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1. Introduction 

The past few years have witnessed a resurgence of interest in anomalies. Much 

progress has been made in understanding the topological origins of the abelian 

and nonabelian gauge field anomalies [ 11. New perturbative arid nonperturbative 

anomalies -have also been found [2,3], and their topological origins have been 

clarified as well [4]. 

In this paper we will discuss a new anomaly that afflicts certain non- 

linear sigma models with fermions [5-71. This anomaly is similar to the ordi- 

nary gauge and gravitational anomalies since it reflects a topological obstruction 

to the reparametrization invariance of the quantum effective action. However, 

as emphasized by Manohar, Moore and Nelson [7], the sigma model anomaly is 

different in one important respect - it can sometimes be cancelled by a set of 

local counterterms. We will show that these counterterms have a simple topolog- 

ical interpretation, and that the anomaly cancellation requirements can be easily 

understood by a suitable generalization of ‘t Hooft’s anomaly matching condi- 

tions [8]. 

In the rest of this paper we explain these ideas. In Section 2 we start with 

a general discussion of anomalies in sigma models. We give a general condition 

for anomaly cancellation, based on the existence of local counterterms. In Sec- 

tion 3 we specialize to homogeneous spaces G/H. Following Callan, Coleman, 

Wess and Zumino [9], we include fermions in various representations of H. We 

show that the anomalies can be cancelled by an appropriate Chern-Simons terms 

whenever the ‘t Hooft conditions are satisfied. In Section 4 we discuss sigma 

Eodels based on Riemannian manifolds M. We now take the fermions to trans- 

form in the tangent space of M. As -in Section 3, we show that the anomalies 
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can sometimes be cancelled by Chern-Simons terms. (Similar results have also 

been found in Reference [lo].) Finally, in Section 5 we introduce external gauge 

fields on the manifold M. Now both “gauge” and “gravitational” anomalies can 

appear. We derive the conditions under which these anomalies can be cancelled 7 - - 
-by local counterterms. We apply these conditions to strings in general, and to 

heterotic strings, in particular. For heterotic strings, anomaly cancellation seems 

to demand that the spin connection be embedded in the external gauge group 

Pll. 

2. General Considerations 

Nonlinear sigma models are theories whose scalar fields d’(z) lie on a Rie- 

mannian manifold M. The Lagrangian has the following form, 

L= - f Sij(4) aj~4~a”ti , (1) 

where gij (4) is the metric on M. The Lagrangian (1) is manifestly invariant 

under the diffeomorphisms of the manifold M. It describes an interacting scalar 

field theory whose classical solutions are harmonic maps into M. 

It is easy to add fermions to the sigma model (1). The spinors xA should be 

thought of as sections of a vector bundle B over M. In this case, the generalized 

sigma model Lagrangian is as follows, 

L: = - f gij(d) dp,d”d”& - f xA7’D,xA , (2) 

mere the covariant derivative D,xA is given by D,xA = apxA + accr@ wiABXB, 

and the connection d,#wiA~ is the -pull-back to spacetime of the appropriate 
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connection wiA~ on 8. The covariant derivative ensures that the Lagrangian (2) 

is invariant under bundle reparametrizations, where 

- bwiAB = - aiLA B - - WiACLCB •I ‘- A- L CWiCB 3 
(3) _ 

and LAG is a function of the scalar field 4’. 

To discuss the anomaly, let us restrict our attention to four (Euclidean) space- 

time dimensions, and write all spinors as left-handed Weyl spinors. Furthermore, 

let us integrate out the spinors and construct the effective action r for the scalar 

fields @, 

l.-[h 9, w] = - log / idxLA] [6LB] 

In the absence of anomalies, I’ remains invariant under the bundle reparame- 

trizations (3). U n d er such transformations, the entire change in r comes from 

the variation of the connection, 

6r d4XrbWiAB = 
J 

d4x LAB@) D, ( J’aB) . 
i B (5) 

Equation (5) implies that the effective action is invariant if and only if the induced 

current JUAN = ~LA~‘XL~ is covariantly conserved. 

The evaluation of 6I’ can be done in many ways. One can compute the 

momaly diagrammatically [ 12,131, as in Figure 1. One can also use Fujikawa’s 

method, where the anomaly shows up as a nontrivial Jacobian associated with 
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the fermionic functional integral [14]. Or, for nonabelian symmetries, one can 

compute the anomaly from the six-dimensional Pontrjagin class [1,4]. No matter 

how one proceeds, one finds the same expression for the sigma model anomaly 

PI 9 
c - - - br = d4XLAB((b) D, (JpAB) / 

X ?pu Tr Lai WjdkWl 
1 

+ 5 wjwkwl 
I 

This is the unique form of the anomaly that satisfies the Wess-Zumino consistency 

condition (151. B ecause of the pull-backs a,#, the anomaly vanishes for all 

manifolds of dimension less than four. 

The anomaly (6) is similar to an ordinary anomaly since it obstructs the 

invariance of the quantum effective action. In a gauge or gravitational theory, 

such an obstruction is fatal - unitarity is lost and unphysical degrees of freedom 

begin to propagate [16]. In a sigma model, the anomaly is more subtle. This is 

because the gauge fields are composite - they are functions of the scalar fields #. 

Sigma model anomalies do not create any new degrees of freedom. ,They merely 

break some of the symmetries associated with the classical action. 

Sigma models with anomalies can be unacceptable for physical reasons. In 

that case one would like to know when - if ever - the anomaly can be cancelled. 

One way to cancel the anomaly is well-known from gauge theories: One simply 

adds extra spinors so that the fermionic determinant is well-defined. In practical 

terms, this means that the fermions must transform in an anomaly-free represen- 

t%tion of the structure group of 8. In a sigma model, there is a second approach. 

One can add local counterterms to the bare action in just such a way that the 
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anomaly is cancelled. Of course, with this approach, the classical action is not 

invariant under bundle reparametrizations. The classical “anomaly” exactly can- 

cels the quantum anomaly, leaving the full quantum theory reparametrization 

invariant. 

- What --counterterms must one add to cancel the sigma model anomaly? 

The answer is obvious: In four dimensions, one simply adds an integral over 

the five-dimensional Chern-Simons term n,,,,(W) [17], 

I=-27r 
/ 

d5y EijkLm nijklm (W) 

D 

1 3 = -- 
12079 / 

d5y &jkLm Tr wiajwka&41m + z wiwjwka+J, (7) 
D 

+ g wiwjwkw~wm 1 . 

The integral I runs over a five-dimensional disk D whose boundary dD is the 

image of spacetime in M. The variation of I exactly cancels the sigma model 

anomaly, 

d5yeijkLmdi Tr Wk&W, 
D >I 

1 1 = -- 
241r2 / 

d4x ~~~~~ Tr L di wjakwl + 5 wjwkw( 1 (8) 

The coefficient -1/1207r2 was chosen to cancel the anomaly (6). It is also precisely 

the right coefficient to ensure that the effective action is independent of D [18]. 
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The counterterm (7) is written as an integral over a disk D. Lagrangian 

mechanics, however, requires that an action be written as an integral over space- 

time. Equation (7) can be pulled back to an integral over spacetime whenever 

the Chern-Simons term is closed, d[jnjklmn] = 0. Then nijk,, 7 aliojklrnl, and F - 
- 

- -I& I = / d5y cijkfm nijk(m 

= 5 
/ 

d4y cijkC aijkf 
BD 

(9) 

The integral I can be pulled back to spacetime whenever aliS2jklrnnl = 0. 

It is easy to show that d[ifljklrnnl = Tr R[ijRkfRmn] where &jAB = d[iWjlAB + 

W[iACWjlC~ is the curvature of the bundle B. In the language of differential 

forms, this becomes da = Tr R3, where d is the exterior derivative, and all wedge 

products are implied. We have shown that the sigma model anomaly can be 

cancelled by local counterterms whenever Tr R3 = 0. 

When the trace of R3 does not vanish, the story is more complicated. This 

is because the connection w is not quite uniquely defined. One can always shift 

w by a tensor 7, 

W’ = w + 7. (10) 

Since r is a tensor, w’ is a connection, and r is called torsion. 

- The ability to shift w is very important. It leads to an entire family of 

connections w’. Each connection w’ gives rise to a corresponding curvature 
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R’ = dw’ + w’~ and Chern-Simons term n(w’). If the trace of R’3 vanishes 

for some connection w’, the integral 

I’ = - 27r 
J 

fqw’) (11) 
D c - - 

can be pulled back to spacetime. 

When w # w’, the integral I’ does not quite cancel the anomaly (6). One 

still needs to add a set of local counterterms. To find these terms, we first note 

that the characteristic classes Tr R3 and Tr R’3 differ by a total derivative, 

Tr RI3 - TrR3 = dQ(w, w’) . (12) 

Using Cartan’s homotopy operator, it is not hard to show that” [19] 

1 

Q(w, w’) = 3 
/ 

dt Str (7, R,‘) , (13) 
0 

where “St? denotes symmetrized trace, wt = w + t r and Rt = dwt + wt2. Since 

r is torsion, wt is a connection, and Rt is a curvature. 

Since dh2(w) = Tr R3, equation (12) implies that n(w’) - n(w) - Q(w, w’) is 

a total derivative, 

fl (4 - n(w) - Q(w, w’) = d7(w, w’) . (14 

A second application of the homotopy operator gives 

7(w, w’) = a Tr 
1 

[ w,w’](dw’ + dw) - (ww’~ - w’w3) - ; (w’w)2} . (15) 

El&h Q(w, w’) and 7(w, w’) are globally well-defined. 

fll This can also be found using coboundarj operators, see Reference [20]. 
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Since Q(w, w’) is manifestly gauge invariant, the gauge variation of n(w) can 

be written in terms of the variations of n(w’) and 7(w, w’), 

6 n(w) = 6 n(w’) - d67(w, w’) . 
c - 

(16) 

Therefore 

I = - 2n fqw’) + 27r 7(w, w’) 
/ / (17) 
D aD 

precisely cancels the sigma model anomaly. Since Tr Rr3 = 0, this expression is 

local in the fields 4i. 

We are now able to state the general conditions for anomaly cancellation. 

In four dimensions, the sigma model anomaly can be cancelled if there exists a 

connection w’ = w + r such that Tr R I3 = 0. It is easy to generalize this result 

to any even dimension. In 2n - 2 dimensions, the anomaly is cancelled, up to 

local counterterms, by the (2n - 1)-dimensional Chern-Simons term, provided 

Tr Rrn = 0 for some connection w’. 

The anomaly cancellation condition presented here is a local condition. It 

must hold at each point of the manifold M. A global condition can‘be found by 

integrating Tr Rn over a 2n-dimensional submanifold of M. If s Tr Rn # 0, it is 

impossible to cancel the sigma model anomaly by local counterterms. This is the 

global condition found by Moore and Nelson [5]. 



3. Homogeneous Spaces G/H -- 

In the remainder of this paper, we examine the sigma model anomaly in 

various types of theories. We first consider theories based on homogeneous spaces 

M = G/H. These theories describe the interactions ofthe Go&tone bosons that 
- 

arise by spontaneously breaking a group G down to a subgroup H. The Goldstone 

bosons can interact with fermions x A. The fermions form representations PH of 

H, and realize the full G-symmetry nonlinearly [9]. 

The symmetries of C are associated with the isometries of the manifold M. 

The group G is the full isometry group of M, and H is its isotropy subgroup. On 

manifolds M = G/H, standard coordinates can always be found such that the 

isometries in H leave the origin invariant [9]. Th ese coordinates are parametrized 

by the group element g = exp i4’Ti, where the T’ denote the generators of G 

that are not in H. 

In standard coordinates, global G-rotations are implemented by left group 

multiplications, g + kg. The elements kg can be brought to standard form by 

right H-rotations, kg --+ kgh- l. The combined transformations take standard 

forms to standard forms, 

g + g’ = kgh-’ , (18) 

where g’ = exp i41iTi, and h is a function of g and k. Equation (18) leads 

immediately to the transformations of the coordinates 4’ and the fermions xA. 

The transformations of the coordinates are given by g + g’, while the fermions 

tansform under the right H-rotations, xA = pjy(h)AB xB. 

Standard coordinates are useful -because the symmetries in H G G are 
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represented linearly on the fields: 

6 4' = c4 j4G J 

(19) 
bxA = ic4TaABX . B 

T - - 

- 
Here we have adopted the convention that indices (a, b, c...) run over the gener- 

ators of H, while indices (i,j, k...) span the other generators of G. In equation 

(19), the j4ij are structure constants of G, and the TaA~ are the generators of H 

in the representation PH. Note that the transformations (19) do not change the 

origin of M. They correspond to unbroken symmetries, and leave the S-matrix 

invariant. 

In the same coordinates, the isometries in G that are not in H shift the origin 

of M: 

64’ = ei - a ci 4k fjk + i cj 4k 4.t fjka fati 

bxA = _ i & ,p.i jii4 pAB XB . 
(20) 

These transformations are realized nonlinearly on the fields. They correspond to 

symmetries spontaneously broken by the vacuum. The classical action, however, 

is invariant under all the isometries in G. 

The preceding construction has a natural interpretation in the language of 

fiber bundles. From this point of view, manifolds G/H should be thought of as 

sections of fiber bundles &, with total space G and fiber H. These sections are 

parametrized by the group elements g = exp i4iTi. As shown in Figure 2, global 

G-rotations take elements g of G/H into elements kg of &. The transformed 

Cements kg are not necessarily in the section G/H. They must be projected back 

by field-dependent H-transformations, such that g’ = kgh-’ E G/H. Projecting 
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back to the section G/H is equivalent to restoring the standard coordinates 

g’ = exp i4”T’. 

The Lagrangian for the sigma model is given by equation (1). For 

manifolds M = G/H, we must specify the metric g+ and theconnection WiAB. 

-Following--Callan, Coleman, Wess and Zumino [9], we take the metric to be 

Sij = Tr[(g-‘aig)lK(g-‘ajg) [K], where the Maurer-Cartan form g-‘dg is pro- 

jected onto K = G/H. In a similar fashion, we take the fermion connection to be 

the associated H-connection wiAB = PH[(g-‘&g)]H]AB, where g-‘dg is now 

projected onto H. 

To show that L is invariant under the transformation g + kgh-‘, we need to 

find the variation of the Maurer-Cartan form g-ldg. Since k is a global element 

o-3 g -‘dg is mani festly k-invariant. Only local h-transformations contribute to 

the variation: 

g-g + h(g-‘dg)h-’ + hdh-1 . (21) 

Since hdh-’ is valued in the Lie algebra of H, the metric gij is invariant under 

the transformations (18). The connection, however, transforms as follows: 

Wi + PH(h) WiPH(h-‘) + p&h&h-‘) . (22) 

The Lagrangian is invariant provided the fermions transform like tensors, 

XA + PH(h)ABXB. 

Since the induced H-rotations are local, anomalies arise at the quantum 

level if the fermions xA transform in anomalous representations of H. In the 

Eesence of the anomaly, the quantum effective action is not invariant under 

the full isometry group G - it is only invariant under the isotropy subgroup H. 
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The anomaly implies that the quantum effective action h& a smaller group of 

symmetries than the manifold itself. 

For spaces G/H, the sigma model anomaly can be understood as follows. 

In standard coordinates, the symmetries in K = G/H give rise to nonlinear c - - 
transformations of the Goldstone bosons 4’. These nonlinear transformations 

induce local &dependent transformations of the Fermi fields via equation (20). 

In the presence of the anomaly, the quantum effective action is not invariant 

under local rotations of the spinors. Therefore the anomaly explicitly breaks all 

symmetries in G that are not in H. The fields 4’ are not true Goldstone bosons 

- because of the anomaly, they gain mass at the quantum level (see Figure 3) 

[21]. The symmetries in H, however, are unaffected by the anomaly. They are 

represented linearly on the fields 4’, and give rise to rigid rotations of the Fermi 

fields xA. Rigid rotations of spinors do not give anomalous contributions to the 

effective action, so I’ is invariant under the isometries in H. 

In the previous section we showed how to cancel the anomaly using the 

appropriate Chern-Simons term. The entire argument can be carried over to the 

present case, provided we replace the general fermion connection by the associ- 

ated H-connection w = pH[(g-‘dg) 1~1. A s b f e ore, the anomaly can be cancelled 

if there exists a connection w’ = w + 7 such that Tr Rrn = 0. In the rest of 

this section, we will show that such a connection exists whenever the fermion 

representation PH satisfies ‘t Hooft’s anomaly matching conditions. 12 

To see how this works, let us restrict ourselves to two dimensions. Instead 

of the H-connection w = pH[(g-‘dg)I~], 1 e us consider the G-connection w’ = t 

e[g-‘dg]. This connection is only defined when the fermion representations PH 

fl2 This result was first obtained by E. Witten (unpublished). 
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form G-representations PG. Since Pcb-‘&I = PG[(iI-i&jlK] + PG[(S-idg)lH], 

we see that the torsion r = pG[(g-‘dg)lK]. The G -connection clearly satisfies 

the trace condition since R’ = du’ + wr2 = 0. The corresponding integrated 

Chern-Simons term takes a very simple form, 
F - 

- 
I= - 2~ 

J 
d3y &jk flijk 

D 

(23) 
i 

- 
= 123r J 

d3y cijk Tr (w’iwiw;) s 

D 

Its variation is precisely the two-dimensional anomaly, 

d3y eiikai Tr (q ajw’k) 
D 

i = -- 
127r J d3y ciikai fi (q ajwk) 

D 

i = -- 
47r J d2x P Tr (Q &wj) a,+‘&& . 

where h = 1 - rl. Equation (23) cancels the anomaly of the effective action, and 

is local in the fields #. 

In higher dimensions, the G-connection can also be used to cancel the sigma 

model anomaly. As shown in Section 2, the variation of the Chern-Simons term 

cancels the anomaly - up to local counterterms. These extra counterterms do 

not appear in two dimensions. The anomaly cancellation conditions, however, 

remain unchanged. 

- Actually, it is not necessary for the fermion representations PH to form com- 

plete G-representations PG. All that is necessary is for the two representations 

14 



to give the same anomalous variation of I. A general representation PG of G 

decomposes into a sum of representations of H. To cancel the anomaly, these 

representations must include the fermion representations PH. The other repre- 

sentations must be anomaly-free under H [7]. 
,- - - 

This condition for anomaly cancellation is precisely the ‘t Hooft matching 

condition. It implies that the nonlinear sigma model can be thought of as a low- 

energy effective Lagrangian corresponding to an underlying preonic theory. To 

verify this, let us imagine that we gauge a subgroup of the global symmetry group 

G. The Lagrangian (with the Chern-Simons term) is locally right h-invariant, so 

we only need consider transformations g + k(x)g. Under such a transformation, 

the entire change in the action comes from the anomalous variation of the Chern- 

Simons term. This variation reproduces the anomaly of a linear theory with chiral 

fermions in representations PG of G. 

When ‘t Hooft’s condition is satisfied, the sigma model corresponds to a 

preonic theory with global symmetry group G. When G is spontaneously broken 

to H, the low-energy fermions transform in representations PH of H. They 

are related to the fundamental fermions by a chiral G-rotation. This change of 

variables gives rise to a Jacobian that is precisely the Chern-Simons term. Since 

the preonic theory is globally G-invariant, the H-anomalies of the nonlinear sigma 

model must cancel between the Chern-Simons term and the low-energy fermions. 

Furthermore, the chiral G-anomalies of the two theories must match. 

If the ‘t Hooft condition cannot be satisfied, there is no connection w’ such 

that Tr Rrn = 0. The sigma model anomaly cannot be cancelled, and the non- 

Iiiiear model does not correspond to any underlying preonic theory. Since the 

curvature R generates the holonomy -group of G/H, we say that such a sigma 
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model suffers from a holonomy anomaly. 

To illustrate the anomaly cancellation, we conclude this section with a simple 

example. Let us consider manifolds M = SU(3)/SU(2), in two spacetime dimen- 

sions. There are two such manifolds M, corresponding to the, two embeddings 

-of SU(2) -in SU(3). Th ese embeddings are specified by the subgroup decompo- 

sition of the fundamental representation of SU(3). One embedding corresponds 

to 3 ---) 2 + 1, while the other is given by 3 + 3. If we take our fermions to trans- 

form in a doublet of SU(2), ‘t 1 is obvious that the H-anomaly can be cancelled 

when 3 + 2 + 1. When 3 + 3, however, the anomaly cannot be cancelled - 

no representation of SU(3) contains a doublet of SU(2). In this case, the sigma 

model suffers from a holonomy anomaly. 

4. Riemannian Manifolds N 

Within the context of chiral dynamics, it is natural for fermions to form 

representations PH of the isotropy subgroup H of the manifold G/H. For more 

general models, other choices are often necessary. In supersymmetric models, for 

example, fermions are sections of the tangent bundle 7. More generally, fermions 

can be sections of vector bundles U associated to 7. In this section we study 

sigma models based on general Riemannian manifolds M. The fermions form 

representations pu of the structure group Jl of the tangent bundle 7. 

If the fermions are to transform in any representation of 2(, it is necessary to 

introduce an orthonormal frame c;’ on M. The orthonormal frame, or vielbein, 

depends on the coordinates @, and is chosen to provide an orthonormal basis in 

L at each point of M, 

g’i ei4ejb = pb- 64b eiaejb = Sij - (25) 
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In this section, the letters (i, j, k . . .) represent coordinate frame indices, and the 

letters (a, b, c . . .) denote the orthonormal tangent frame. The vielbein and its 

inverse, ei 4 = gij6,acjb, allow one to pass between the two types of indices. 

The structure group U must preserve the invariant-tensors defined on 7. 

Therefore -the structure group of an ordinary n-dimensional Riemannian man- 

ifold is O(n) - it must preserve the metric Pb. Certain special manifolds 

have additional invariant tensors. A KZhler manifold, for example, is a 2n- 

dimensional Riemannian manifold endowed with a parallel complex structure 

14b, where IucIcb = -6”b. Its structure group preserves both Iab and &,. The 

structure group of a KZhler manifold cannot be all of 0(2n), but rather is only 

w4. 

Note that the relations (25) are invariant under local frame rotations, 6ci4 = 

Lob (4)ei*, where Lab (4) is a field-dependent generator of the structure group 

U. This tells us that theories with vielbeins are invariant - not only under 

isometries of the manifold M - but also under local frame rotations. 

Since we would like the orthonormality of the vielbein to be preserved under 

parallel transport, we introduce a spin connection wi4b, such that 

Viejo = diej4 + WiabtZjb - rijkek4 = 0 . 

The derivative V is covariant with respect to diffeomorphisms as well as local 

frame rotations. The relation (26) allows us to solve for w in terms of I’, 

wi4b = ej’aie’b + Cj41?'ikCkb . (27) 

- For a general Riemannian manifold M, the sigma model Lagrangian is again 

given by equation (2). The only difference is that the fermion connection WiAB is 
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valued in the Lie algebra of the structure group U, rather than in the Lie algebra 

of the isotropy group H. The connection WiAB is just the spin connection (27), 

in the fermion representation py. 

It is easy to check that the classical Lagrangian is invariant under general Y - - 
-coordinate transformations E’, and under local frame rotations Lab. The coordi- 

nate transformations are analogous to global G-transformations on homogeneous 

spaces G/H. Furthermore, the frame rotations correspond to the compensating 

H-rotations. To see this, let us use the local frame freedom to choose a gauge for 

the vielbein, 6ei” = Xabeib. Since AQb = -Xb”, we can gauge away the antisym- 

metric part of ei4. However, once we have fixed this gauge, we must be careful to 

accompany general coordinate transformations c’ by gauge-restoring local frame 

rotations Lcrb, 

6 Ci4 = ai[j Cj4 + LQb eib , (28) 

where Lab = ) j4 kb d .t - a t .). eeh kj Infinitesimal coordinate transformations 

induce infinitesimal frame rotations on the fermions and on the connection, 

bXA = LABXB 

(29) 
bwiAB = - aiL A 

B - WiAC L’B + LAc wiCB a 

Here LAG generates the frame rotation in the representation pu. If the fermions 

are in anomalous representations of U, the effective action is not invariant under 

diffeomorphisms ci. 

To cancel the anomaly, one must add a Chern-Simons term n(w). For 

an arbitrary Riemannian manifold, this term is built out of the connection WiAB. 

* shown in Section 2, the Lagrangian is local whenever Tr Rn = 0. If Tr Rn # 0, 

one must add torsion r to the connection w. 
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The sigma model anomaly can always be cancelled for group manifolds G. 

This follows from the fact that group manifolds can always be parallelized by 

adding torsion r. To find the parallelizing torsion, we work in the left-invariant 

basis, where eia = 2 Tr [(g-‘&g) Ta]. In this basis, the Maurer-Cartan equation 
c - - 

implies- QQ = - f eic feab, so Rabed = -$ f ‘be f ecd. From the Maurer-Cartan 

equation, it is easy to see that the parallelizing torsion is given by riab = -i eic fcab, 

The connection w’ = w + r has vanishing curvature. This connection trivially 

satisfies Tr R’” = 0, so I’ = -27r s f’i(w’) ’ 1s 1 ocal in the fields #. The integral I’ 

cancels the anomaly (up to local counterterms). Note that on group manifolds 

there are no matching conditions. The anomaly can be cancelled for any repre- 

sentation pl of U. All one must do is add parallelizing torsion to the connection 

w - there is no need to enlarge the representation space. Similar results hold for 

the sphere S’, since it too has parallelizing torsion. 

For a general Riemannian manifold M, how can the anomaly be cancelled? 

As before, if Tr Rn does not vanish, we must add torsion 7 to the connection w. In 

each of the previous cases, we added just enough torsion to flatten the curvature 

R’. For manifolds G/H with fermions in H, we used the fact that G/H can be 

locally embedded in G. We found that the anomaly could be cancelled whenever 

the fermion representation PH could be completed to a representation PG of G. 

For group manifolds (and the sphere S7), the situation was even simpler. We 

could always find parallelizing torsion, so the anomaly could always be cancelled. 

The generalization to an arbitrary Riemannian manifold is now clear. We 

must embed M into a space .Af with a flat connection cj. This can only be done 

if the fermion representation pu can be completed to a representation pi of $, 

where $ is the structure group of the space J/. If M cannot be embedded in a 
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group manifold or S7, it can always be isometrically embedded in a flat space of 

sufficiently high dimension d. If M is complex, it should not be embedded in Rd, 

but rather Cdi2, in order to preserve the complex structure Iab. 

Since U C $, the flat connection & can be decompqsed into pieces parallel 

and perpendicular to U, 

where K = S/U. Restricted to the manifold M, G/N = w and &I, = 7. The con- 

nection w’ = w + 7 is flat, so I’ = -27r J iI can be pulled back to spacetime. 

The integral I’ also cancels the anomaly, up to local counterterms. For gen- 

eral Riemannian manifolds, the anomaly can be cancelled by local counterterms 

whenever the fermion representations pu can be completed to representations ps 

of S. This is the appropriate generalization of the ‘t Hooft anomaly-matching 

condition. 

If the anomaly cannot be cancelled, one can sometimes adjust the fermion 

representations to ensure that the final theory is anomaly-free. There is one 

type of model where this is not possible - the supersymmetric nonlinear sigma 

models. In these models, supersymmetry relates the spinors xA to the scalars 

&. The representations of the spinors are fixed by the manifold M. We shall see 

that this leads to severe constraints on supersymmetric nonlinear sigma models. 

In four spacetime dimensions, N = 1 supersymmetric sigma models require 

M to be Kghler, and the spinors xA to be sections of the complexified tangent 

bundle Tc over M [22]. For irreducible manifolds, this simply says that the 

EUcture group l Of -T is u(n). Since 6& = eia cRXLa, SUperSymmetry restricts 

the fermion representation pu to be the fundamental representation n of U(n). 
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A particularly intriguing class of KEhler manifolds are the irreducible sym- 

metric spaces G/H [23] listed in Table 1. As before, G is the full isometry group, 

and H is its isotropy subgroup. The fermions transform in the fundamental rep- 

resentation pu = n of U = U(n). B ecause of the U(1) charges, the ‘t Hooft Y - # 

-matching condition can never be satisfied. The supersymmetric sigma models 

associated with the manifolds of Table 1 all suffer from the holonomy anomaly. 

5. External Gauge Fields - String Considerations 

In this section we introduce a background gauge field Ai(4) on the 

Riemannian manifold M. This field couples to the fermions through the co- 

variant derivative D,,xa = D,xa + idp@AiabXby where D,xa is the derivative 

defined in (2), and Aiab = A~cldc)ab is valued in the Lie algebra of the gauge 

group G. The fermionic part of the Lagrangian is now 

(31) 

In equation (31), we have adopted the convention that lowercase indices (a, b, c...) 

are gauge indices, and all Lorentz indices (A, B, C...) are dropped from the spinors 

x- 

The Lagrangian (31) is manifestly invariant under coordinate transformations 

and frame rotations. It is also invariant under field-dependent gauge rotations, 

provided the fermions and the connection transform as follows: 

/j Ai(a) = - die(a) - i p Aicb) &) . 

In the presence of anomalies, the quantum effective action is not invariant 
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under these symmetries. As before, we must cancel the anomalies by Chern- 

Simons terms. Now, however, we need a Chern-Simons term for each of the 

connections w and A. The integral 

I =- - 27r i-l(w) - 27r ii(Aj - _ / / 
D D 

(33) 

precisely cancels the sigma model anomalies. Since dn(w) = Tr Rn and &l(A) = 

Tr Fn, where F = dA + A2, the integral X can be pulled back to spacetime 

whenever 

TrRn + TrFn = 0. (34 

In equation (34), the traces are over the appropriate fermion representations. An 

extra minus sign is implied for representations of right-handed fermions. If (34) 

is satisfied, the Lagrangian is local in the fields 4’. 

A trivial way to satisfy the condition (34) is for Tr Rn and Tr Fn to vanish 

identically. Then each of the two terms in I can be separately pulled back to 

spacetime. A more interesting possibility is when Tr Rn = - Tr Fn # 0. Then I 

can be pulled back even though neither Chern-Simons term is closed. 

For the rest of the paper, we specialize to the case of two spacetime 

dimensions. This is the case that is relevant for string theories. The anomaly 

cancellation condition is now 

TrR2 + TrF2 = 0. (35) 

When (35) is satisfied, the anomaly is cancelled by a three-dimensional integral 

over the Chern-Simons terms n(w) and St(A). 
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Two-dimensional sigma models describe the propagation of strings in various 

background geometries [24]. The background geometries arise from condensa- 

tions of infinite numbers of strings. The background fields are classical solutions 

to the string equations of motion. Quantum modes are found by expanding the - - s 
string variables about the nontrivial vacuum solutions. To have a consistent, - 

anomaly-free string theory, the condition (35) must be satisfied at all points on 

the string world sheet. 

For ordinary two-dimensional sigma models, condition (35) requires Tr R2 = 

- Tr F2. For string theories, however, the consistency condition is a little stronger. 

This is because consistent strings require anomaly cancellation mad conformal in- 

variance in the full quantum theory. The conformal symmetry is typically spoiled 

by Chern-Simons terms in the sigma model Lagrangian.13 Consistent string 

theories require anomaly cancellation without the introduction of Chern-Simons 

terms. 

For the heterotic string [25], anomaly cancellation seems to require that the 

spin connection w be embedded in the gauge group G [ll]. This follows from 

the fact that the left- and right-handed fermions couple to different connections. 

The left-handed fermions live on a curved six-dimensional space. They give rise 

to a supersymmetric sigma model with a spin connection but no gauge fields. 

The right-handed fermions transform under G = E(8) x E(8) or 0 (32)) but live 

on a flat world sheet. Since Chern-Simons terms spoil conformal invariance, the 

anomalies of the left- and right-movers must cancel against each other. This 

requires that the spin connection be embedded in G. 

fi3 Even if all p-functions can be arranged to vanish, the Chern-Simons terms also change the 
value of the central charge in the Viras6ro algebra [25]. 
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WP + Q) 

W2P) 

SP(2P) 

WP + 2) 

E(6) 

E(7) 

Table 1: Typical Ktihler Manifolds G/H 

-H 

SW4 x SU(Q) x U(l) 

WP) x U(1) 

WP) x U(1) 

SO(P) x U(l) 

SO(10) x U(1) 

E(6) x U(l) 

?l- - 

Q4 

WP - W2) 

U(P(P + W) 

U(P) 

W6) 

V7) 

-, PX 

Pq 

P(P - q/2 

P(P + q/2 

P 
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For Kihler manifolds G/H, the fermions transform in the fundamental represen- 

tation pi of the structure group Il. 



FIGURE CAPTIONS -- 

1. The anomalous triangle diagram in four dimensions. In 2d dimensions, the 

corresponding diagram has d + 1 legs. 

2. A fiber bundle &, with total space G and fiber_H, Left,G-rotations must 

be returned to the section G/H by right H-transformations. 

3. The lowest order graph that gives mass to the scalar fields 4i. 

. 
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