SELECTED TOPICS FROM J/ψ DECAYS*

Allen Odian Mark III Collaboration

Stanford Linear Accelerator Center Stanford University, Stanford, California, 94805

The topics I shall cover are:

- 1. The ι spin parity
- 2. The θ spin parity
- 3. Conclusions

1. THE ι SPIN PARITY

ι (IOTA) Meson (e^+e^-)

1) The ι was first found by Mark II in radiative J/ψ decays in $J/\psi \rightarrow \gamma K_s K^{\pm} \pi^{\mp}$. A cut was made $M_{K_s K^{\pm}} <$ 1050 to enhance $\iota \rightarrow \delta^{\pm} \pi^{\pm}$ with $\delta^{\pm} \rightarrow K^{\pm} K_s$. Mark II determined

$$J/\psi \to \gamma \iota, \quad \iota \to K_e K^{\pm} \pi^{\mp}$$
$$M_{\iota} = 1440^{+10}_{-15} \quad MeV \quad . \tag{1}$$
$$\Gamma_{\Lambda} = 50^{+30}_{-30} \quad MeV$$

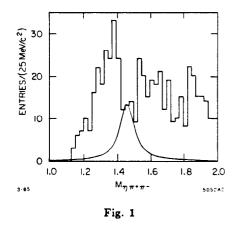
The branching ratio of the $J/\psi \rightarrow \gamma \iota$ was the largest in J/ψ radiative decays except for $J/\psi \rightarrow \gamma \eta_c$. BR $J/\psi \rightarrow \gamma \iota$, $\iota \rightarrow K\overline{K}\pi$ is $(4.3 \pm 1.7) \times 10^{-3}$. This large branching ratio led to speculations that the ι was a glueball.

2) Shortly after Mark II, the Crystal Ball found $J/\psi \rightarrow \gamma \iota$, $\iota \rightarrow K^+ K^- \pi^\circ$. They also made a cut to enhance the δ . $M_{K^+K^-} < 1125$.

The Crystal Ball determined that

$$M_{i} = 1440^{+20}_{-15} MeV$$

$$\Gamma_{i} = 60^{+20}_{-20} MeV$$
(2)


A spin parity analysis was made whose ingredients were:

$$K\overline{K}\pi$$
 phase space
 $\delta\pi$ 0⁻, 1⁺ (3)
 K^*K 0⁻, 1⁺

The results were that the $\iota \to \delta \pi$ was dominant and $J_i^p = 0^-$. The branching ratio $J/\psi \to \delta \iota$, $\iota \to K\overline{K}\pi$ is $(4.0 \pm 1.2) \times 10^{-3}$.

MARK III RESULTS

If the $\iota \to \delta \pi$ with $\delta \to K\overline{K}$, then one should also see $\iota \to \delta \pi$ with $\delta \to \eta \pi$. Mark III looked for $J/\psi \to \gamma \iota$ with $\iota \to \eta \pi \pi$. Figure 1 shows the mass distribution

 $M_{\eta\pi^+\pi^-}$ with a cut on $M_{\eta\pi\pm}$ to enhance $\delta's$. The δ is seen in $\eta\pi$. No large ι is seen leading to an upper limit:

$$J/\psi \to \delta\iota, \quad \iota \to \delta\pi^{\mp}, \quad \delta^{\pm} \to \eta\pi^{\pm}$$

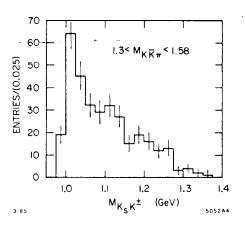
BR < (3.9 ± 0.4 ± 0.7) × 10⁻⁴ 90% C.L. (4)

One caveat in this is that a destructive interference between the background and the ι has not been considered. As the Crystal Balls analysis of the spin parity of the ι depended on the decay chain $J/\psi \rightarrow \gamma \iota$ and $\iota \rightarrow \delta \pi$, perhaps the results are not valid.

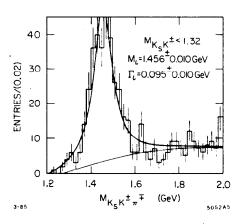
The Mark III data will be analyzed without assuming a δ for $J/\psi \rightarrow \gamma K_s K^{\pm} \pi^{\mp}$. Figure 2 shows the M_{KR} axis. One sees a low mass enhancement, but see no reason to cut at 1050 or 1125 MeV. We cut $M_{K_sK^{\pm}} < 1320 \ MeV$. Figure 3 shows distribution of $M_{K_sK^{\pm}\pi^{\mp}}$ with that cut.

Presented at the 1984 Meeting of the Division of Particle and Fields of the

American Physical Society, Santa Fe, New Mexico, October 31 - November 3, 1984.


Work supported by the Department of Energy, contract DE -AC03 - 76SF00515.

A clear ι signal is seen with


$$M_{\iota} = 1456 \pm 10 \ MeV$$

$$\Gamma_{\iota} = 95 \pm 10 \ MeV$$
(5)

Our branching ratio for $J/\psi \rightarrow \gamma \iota$, $\iota \rightarrow K\bar{K}\pi$ assuming I = 0 is $(5.0 \pm 0.5 \pm 0.7) \times 10^{-3}$.

Spin Parity Analysis

Three angles are used. The radiative γ and the recoil ι make an angle θ_{γ} with the beam. The three body decay $K\overline{K}\pi$ defines a plane. The normal to that plane makes a polar angle β with respect to the boost direction of the ι and ϕ is the azimuth of the normal with respect to the production plane.

When a likelihood analysis is made

$$\frac{\mathcal{L}(1^+)}{\mathcal{L}(0^-)} \approx 10^{-3} \text{ to } 10^{-4} \left\{ \begin{array}{c} \text{depending on cuts,} \\ \text{decay modes of } \iota \end{array} \right.$$
(6)

Note that 0^+ is excluded as $0^+ \not\rightarrow 0^- + 0^- + 0^-$.

Crystal Ball was right. $J_i^P = 0^-$.

2. SPIN PARITY OF θ (1640)

HISTORY

1) Crystal Ball found the θ in $J/\psi \to \gamma \theta$, $\theta \to \eta \eta$.

$$M_{\theta} = 1640 \pm 50 \ MeV$$

$$\Gamma_{\theta} = 220^{+100}_{-70} \ MeV$$
(7)

The branching ratio $J/\psi \to \gamma \theta$, $\theta \to \eta \eta$ found was (4.9 \pm 1.4 \pm 1.0) \times 10⁻⁴.

An upper limit was set for the branching ratio

$$J/\psi \to \gamma \theta, \ \theta \to \pi \pi, \quad BR < 6 \times 10^{-4} \quad 90\% \ C.L.$$
 (8)

The Crystal Ball did a spin parity analysis using three angles. θ_{γ} was used as in the ι , but since we have a two body decay here, we use in the θ rest system the polar angle α between the θ boost and the closest η and the azimuth ϕ . Their result is, if spin parity 2^{++} has a relative probability of 1 then 0^{++} has a relative probability of 0.045.

2) The Mark II collaboration found the θ in $J/\psi \rightarrow \gamma \theta$, $\theta \rightarrow K^+K^-$. They found

$$M_{\theta} = 1700 \pm 30 \ MeV \tag{9}$$
$$\Gamma_{\theta} = 156 \pm 20 \ MeV$$

If spin parity 2^{++} has a relative probability of 1, 0^{++} has a relative probability of 0.22.

The Mark III has seen the θ in

$$J/\psi \to \gamma \theta, \quad \theta \to K^+ K^-$$
 (10)

Figure 4 shows the $M_{K^+K^-}$ distribution. In it we see two peaks the f' and the θ cleanly separated.

$$M_{\theta} = 1720 \pm 10 \ MeV \tag{11}$$
$$\Gamma_{\theta} = 130 \pm 20 \ MeV$$

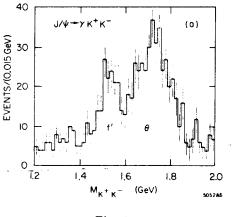


Fig. 4

The branching ratio for the K^+K^- channel

 $BR \ J/\psi \to \gamma \theta \ , \quad \theta \to K^+ K^- \ , \quad (4.8 \pm 0.6 \pm 0.9) \times 10^{-4}$ (12)

If spin parity 2^{++} has a relative probability of 1, 0^{++} has a relative probability of 10^{-3} . The Mark III collaboration has measured the spin parity of the θ to be 2^{++} . The Crystal Ball and Mark II had the right answer on limited statistics.

The helicity ratios x and y for the θ were

$$x = -1.07 \pm 0.16$$

$$y = -1.09 \pm 0.15$$
(13)

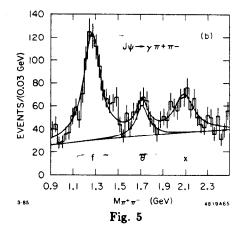
Now we study the decay

$$J/\psi \to \gamma \pi^+ \pi^-$$
 (14)

Figure 5 shows the distribution in $M_{\pi^+\pi^-}$. The figure shows three peaks. The first is the well known f, the second is at the position of the θ and the third (the x) a bit under 2100 MeV. The mass of the θ is

$$M_{\theta \to \pi\pi} = 1713 \pm 15 \ MeV$$

$$\Gamma_{\theta \to \pi} \equiv \Gamma_{\theta \to \kappa} \equiv 130 \ MeV$$
(15)


The branching ratio is

$$J/\psi \to \gamma \theta, \underline{\theta} \to \pi^+ \pi^-, \ (1.6 \pm 0.4 \pm 0.3) \times 10^{-4}$$
 (16)

The third bump "x" in the figure has a mass and width

$$M_{z \to \pi^+ \pi^-} = 2086 \pm 15 \ MeV$$

$$\Gamma_z = 210 \pm 63 \ MeV$$
(17)

The branching ratio is

 $J/\psi \to \gamma x, \ x \to \pi^+\pi^-, \quad (3.0 \pm 0.5 \pm 0.6) \ \times 10^{-4}$ (18)

The mass and width are consistent with the h(2030), I = 0 resonance. The spin parity of the h(2030) is 4⁺⁺. We prefer to call it the x(2086).

3. Conclusion

Spin Parity of $\iota = 0^-$. Spin parity of $\theta = 2^+$. Who cares?

We already have full nonets for 0^- and $2^+!!$ The ι and θ are extra mesons. We don't need them. Could they be radial excitations? If they were radial excitations, why are they so strongly produced in radiative J/ψ decays?

Could they be Glueballs? Theorists tell us that Glueballs should be produced in radiative J/ψ decays. Furthermore, theorists tell us that the spin parities of Glueballs should be $0^-, 0^+$ or 2^+ and not 1^+ or 1^- . That is why it is important that the spin parity of the ι is 0^- and not 1^+ !

As for the θ , the helicity ratios x and y were $x_{\theta} = -1.07 \pm 0.16$ and $y_{\theta} = -1.09 \pm 0.15$. Note that these ratios for the f(1270) and the f'(1515)

are quite different than that for the θ . These are all 2⁺ mesons, but the helicity ratios are different.

At least one theorist has conjectured that in radiative J/ψ decays, all $q\bar{q}$ resonances should have y = 0. The ι and θ remain Glueball candidates.