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ABSTRACT 

We use the SU(3) x SU(2) x U(1) renormalization group equations to con- 

strain fermion masses and charged-scalar couplings in two-Higgs grand unified 

theories. We find upper bounds on the sum of all quark (or lepton) masses and 

show that the Cabibbo mixings of heavy quarks tend to be small. We bound 

the vacuum expectation values of the Higgs fields, and use these limits to place 

strong restrictions on the couplings of the charged Higgs scalar. 
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1. Introduction 

Several popular extensions of the standard SU(3) x SU(2) x U(1) model 

have two Higgs doublets at low energies. The scalar fields appear in Glashow- 

Weinberg-Paschos form [l], where one Higgs doublet couples to up-type quarks, 

and the other couples to down-type quarks. This mechanism naturally suppresses 

flavor-changing neutral currents. The Yukawa couplings are as follows* 

where U, D, N and & are the NF x NF .Yukawa matrices of the up-, down-, 

neutrino- and electron-type fermions, Q and L are the quark and lepton isodou- 

blets, and u, d, u and e are the corresponding singlet fields. 

The standard model does not limit the number of families NF, nor does it 

constrain the Yukawa matrices U, D, N and E. Recent theoretical arguments 

[2] suggest that NF > 3, and that the new quarks and leptons should live near 

the weak scale Mw. The masses and mixings of the heavy families are tightly 

constrained by the infrared fixed-point structure of the SU(3) x SU(2) x U(1) 

renormalization group equations [3,4]. 

The purpose of this letter is to derive model-independent constraints on the 

masses and mixings of heavy families in two-Higgs grand unified theories. We 

make only two assumptions: 

1. The desert: We assume that SU(3) x SU(2) x U(1) is the effective gauge 

theory between the weak scale I& and the unification scale Mx, and that 

all Yukawa couplings are of Glashow-Weinberg-Paschos form. 

2. Perturbative unification: We require all gauge and Yukawa couplings to be 

small enough for perturbation theory to be valid all the way up to the scale 

Mx. This assumption is an essential requirement for grand unification. 

* For completeness we consider the possibility of singlet neutrinos in the low-energy theory. 
If there are no lrach neutrinos, then M = 0. 
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Our results rely on perturbation theory throughout the entire SU(3) x SU(2) x 

U(1) desert. They follow from the infrared tied-point structure of the SU(3) x 

SU(2) x U(1) renormalization group equations. Our results do not depend on 

the details of unification at the scale Mx. 

2. Infrared fixed points 

We start by stating our fundamental equations. In the two-Higgs case, the 

renormalization group equations for the Yukawa couplings take the following 

form, 

u-1 f = GU - 3Tu - TN - ;(3ubf + DtD), 

D-1 g = GD - ~TD - TE - ;(3 DtD + Uhf), 
(2) 

.A/-‘% = GN - TN - 3Tu - i(3 NtN + Et&), 

= GE - TE - ~TD - ; (3 Et& + NtN) . 

We have defined 

8d 
9 
q922 

17 
z912 GN 

9 
;gz2 

9 
GU = + + 9 = + 2og12 , 

(3) 
9 9 

GD h2 
9 

= + 4g22 + ‘912 4 , GE = ;gz2 + 4 ill2 , 

where 93, gz, and gr are the SU(3) x SU(2) x U(1) gauge couplings, and 

TY = Tryty , 

t = 1L log -- 
2 

(4 

withy =U,D,N or E. 
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As shown in Reference (41, it is useful to consider the fixed point structure in 

the mathematical limit t + 00. In this limit, the equations (2) have two distinct 

fixed points: 

1) The quark fixed point, with 

Uhl = DtD = 3NGQ+2 , 
F 

& = N = 0; (5) 

2) The lepton fixed point, with 

Et& = NtN = NG;2, 
F 

U D=O. = (6) 

In equation (S), GQ denotes an appropriate average of GU and GD, with 

91 = 0. GL represents a similar average over GE and GN. 

Equations (5) and (6) are incompatible, so only one of the two fixed points* 

is reached as t + 00. For physical gauge couplings, the quark fixed point is 

strongly preferred. It has a much larger domain of attraction than the lepton 

fixed point. 

The fixed point conditions (5) determine the low-energy Yukawa spectrum 

of quarks and leptons. All quarks have the same Yukawa coupling at Mw, 

independent of the initial conditions at Mx. Furthermore, all weak mixings 

and CP-violating phases vanish. Note that both isospin and family symmetry+ 

are restored in the infrared limit. In the one-doublet case, family symmetry is 

not restored [4]. 

* There are additional 6xed points when some masses vanish. These 6xed points are unstable, 
so we do not consider them here. 

+ The is-pin and family symmetry ie at the level of Yukawa couplings. Different values of 
the vacuum expectation values of the Higgs fields, (4,,) and (&), introduce different masses 
for up- and down-type quarks. 
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3. Physical fixed points 

The mathematical fixed point in (5) is reached as t + 00. However, in a 

realistic grand unified theory, the physical range of t is rather small, 0 5 t s l/5. 

In this case, the fixed point is reached only if the Yukawa couplings are sufficiently 

large. In the rest of this paper we restrict our attention to the fixed points that 

are reached in physical time. 

We first consider the renormalization of the overall scale of the heavy quarks, 

given by Tu and To. From (2) it is easy to show 

dTu - = 2 (Gu - 3Tu - TN)Tu - 3Tr (UtU)2 - Tr (UtU DtD) 
dt 

dTD - = ~(GD - ~TD - TE)TD - 3Tr (DtD)2 - Tr (DtDUtU) . 
dt 

(7) 

For large initial Yukawa couplings, the fixed point is reached in physical time. 

At t N l/5, we have 

Tu N TD -N NHGQ 

3N~+2’ (8) 

where NH is the number of heavy families. We will see that these values are also 

approached for moderate values of the Yukawa couplings. Even for relatively 

small entries in the U and D matrices, the initial velocities are large enough for 

Tu and TD to approach their fixed point values. 

In Figure 1 we show the evolution of TV and TD in a theory with two heavy 

and three light families. We choose several initial conditions for the Yukawa 

couplings, and renormalize TV and TD to Mw using equations (2). For simplicity, 

we have set & = N = 0. We plot Tu versus TD in Figure la. We see that the 

fixed point (8) is reached in physical time. In Figure lb we show the evolution of 

TD with energy. The fixed point is approached very rapidily. 

We now discuss the fixed points associated with the restoration of isospin 

and family symmetry. These f%xed points are approached only if the Yukawa 
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couplings are large and the initial breakings are small. To illustrate this, we 

return to our previous example. Let ur, dl and 112, d2 be the Yukawa couplings 

of the two heavy families. Isospin restoration is associated with ui = di, whereas 

family symmetry corresponds to ur = 112 and dl = d2. The evolution of dz/uz is 

shown in Figure 2a, and that of dz/ul in Figure 2b. We see that the approach to 

these fixed points is much slower than the approach to (8). However, isospin and 

family splittings renormalize substantially between the unification scale Mx and 

the weak scale Mw. In tw+Higgs theories, heavy quarks tend to have identical 

Yukawa couplings. 

At the mathematical fixed point (S), all weak angles and phases vanish. For 

example, the evolution equation for the Cabibbo 

given by 

mixing between two families is 

d 1 
iit 

sin8c = - 
2 

sin8c cos2 BC (d12 

+ (U12 + u22) ($ 1 g} * 

+ d22) (5 1 ;:I) 
(9) 

This equation has two fixed points, 8~ = 0 and 8c = z/2. The sign of the product 

1 Ill2 - ~2~) (d12 - dz2) determines which of the two fixed points is approached. 

This can be seen in Figure 3, where we show the evolution of sin t9c with energy. 

Although the fixed point is not reached in physical time, sin8c renormalizes 

substantially. The mixings between heavy and light quarks renormalize in a 

similar way. Therefore heavy quarks in the models we are considering have 

relatively long lifetimes. 



I -‘- 

4. Bounds 

The evolution equations (7) 

masses. This can be done by 

equations, 

dTu 
dt 

dTD 
dt = ~(GD - ~TD)TD, 

give upper bounds on TV and TD at the weak scale Mw. One can perform a 

on heavy fermion masses 

can be used to bound the scale of the heavy quark 

dropping positive-definite terms. The resulting 

= 2(Gu - 3Tu)Tu 

(10) 

similar analysis in the lepton sector. Using the gauge couplings corresponding to 

NF = 8, we find 

TV 3 TD 2 4.1 

(11) 
TN I TE S 3.6 . 

Since theories with more than eight families are not perturbatively unifiable, 

these are rigorous upper bounds for any number of families. 

To convert (11) into bounds on the masses, we introduce vacuum expectation 

values vu and vd for the scalar fields C& and &. By using c Mu2 = (v=)~ Tu 

and c Mo2 = (Q)~ T D, we place limits on the heavy quark mass spectrum: 

c Mu2 5 (v,/v)~ (355 GeV)2 

c Mo2 5 (v~/v)~ (355 GeV)2 (12) 

c Ms2 5 (355 GeV)2 , 

where vu2 + vd2 = u2 = (175 GeV)2, and all masses are evaluated at the weak 

scale Mw. In equation (12) the sum over Q runs over both up- and down-type 

quarks. If there are fewer than eight families, the bounds can be tightened still 

further. For example, in the four family case we End c MQ~ s (290 GeV)2. 
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The corresponding bounds for leptons are 

c MN~ 6 (uu/V)a (330 GeV)2 

c MEW s (v~/v)~ (330 GeV)2 (13) 

c ML~ 5 (330 GeV)2 . 

In contrast to (l2), the inequalities (13) are typically far from being saturated. 

This follows from the fact that the lepton fixed point is unstable. As a conse- 

quence, lepton masses tend to be much smaller than their quark counterparts. 

Equations (12) and (13) lead immediately to bounds on the masses of new 

heavy families. If rn~ and mL denote the masses of the lightest new quark and 

lepton, we find 

mg 5 (250/G) GeV 

mL 6 (235/e) GeV . (14 

5. Bounds on scalar vacuum expectation values 

Equation (12) can be used to infer limits on the ratio of the vacuum expec- 

tation values u,/ud. To see this, suppose that the heaviest up- and down-type 

quarks have masses m, and md. The corresponding Yukawa couplings are given 

by su = mu/vu and gd = ?nd/ud. The fact that gu and gd satisfy (11) sets limits 

on u, and Ud. For NF > 3, we find* 

(v/v~)~ 5 220 ( or uu 2 12 GeV) 
(15) 

(V/&j)’ 6 220 ( or Ud 2 12 GeV) , 

where we have used the fact that new quarks must have masses above 23 GeV. 

Heavier quarks lead to better limits. For the popular value rnt = 45 GeV, we 

* See next section for the ca8e NF = 3. 
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find (v/v~)~ s 60. More generally, an up-type (down-type) quark with mass ??@ 

(mg) implies 

mB 
355 GeV 

2 s c MD’ s 
(355 GeV)2 

2 s (355 GeV)2 

(16) 
Our limits (15) and (16) give strict upper bounds on the charged-Higgs cou- 

plings. They are independent of the charged-Higgs mass MH and the number of 

families. In contrast, the phenomenological bounds from K” - F and Do - F 

mixing [S] depend strongly on MH and become weak if MH 2 100 GeV. 

In Figure 4 we plot the bounds on (Vd/uU)2 as a function of the Higgs mass. 

Our bounds imply that the charged-Higgs contribution to the KL - KS mass 

difference is smaller than the usual W+W- contribution for MH 2 50 GeV. 

(The charged-Higgs contribution to B” - p mixing is practically unrestricted 

by this analysis.) 

Analyses of Do -DO mixing [S] lead to (V/Vd)2 2 lo4 M~/(20 GeV). The 

bound (15) is much more stringent. It implies that the charged-Higgs con- 

tribution to Do - p mixing is smaller than the usual GIM contribution for 

MH 2 0.5 GeV. When NF = 3, this bound relaxes to MH 2 6 GeV. 

6. Improved bounds for three families 

Some of the bounds that we have discussed are improved if there are only 

three families. This follows from the fact that equations (2) simplify when the 

top and bottom quarks do not mix with the lighter families. In this case, the 

evolution of the top and bottom Yukawas becomes 

f 1% u3 = GU - 3Tu - TN - f(3~3~ + da2), 

(17) 

$ log d3 - = GD - ~TD - TE - ;(3d3’ + u32). 

Corrections to these equations are of order sin282 s 10m2. A bound on the value 
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of ua can be obtained by setting Tu = ug, d3 = 0 and TN = 0 (and similarly for 

ds). This gives 113, d3 2 1.4, which in turn implies+ 

vu 2 17 GeV for mt 2 23 GeV 

u, 2 33 GeV for mt 2 45 GeV (18) 

vd 2 3 GeV. 

In Figure 4 we compare these bounds with the phenomenological limit of Refer- 

ence [5]. The renormalization group bounds are stronger for MH 2 10 GeV. 

Recently, phenomenological bounds on u,/ud were obtained by considering 

CP violation in the K” - F system [6]. These limits are only valid for three 

families. In deriving them it is necessary to assume that the CP violation from 

Higgs exchange is less than that induced by W bosons. 

+ The limits (18) on u, are abo valid when NF = 4, provided the fourth family barely mixes 
with the other three. In this case, the bound on vd can be tightened to vd 2 17 GeV, where 
we have used the lower bound of 23 GeV on the mass of a fourth family. 
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FIGURE CAPTIONS 

1. (a) The evolution of Tu and TD, for two heavy and three light families. 

The arrows indicate the flow of increasing t. The initial conditions are 

Ul = dl = 1 for the first family, and various values of 112 and d2 for the 

second. The Cabibbo angle is taken to be zero. (b) The evolution of TD 

with energy for the same initial conditions. 

2. The evolution of (a) d2/u2 and (b) ds/d 1 as a function of the energy for the 

initial conditions of Figure 1. We see that splittings of 1000% at Mx get 

reduced to less than 50% at the weak scale. 

3. The evolution of the Cabibbo angle with energy for NF = 5. We have 

taken ur = 2, dl = 3, us = 1 and d2 = 4 at the scale Mx. The dashed line 

corresponds to identical initial conditions, except that u2 = 5. 

4. Upper limits for (D~/u~)~ as a function of the charged-Higgs mass. The 

solid line is the renormalization group bound, valid for any number of 

families. The dashed line corresponds to our limit in the special case when 

there are only three families (or when there are four families with small 

Cabibbo mixings). We have used rnt N 45 GeV. The dotted line is the 

phenomenological bound from the KL - KS mass difference. We have used 

the approximations of equation (3.5) of Reference [5]. 
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