negative energy bound states. The quan- 

tity 6(E) is the relative scattering phase shift between the positive and negative 

energy sectors, and 6(O) is this phase evaluated at thresholds (see Ref.5 for de- 

tails). This expression for the asymmetry can be also interpreted as an extension 

of Levinson’s theorem. 9-11 

At large distances (where 8’ = 0 ) we see that (7s maps positive energy 

states onto negative energy states and vice versa. Thus when 8’ # 0, positive 

and negative energy scattering states interact with the same b.f. but with an 

opposite sign. If one interaction is attractive, the other is repulsive. This is the 

origin of the spectral asymmetry. 

Constant K: 

The most common case treated in the literature corresponds to K.(Z) = constant 

. However as we shall see this case is very special. In particular, for constant rc 

there exists an operator U that anticommutes with H, 

U = (a3H - /c) . (2.8) 

This operator ensures that if there is a bound state with positive energy lE/, 

which is different from InI, then there is another at -[El . This pairing property 
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then implies that when 4( z is varied, these states move in puirs with equal and ) 

opposite energy. Therefore there cannot be any net spectral flow. Note that the 

pairing argument fails for the bound states of energy E = fn since they are 

annihilated by U . 

These states of energy frc are eigenstates of (H - crs~.) with zero eigenvalue. 

They are the Jackiw and Rebbi Uzero modes” in the charge conjugate case’ 

(n = 0). These zero modes are eigenstates of us and exist when 4(z) has a 

kink-type profile. 

By carefully following the branches of the function e(z) = tan-‘(K/~(Z)) the 

reader can be convinced that if the signs of cS+ and r$- are the same, where 

4% = d(z = foo), then B+ and 8- are on the same branch, and hence A8 lies 

between 3~5. However if the signs are opposite, then 8+ and 8- are on consecutive 

branches. In the case of constant n one always has the limits 

-7r 5 A8 5 +7r. (2.9) 

Therefore the charge must lie in the range between minus one-half and plus one- 

half. The charge conjugate limit (K + Of, Q = f $) is reached from IQ I < i 

in both cases. These features are the direct consequence of the fact that for 

constant K. there can be no spectral flow. Indeed, the above analysis of branches 

indicates that to obtain IAeI 2 27r, K(Z) must change sign. 

Ambiguities and the Ezample: 

In order to understand the physics in the case when there are ambiguities in the 

definition (or branches) of A@, we propose to study the following simple problem: 
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n(x) = 

4 z>d 

0 -d<z<d 

-tj xc-d 

(2.10) 

with n > 0 , and C$ > 0. 

We are interested in studying the behavior of the spectrum of H as rcg is 

allowed to approach and cross zero, and to evaluate the ground state charge 

using Eqns. (1.2) and (2.7). Wh en K.O vanishes, then the mass term is zero over 

a finite region of width 2d, however the gap in the spectrum is pr = [n2 + d2]i 

and is nonzero. With the b.f. as given by eqn.(2.10), the three regions will be 

denoted by 1 for z > d, by 2 for -d < z < d, and by 3 for z < -d . 

Still following Ref.5 , the transmission coefficient can be obtained by matching 

the boundary conditions (i = 1,2) at x = fd respectively: 

xi+1 = eiffaoixi , (2.11) 

where the wave xi is a linear combination of right (+) and left(-) going plane 

waves with spinors given by 

xf = 5 
where kj = [E2 - ~$14 , Pl = p3 , and pz = 11~~1. Also, 

1 (ej - ej+l) 'lj = 2 ;Ae=m+q2. (2.13) 

(2.12) 

After some straightforward algebra, the transmission coefficient is found to be: 

-l)F (2.14) 



with 

and 

z = 4k2d . 

(2.15) 

(2.16) 

The next step of the computation involves the evaluation of the angles Bi involved 

in (2.16). Here is where we encounter the first ambiguity because n(x) and 4(x) 

change at the same point. 

To understand the nature of this ambiguity, let 4(x) change either slightly 

before or after K.(X), and such that 4(x) = &, for -d f c < x < d f c. Then we 

shall take the limit 40 + 0, c -+ 0. 

Following carefully the branches of the function e(x) = tan-’ (~(x)/q%(x)) 

the reader can be convinced that these different limits yield results for A8/2 

and (71 - t72) that differ by fir (qr - qz is either zero or 3~). Therefore 

these ambiguities can yield an overall minus sign in front of l/T(E). The only 

remaining ambiguity that can arise when K,-, = 0 is the overall sign of C and S 

(see below) which depends on the sign of the limit. Since pz is zero at this point, 

this is again an overall sign ambiguity for the transmission coefficient. 

Hence the ratio B(E) = T(E)/T(-E) is unambiguous. Furthermore, since 

the properties of interest in the spectrum only depend on the difference of phases, 

the ambiguity (being a constant phase) does not influence the spectrum. These 

ambiguities have no physical relevance for the charge. 

For the purpose of calculation we compute the angles taking 4(x) = 0 for 

-d + 1~1 < x < d - 1~1 (h owever the answer will not depend on this definition as 
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was discussed above). Then we find 

rll = rl2 
A8 -=tm-1 n 
2 0 3 

- E sign(nc) . (2.17) 

The expression for l/T(E), Eq. (2.14), has very interesting features. In the 

infinite energy limit any dependence on the value of d disappears and 

1 -- 
T(fE) E-ma 

c f is = #w2) . 

Therefore from (2.6) we find 

G4 = -g 
7r 7r - 

(2.18) 

(2.19) 

The phase shift 6( oo) k nows about local details through the sign of ICO in (2.17) 

and this dependence survives no matter how small d is. Therefore, even for d 

infinitesimally small, b(oo) changes by 27r when rcg crosses zero. However, on 

physical grounds, one does not expect any energy level to cross zero just because 

rcg does, if d is sufficiently small. Indeed, the resultant percentage change in 

any energy eigenvalue is small, and vanishes with d. This point will be further 

clarified in our later discussions. For d = 0, the problem is the same as the K. = 

constant case and Ae/2 = tan-’ (s/d) - (x/2) . Therefore for no < 0 and for any 

d # 0 there is a 27r difference in AB when compared to its d = 0 value. 

The critical distance (for fixed IQ) at which a bound state crosses E = 0 can 

be found from (E is below threshold) 

1 
T(E = 0) = O = 2 

1 [1+ C] - e-t”‘” (1 - C] , (2.20) 

Notice that C must be negative in (2.20) in order to have a solution. From 

(2.17) we see that for this to happen ICO must be negative (however small). But 
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the solution for the critical d from (2.20) indicates that as no crosses zero and 

becomes negative, a bound state will cross zero for d = d,, where d, - O(l/JnoJ). 

Thus d has to be very large for this to happen for small ~0. This is in agreement 

with our physical intuition, since for ICO < 0 but d very small, the situation is 

essentially that of the d = 0 case where there is a bound state at E = n > 0. 

As d becomes larger the potential widens and the bound state energy decreases; 

the uncertainty principle prevents the bound state from moving significantly in 

energy for very small d and TV and thus there are no energy levels crossing zero 

discontinuously even when AB jumps by 27r with no < 0 . 

In order to analyze what happens to the index 7 when d and ICO are varied, we 

must evaluate the phase-shifts and the bound state contributions in Eqs. (2.7) 

and (2.14). 

The bound state energies Eb are obtained from the equation l/T(&,) = 0. 

From the expression for l/T(E) we can also read off the threshold phase shifts. 

The phase of B(E) in the infinite energy limit is given by (2.19) . 

The d = 0 Case: 

At d = 0 the case is the same as n = constant: 

A8 -22,tan-1 ; 2, s<o, c>o, 
2 2 0 2 

(2.21) 

where A& is the chiral angle evaluated for the case d s 0 and 

B(E) = 
C - iES/k 
C + iES/k ’ 

(2.22) 

From (2.14) at d = 0 we see that there is a bound state at E = pC = K (IC > 0); 
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the phase of B(E) is given by 

6(E) = -2 tan-’ (2.23) 

Following the phase 6 (E) from E = 00 to threshold (E = ~1) we find 6(pr) = R, 

and therefore for d = 0: 

A80 ,=l+; [-As,-A]=-~ - x 5 ae, < 7r . (2.24) 

The phase shift at threshold cancels the bound state contribution because this 

bound state came from the positive continuum. 

The d # 0 Case: 

For d # 0 and KQ > 0, which leads to C > 0, the condition for a level crossing 

zero, Eq. (2.20) , is never fulfilled. However new bound states peel off from the 

positive and negative energy continuum, E = fpr, and the critical values of d at 

which this occurs is obtained from 0 = l/T(fpr). The solution is easily found: 

tan(2kzd) 
h =* (c,l”-P2) * 

(2.25) 

From the same condition we see that the threshold phase 6(pr) increases (de- 

creases) by A whenever a bound state peels off from the positive (negative) con- 

tinuum. 

As d increases from zero (with Q > 0) the bound state originally at E = K 

moves in energy but never crosses zero. For d > dl, the critical distance for a 

new positive energy bound state, there are now two positive energy bound states, 
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6(Pl) = 27r , A0 = A80 because rco > 0 , and the asymmetry is 

=2+: [-A80--27r]= A00 
t7 --. 

A 

The phase shifts at threshold know that the new bound state came from the 

positive continuum and increased by a. This is as expected from Levinson’s 

theorem of potential scattering. 12 

When d > d2 a new bound state peels off from the negative continuum. The 

threshold phase shift drops by 1~. Now we have two positive energy and one 

negative energy bound states, but 

AdO 
r7 =2-l+i[-Aeo- 2X+x1=-7. (2.27) 

The continuum reacts through the threshold phase shift whenever a new bound 

state appears but r) and the charge remains invariant. The ordering of the above 

events depend, of course, on the parameters in the b.f. 

Negative ICO : 

For Q < 0 the situation is different, and A8 is no longer equal to A00 . As soon 

as d # 0, A8/2 changes by A because of (2.17) and (2.21) ; now C < 0, S > 0 

and the condition (2.20) can be fulfilled, but for fixed 1~01 a bound state can cross 

zero only when d is large enough. No bound state abruptly crosses zero when no 

goes through zero if d # 0. There is always a critical m inimal distance d. For d 

small the bound state wave function is forced to vary too rapidly; it cannot lower 

its energy to zero unless d becomes sufficiently large. For d e 0 we can neglect 

the terms proportional to d in (2.14) and see that for Q < 0 and d # 0 but very 
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small, 

6(d, E) = 6(0, E) - 27r , (2.28) 

where 6(0, E) is given by (2.23) with S < 0 and C > 0 (they are evaluated at 

ABe). Therefore we now have 

G(d,oo) = -Ae = -Aeo - 27r 

(2.29) 

W,pl) = ~(O,PI) - 27r . 

Now we see that for ICO < 0, but d very small, r) has the same value as the d = 0 

case. No level had crossed zero as d moved away from zero and no new bound 

state had appeared. The shift in 6(oo) of 27r is compensated by the same shift 

in 6(pr). The branch independent quantity (6(oo) - 6(pr)) stays fixed. Once 

the branch of 6(oo) is chosen, 6(pr) is obtained by following the function 6(E) 

to threshold and there are no ambiguities. Therefore this 27r difference does not 

imply a change in the charge by one unit as the naive formula (1.1) suggests. 

However the 27r does anticipate the possibility of spectral flow, which indeed will 

occur if d is sufficiently large. 

Scenario for Increasing d: 

With the above discussion, and using the conditions (2.25) and (2.20) , we have 

the following scenario for the xc < 0 case. New bound states can peel off from 

the positive and negative continuum at the critical values d = 4, which depend 

upon the parameters rc,4, and ~0. At d = &, given by (2.20) , one bound state 

crosses zero. For d < dl, the value at which a new positive energy bound state 

appears, there is only one bound state with positive energy and 

rl =I+;[-Aeo-7r]=-~ -7r<r\e,<7r. 
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The extra 27r in (2.28) is cancelled between 6(oo) and 6(pr) and the rest of 6(pr) 

cancels the positive energy bound state. For d > dl a new positive energy bound 

state appears and 6(pr) increases by rr, but we still find 

9 ,2+l [-ABo-27+-s. 
7r n 

For d > d2 a negative energy bound state appears and 6(pr) decreases by 1~. 

This new bound state arises from the negative continuum; however q is again 

unchanged: 

9 =2-l+: [-!yc-*] +!z. (2.32) 

At d = do one bound state crosses zero from positive to negative energy (this 

is the one originally at E = n that drops in energy as d increases). The phase 

shifts stay constant, since no new bound states have appeared. Now there are 

two bound states with negative energy and one with positive energy: 

9 =I-2+; [~~eo+2$!-2=-~. (2.33) 

Again we see that q changes only when there is spectral flow, i.e. energy levels 

crossing zero. Although the possibility of levels crossing zero arises when ICO < 0, 

and even though for negative rce the chiral angle winds by 27r, spectral flow is 

not realized when this winding occurs over a very small distance. The winding 

does not by itself induce spectral flow. Only when the critical distance d = & is 

reached can levels cross zero. Therefore we see the motivation for writing 

‘? = ‘lb’ + r)SF (2.34) 
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with 

(2.35) 

Here VSF directly measures the spectral flow; this quantity jumps by f2 whenever 

a bound state crosses zero, and depends on the local details of the b.f. On the 

other hand, the quantity w is a topological invariant. 

3. Discussions and Conclusions 

In conclusion, the winding of the chiral angle by 27r does not necessarily mean 

that the vacuum charge has changed by one unit. Such a change is only produced 

by levels crossing zero. No spectral flow is induced when the angle winds by 27r 

in a very small distance. Level crossings will be induced when the winding of 

the chiral angle occurs over a sufficiently large distance in space. Very roughly, 

this will occur when the product of this distance times the local mass is of order 

one. l3 For our example, see Eqn.(2.20) . The fractional part of the charge, QF 

, is topologidy inoariant and is given by the phase shifts at infinite energy on 

their principal branch: 

This fractional part of the vacuum charge is a high energy property of the theory 

and hence does not depend upon the mass p(z). 

On the other hand, the integer part of Q is provided by spectral flow, which 

is a consequence of local properties (in our example it depends on d and KO), and 

is not directly related to the winding of A@. 
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I 

QF can be obtained from a very simple Hamiltonian with background fields 

with the same asymptotic values of s(z) and d(z) as the Hamiltonian of interest 

but with no local details (minimal number of step functions). The integer in 

the vacuum charge arises when levels cross zero in the process of deforming the 

minimal K(Z) and 4(z) to the profiles of interest. This is measured by ~SF which 

was shown in Ref.5 to be given in terms of B&E), a direct comparison of the 

determinantal ratios for H and Hv respectively, 

&z(E) = B(E)/&@ ). 

The corresponding G,, podd, and ?jsF are computed by substituting BR(E) into 

Eqns. (1.6) , (1.7) , and (1.8) . 

We also note that the breakdown of the adiabatic expansion caused by the 

vanishing of the local mass does not signal the appearance of spectral flow. It is 

therefore not surprising that the final result obtained from this expansion gives 

the fractional part of the charge correctly but not the integer part. 

We hope that this analysis and discussion illuminates the physics of fractional 

charge in one spatial dimension and clarifies its relation to the chiral angle and 

its winding. We have learned that ambiguities that arise from the branches of 

AfI and those that arise when the local mass term changes sign or is zero over a 

finite region, do not introduce ambiguities in the vacuum charge. 
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