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ABSTRACT 

Exact analytical expressions for the periodic solution and transportation of 

the dispersion function and its perturbation with energy deviation are derived 

and found to be valid for any order of the expansion; the solution depends on 

two specific integrals only. These integrals are related to the driving terms of 

the particular perturbations and are exactly solved for the first and second order 

expansions, including magnetic elements up to second order. The same method 

could be used to evaluate higher order perturbations of the dispersion function. 

The variation with particle energy of two particularly important ring param- 

eters, the momentum compaction factor and the damping partition numbers, is 

analyzed and their dependance on the perturbation of the dispersion function is 

emphasized. These results are then applied to a typical machine to illustrate the 

importance of the effects due to magnets with small bending radius and due to 

sextupoles. As the results demonstrate, none of the contributing terms should 

be neglected. 

Submitted to Particle Accelerators 

* Work supported by the Department of Energy, contract DE-AC03-76SF00515. 
8 Permanent address: CERN, Geneva 23, Switzerland. 



1. Introduction 

Recently, there has been increasing interest in the study of off-momentum 

particle behavior to enable a better understanding of the dynamic aperture in 

machines with large momentum acceptance or large circumference. Moreover the 

desire for localized dispersion function (for example to minimize the equilibrium 

beam emittance in electron machines) implies strong localized sextupole compo- 

nents for chromaticity correction. They perturb the motion of the off-momentum 

particles and consequently affect the dynamic acceptance. 

The dispersion function, which defines the ideal closed orbit of the particle 

with energy deviation, is particularly important for the machine acceptance and 

several other parameters. The momentum compaction factor(‘p2) and the damp- 

ing partition numbers(314), (whose variation to first order in energy deviation are 

recalled in chapter 3 and 4,) are only two of them. Taking into account non- 

linear effects, a large contribution to their variation is found to come from the 

perturbation of the dispersion function itself. This perturbation is usually calcu- 

lated either numerically from second order transfer matrices(516) or analytically 

from simplified@-“) d’ff 1 erential equations of motion. These simplifications can 

be very dangerous as they eliminate contributing terms which cannot always be 

neglected, especially in machines with small bending radius. 

The complete differential equations describing the successive orders of pertur- 

bation of the dispersion function with energy deviation are all of the same form, 

namely that of an harmonic oscillator with corresponding driving functions. The 

periodic solution of this general equation is solved in chapter 2 using Green’s 

function integrals; this leads to an exact analytical expression. This expression 

was already derivedc7) for the periodic solution of the first order perturbation 

of the dispersion function but, is in fact valid for any order of the expansion. 

Furthermore, the periodic solution as well as the solution for the transportation 

of the different perturbations of the dispersion function are both completely de- 

termined by two particular integrals running over the elements which drive the 
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corresponding perturbations. Thus, solving these two integrals in the elements 

under consideration (APPENDIX I and APPENDIX II) is the key to the deter- 

mination of the exact perturbation of the dispersion function(lll to any order of 

its expansion. The observation of the driving functions immediately shows that 

the first order perturbation of the dispersion function is det&minGd not only by 

all first order magnetic elements but also by the sextupole components. On the 

other hand, it is not affected by the octupoles which act only on the second order 

perturbation of the dispersion function. 

2. Dispersion function 

2.1 DIFFERENTIAL EQUATION FOR THE DISPERSION FUNCTION 

Using the general equation of motion(12), the differential equation of particle 

motion in the horizontal plane to third order in the variables x, y and their 

derivatives is 

x" - h(1+ hx) - x' [x'x" + y'y" + (1 - hx)(hx'+ A')] 

= (I- 6 + b2 - S3) 
{ 

- h + (k - 2h2)x + (2hk - h3 + $)x2 - ihx” 

+ i (h” - hk - r)y2 + h’yy’ - i hy12 + (h2k + hr + $)x3 

- ;(h2k + 3hr + q + ht2 + k”)xy2 - k’xyy’ + ;kx(x’2 + t/‘,) . 

The prime indicates the derivative with respect to the azimuth s and 

X is the horizontal coordinate, 

Y is the vertical coordinate, 

5 is the arc length along the reference orbit, 

- h(s) = ; 

k(s) = -&$$ 

is the curvature of the reference orbit, 

x=0 
is the normalized quadrupole strength 

(24 
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is the normalized sextupole strength 
x=0 

is the normalized octupole strength 
x=0 

is the particle rigidity, 
c - e 

is the particle energy deviation. 

The horizontal motion x of a particle with energy deviation 6 can be written 

in the form 

x=z+D6, (2.2) 

where z is the betatron oscillation and D6 is the closed orbit of this particle. 

The complete differential equation for the dispersion function D(s) (also called 

aP or Q in accelerator theory) is deduced by inserting eq. (2.2) with z E 0 into 

eq. (2.1). To second order in 6 one gets 

D” + (h2-k)D = h 

+ - h + (2h2 - k + h’D’)D + (2hk - h3 + ir)D’ + i hDt2 6 
[ 1 

+ h - (2h2 - k)D + (;k - h2)DDt2 + (;h + D”)Dt2 
[ 

- (2hk - h3 + ir + hh’D’)D2 + (h2k + hr + iq)D3] t!i2 . 

(2.3) 
The.expansion of the dispersion function in the form 

D = Do + D16 + D2b2 (2.4 

enables to solve eq. (2.3) successively for each power of 6. The dispersion function 

DO(S) is the periodic solution of the well known differential equation 

0; + (h2 - k)Do = h. P-5) 

The differential equations for the perturbation to the first order, Dl(.s), and to 
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second order, Dz(s), in 6 are the periodic solutions of 

0:’ + (h2 - k) D1 = -h + (2h2 - k + h/D;) Do + (2hk - h”,-t ;r) D;-+; hDb2 (2.6) 

and 

0; + (h2 - k)D2 = h - (2h2 - k)Do + (;k - h2)DODh2 + (fh + D;)Dk2 

- (2hk - h3 + ir + hh’Dk)Di + (h2k + hr + iq)Di 

+ (4hk - 2h3 + r)DoDl + (2h2 - k + h’Dh)Dl 

+ (h/Do + hD;)D; 
(2.7) 

- respectively. 

In a series of reports(7-10) eq. (2.6) for D1 has been derived for machines with 

large bending radius p where higher order terms in h as well as the terms coming 

from combined function magnets (hk) and from the variation of the dispersion 

function with azimuth (Dh) were disregarded. For small machines these terms 

cannot be neglected. 

The corresponding differential equations for higher order perturbations of 

the dispersion function can be derived in a similar way. As demonstrated by 

the differential equation for 02(s), eq. (2.7), the number of terms involved will 

increase. 

Nevertheless, the differential equations for DO, D1 and D2, eqs. (2.5, 2.6, 2.7), 

are all of the form 

0; + (h2 - k)Di = f; with i = 0,1,2 (2.8) 
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where 

fo=h, 

fl = - h + (2h2 - k + h’D;)Do + (2hk - h3 + ; r)D; + ; hDh2, 

f2 = h - (2h2 - k)Do + (;k - h2)DoD;” + (;h + D;)D;” 

- (2hk - h3 + ;r + hh’D;)D; + (h2k + hr + ;q)D; 

+ (4hk - 2h3 + r)DoDl + (2h2 - k + h’D;)D1 + (h/Do + hD;)D; . 

P-9) 

Equation (2.8) is also valid for higher order perturbations of the dispersion func- 

tion with more complicated driving functions fi, i 2 3 on the r.h.s. 

2.2 PERIODIC SOLUTION 

Assuming that the Twiss parameters (p, CY) and the phase advance (cl) along 

the central trajectory are known, and using the usual variable transformations(13) 

where Q is the horizontal tune (the number of horizontal betatron oscillations 

per turn around the machine), the general differential equation (2.8) for the 

dispersion function can be transformed into the equation of a forced harmonic 

oscillator: 

3 + Q2Ei = Q2p3i2 fi(4) (2.10) 

where fi are the functions defined in eq. (2.9). By means of Green’s function, 
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the periodic solution of this equation (2.10) can be written in the form(13) 

2s+Q 

Em = 2si~~Q I P3’2fi(ti) cos[&(~ + 4 - +)I dti - 

cp 
<- - e 

Introducing the original variables 

da=QPW, 
1.44 = Qd 3 

Q(s) = Ed, 

into eq. (2.11) gives 

(2.11) 

(2.12) 

Di(s) = dIGi s+L 
2 sin zQ J 

dmfi(a) cos[Qr + 1-4s) - &>I UJO (2.13) 
8 

with the functions fi defined in eq. (2.9) and with L as the length (circumference) 

of the reference orbit. Differentiating eq. (2.13) with respect to s leads to the 

periodic solution for D:(s): 

u+L 

.D;(s) = -D&)* - 1 
P(S) 2msin rr& / 

dmf&) sin[Qr + CL(S) - ~kdl da. 
.4 

(2.14) 

Assuming hard edge approximation, where the magnetic field rises abruptly 

from zero outside the magnetic element to a constant value inside it, one can 

solve the integral on the r.h.s. of the eqs. (2.13), (2.14) analytically. 

Defining an element j of length lj by its transfer matrix 

0 0 1 

and using the values for the functions ,Bi, cyi and pj at the entrance of this 
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element, the variation of the phase ~1 and the p-function are given by 

~(0) = arctan R12 (4 

> PjRll(O) -ajR12(0) ' c - - 
- (2.15) 

Taking the origin s = 0 as the starting point for the phase p(s) one obtains 

dmsin[xQ + p(s) - pj - P(O)] = @II - -$=Rlz(o)] sin&j 
i 

R12 (0) -- 
fi 

COS Apj 3 
i 

(2.16) 

where 

&j = r& + P(S) - Pj for P(s) < Pj , 

Apj = -T& + P(S) - pj for /L(S) > /.hj . 

c 

Thus eqs. (2.13), (2.14) can be written in the following form 
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m 
li 

O’(‘) = 2sin~Q f~(~)Rll(~) da 

0 

4 
-L( fi ?j COS APj - sin@&) fdq)Rn (a) da , 

D$) r -D&)a(s) - 
4 

1 
P(S) 2msin z& 

fi(u)Rn(a) da 
0 

- - (Ctj sin Apj + cos Apj) 
G% / 

fi(~~)R12(0) da , 
0 

(2.17) 

where j runs over the elements of the machine. These expressions were already 

derivedc7) for the perturbation D1. In fact, eqs. (2.17) are valid for any order, i, 

of the perturbation of the dispersion function. Their periodic solutions are com- 

pletely determined by the following integrals 

lj 4 

/ 
fi(+n (0) da and 

/ 
fi(+h+) da (2.18) 

0 0 

over the elements for which the functions fi are different from zero.. 

Eqs. (2.9) show that the function DO is only driven by the bending magnets 

(h # 0) while th e f unction D1 is driven by the combined function bending mag- 

nets (hk # 0), their edges (h’ # 0) and by the quadrupoles (k # 0) and the 

sextupoles (r # 0). The function D2 is driven by the same elements as well as 

by the octupoles (q # 0). 

The computation of the above integrals corresponding to the functions DO and 

D1 is derived in APPENDIX I for all elements up to second order by replacing 

Rie transfer matrix elements by their corresponding values. The same method 

could be applied to higher order perturbations of the dispersion function. 
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2.3 TRANSPORT OF THE DISPERSION FUNCTION 

Although eqs. (2.17) d fi e ne the periodic solution of Di and 0: respectively 

everywhere in the machine, the transport of the dispersion function emphasizes 

its variation due to the different-elements. Moreover, it facilitates the calculation 

of the-perturb-&ion of the dispersion function along transfer lines. 

Supposing the values of the dispersion functions Di and their derivatives 0: 

are known at the point se either by determination of the periodic solution in a 

ring using eqs. (2.17) or as given initial values for a transfer line, the transported 

values of the functions Di and 0: can then be determined at any point s of the 

transfer channel using the transfer matrix M defined as 

[cos A/..L + ct(so) sin Ap] d@@&binAp 

a(so)--a(d)~~sAp- WsinAp ~~[cosAp+a(s)sinAp] 
dmmi So 8 

with Ap = p(s) - I. 

-In fact, the general solution of eq. (2.10) can be written in the form 

G(i) = Ai cos[Q@-do)]+& sin[Q(+h)]+Q ] P3/2f#) sin[Q(hh--$)I dlCI 
40 

where CJ~ F 4( s and r$e z CJ!J(SO) and with the coefficients Ai, Bi determined by ) 

the initial conditions: 

4 = Ei(+o) , B. = AdEi(+o) 
’ Q d4 * 

Using the original variables as defined in eq. (2.12), the perturbation of the 
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dispersion functions at any point s are defined by 

-Hence,-the dispersion functions can be determined successively from the entry 

(beginning) Di(O) F Dib to the exit Di(Z) of each element with M = R(Z) as the 

transfer matrix of this particular element. Introducing eq. (2.16) into eq. (2.19) 

simplifies the equations for the dispersion functions to 

1 1 

Di(1) =.&Ml1 + DibM12 + Ml2 
J 

fi(+ll(u) da - Ml J fi(4%2(4 da, 
0 0 

1 1 

D;(Z) =Di&bl + D;,Mzz + M22 
J 

f&)&l(u) da - M21 J fi(+h(u) da. 
0 0 

(2.20) 

These relations are also general and valid for any order, i, of perturbation of the 

dispersion function. They depend on the same integrals (2.18) already defined 

for the calculation of the periodic solution. 

Applying eq. (2.20) to the dispersion function Do leads to the. well known 

formulae 

Do(l) = Dot&h + D&$&a + M13 , 

DI,(l) = DoaM + D&M22 + M23 , 

The complete expressions for the transport of the function D1 through the dif- 

ferent machine elements up to second order are summarized in APPENDIX II; 

they were obtained by replacing the integrals in eqs. (2.20) by their analytical 

solutions derived in APPENDIX I. 
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3. Momentum compaction factor 

The momentum compaction factor represents the relative change of the orbit 

length with respect to the particle energy deviation. It can be defined in the 

form c - s 
- - dL PO d AL 

( > z- 
a=dpG= d6 = a1 + 2ara26 . . . , (3.1) 

as given in(‘) with LO as the length of the ideal orbit. 

Simple geometrical considerations lead to 

(I + hx)ds . (3.2) 
0 

Inserting eq. (2.2) with z G 0 into eq. (3.2), expanding the square root and 

introducing eq. (2.4) gives 

Lo Lo 
L = Lo + 6 

J 
hDods + b2 

/( 
hD1 + ;D;” ds . . . , 

0 0 

which together with eq. (3.1) p rovides the following relations(‘12): 

Lo 
1 

'21 = - 
Lo / 

hDods , 
0 Lo 

1 
cqa2 = - 

Lo J( 0 

(3.3) 

(3.4 

Thus, the perturbation of the momentum compaction factor to first order in 6 

hasmntributions from the slope of the dispersion function, D;(s), all along the 

ring and from the first order perturbation 01(s) in the bending magnets, better 

known as the Johnsen effect(‘). 
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4. Damping partition numbers 

4.1 INTRODUCTION 

For circular machines whose closed orbit lies in a horizontal plane, the trans- 

verse and longitudinal damping partition numbers Jz, Jy and JE can be definedc3p4) 

in terms of the second (12) and fourth (14) synchrotron integral as 

14 Jz=l-G Jy = 1 14 J,=2+% 

with 

I2 = 
/ 

h2 ds 

and 

I4 = 
J 

(hoh2 - 2hk)Dds. 

The index “0” refers to the reference orbit. 

The variation of the longitudinal damping partition number JE with respect to 

an energy deviation 6 is given by 

dJ, 1 d14 ho dI2 -=----- 
d6 I20 d6 I& d6 ’ 

where 120 = 12 and I40 = I4 for 6 = 0. 

4.2 EXPANSION OF THE SYNCHROTRON INTEGRALS: I2 AND I4 

(4.1) 

The dependence of 12 and I4 on 6 is evaluated using the variation of the 

variables h(s), k(s) and D(s) with 6. Expanding B, in a Taylor series and 
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substituting x = D6 gives 

h(s) = 2 = (BP)~;~ + 6) (BI,_, + 21XEOD6) 

= ho - (ho $1 koD)6 

and 

k(s) = - $2 = _ 
(Bp)o;l + 6) 

dB, 
ax .- 

Y - 

= ko - (ko - roD) 6. 

Using eq. (2.4), introducing these expansions into the relations for the syn- 

chrotron integrals 12 and I4 and omitting the suffix “0” of h, k and r leads to 

and 

I2 =/h’ds-26/(h2+hkDo)ds (4.2) 

I4 = 
. I 

(h3 - 2hk)Do ds 

+ 26 k2D; - (h3 - 2hk)Do - h2kD; - hrD; + (; h3 - hk)D1 1 ds, P-3) 
These formulations are completely general and give the contribution to the second 

and fourth synchrotron integral for any magnetic element, from simple dipoles 

and quadrupoles to combined function magnets with sextupole. The contribution 

of a&element’s edges to these integrals can then be deduced directly from the 

characteristics of this element. 
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4.3 CONTRIBUTION OF THE EDGES 

For magnetic elements with inclined boundaries whose entrance and/or exit 

faces are not normal to the design trajectory, the local quadrupole k(s) and 

sextupole r(s) fields experienced by a particle traversing the element and it’s 

fringe .field-along the design trajectory are given by(15) 

k(s) = k, + h/tan8 - hh’D, tan86, 

r(s) = Tm - 2kh, tan 8 =F h” tan2 B + hh’ tan3 8 , 
(4.4) 

with 8 as the effective edge angle 8, modified by the slope of the off-momentum 

particle trajectory, 

e=&f D~&~hDetanO 6. 
> 

(4.5) 

The sign convention for the entrance/exit edge angles 8, is defined in(12); ’ and ” 

_ denote the first and second derivatives with respect to the azimuth s, km and rm 

are the quadrupole and sextupole components of the element. The upper sign 

corresponds to the entrance edge, the lower sign to an exit edge. 

4.4 VARIATION OF THE DAMPING PARTITION NUMBER WITH ENERGY 

After integrating through the edges and applying hard edge approximation 

the variation of the damping partition numbers to first order with particle energy 

deviation becomes 

(k2 - h2k - hr)Dt ds + (h3 - 2hk)Dl ds 

+~(~hD~+[ak+~h2(l-tan2f?,)]D~-hD~)htan~e 

F c h2(1 + 3tan2 B,)DoDb , 

where the upper sign corresponds to an entrance edge and the lower sign corre- 

sponds to an exit edge and 
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dJx dJ, 
x=--&p 

The different contributions can be separated into four categories according 

to where they originate: 

l the quadrupole magnets (terms in k); 

l the bending magnets (terms in h); 

l the combined function magnets including quadrupole (terms in hk) and/or 

sextupole components (terms in hr); 

l the variation of the dispersion function with the azimuth (terms in Db) 

and/or with particle momentum (terms in 01). 

The contribution of the quadrupoles responsible for the term 

2 
- 
I20 I 

k2D2 ds 0 

is normally dominant in large machines and is therefore the only one which 

is calculated in various optics programs (16). Nevertheless, for rings with small 

bending radius or with combined function magnets the other terms cannot be 

neglected, as shown in the following example. 
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5. Application 

The LEP Electron Positron Accumulator (EPA)(171 provides an ideal applica- 

tion for the calculation of the dispersion function D1 as well as for the variation 

of the momentum compaction factor. and of the damping partition number to 

first order in energy deviation. In fact, in this machine all the driving terms of 

these functions are present because of the low bending radius (p = 1.426 m) and 

of its combined function bending magnets (k = 0.5 mm2) with entrance and exit 

angles. 

Moreover, the strong sextupoles (r M f8.30 mm3) localized in the arcs do 

change the perturbed dispersion function D1 in the long dispersion free sections 

(DO = 0), as shown in Fig. 1. This figure displays the functions DO(S) (solid) 

and D1 (s) without (dots) and with(dashes) sextupoles as calculated by introduc- 

ing the results of the optics program COMFORT(18) into the formulae listed in 

- APPENDIX I and APPENDIX II. 

Table 1 and Table 2 summarize the contributions of the different terms to 

the variation of the momentum compaction factor and the damping partition 

numbers with particle energy deviation respectively, both before and after the 

ring’s natural chromaticities have been corrected. The variation of the longitu- 

dinal damping partition number and of the momentum compaction factor with 

energy after chromaticity correction are increased by a factor “2” and “-3” re- 

spectively due mainly to the change of the perturbed dispersion function 01(s) 

in the combined function magnets by the sextupoles. 
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lame 1. lvlomentum compaction Iactor 

& j- Db2 ds 0.05021 

&JhD1ds 0.062 (-0.37) 

1 0.11 (-0.32) cila2 
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Table 2. Damping partition numbers 

I2 

14 

JE 

2/Izo j’ k2 0; ds 14.009 

2140/I;o s hkDo ds -0.916 

-2/Izo s h2kD; ds -0.844 

&O/I&, c h2Do tan 6 -0.469 

d/I20 c hkDi tan 8 1.792 

5/(6120) c h3Di tan 19(1- tan2 0) 0.353 

~l/Iso C h2DoDb(l + 3 tan2 0) 1.382 

1/I2o s h3D1 ds 

-2/Izo s hkDl ds 

-~/I~c-J C h2D1 tan6 

dJ,/dG 13.52 (25.88) 

LEP EPA 
sext. ofl (on) 

4.406 

-4.259 

1.033 

0.88 (-5.18) 

-1.78 (10.53) 

-0.89 ( 5.22) 
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APPENDIX I 

Contributions of the different elements to the periodic solution of 

the dispersion functions DO and D1 

r - e 

According. to the equations (2.17) the periodic solutions of the dispersion 

functions are completely determined by the two integrals 

4 Ii 

s 
fi(@11(4 da and 

/ 
f&7)&2(4 da 

0 0 

with fi defined in eq. (2.9): 

fo=h, 

Assuming hard edge approximation, where the magnetic field rises abruptly from 

zero outside the magnet to a constant value inside it, the two integrals above can 

be computed analytically for different elements. 

COMBINED FUNCTION BENDING MAGNET 

In this case the corresponding transfer matrix elements are 

Rll(a) = C(a), &2(a) = S(a), &s(a) = &[I - C(c)], 

R21(4 = -KS(o), Raa(a) = c(a), R23(0) = hS(a), 

with the abbreviations 

K=h2-kIcO0: 

K=h2-k<O: 

C(a) = cos(&L.7) , sin( &Co) 
sb-4 = fi 7 

C(a) = cosh(flo) , 

The dispersion function Do is easily deduced from the first order transfer 
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I 

matrix but can also be determined analytically using eqs. (2.17), since 

1 
J fo(~)~ll(a) da = hS c - 
0 - 1 
J fo(a)R12(4 da = -;(C - 1) 
0 

with the notation C z C(Z) and S E S(Z). 

To calculate the perturbation Dl, one replaces, in eq. (2.9), the function 

DO(O) by its values at the beginning of that element (index b) and one obtains 

fi(a) = -h + (2h2 - k)Do(a) + (2hk - h3 + $)Do(o)” + ;hD&)2 

= -h + (2h2 - k) [R&x, + RnD;* + RI31 

+ (2hk - h3 + ir) [RllDOb + RlzD&, + ~~~~~ 

+ ;h [&Dob + && + &I2 

Integration leads to 

1 

/ 
f~(+h(o) da = - hS + [(Dab-g) (l+SC)+S%,] (;+;+g) 

0 

++~,(Dos-~)(C3-1) [I-$(4k+f-2h2)] 

+;hS(Dot,-;)2[( 2k + & - h”> (2 + C2) + ;K2S2 1 
+ ;hSD6,2 [d+;z(2k+;)] +S; (,.+;+g) 
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and 
1 

/ 
f+)Rn(u) da = ;(C - 1) + 

[( Ob K) 
D - h S2 + + (Z-SC) D&, I( ; + ; + $ 

0 

+ lhS3D’ Ob(DOb-;) (4b-?h2-K+~)-~~~:1)(llzj%+~) 

- +;h(Do~-~)2[+3~(2k-h2+~)+l+;C3-;C, 

+ fDbb2$ ; (l-C3)++(2+C3-37) (2k-,.+$-)I . 

In the particular case of K = h2 - k 3 0, these equations simplify to 

1 
I fl(a)a da = l2 
0 

-;+fhDo++;~+fr)]+hlD;,[;h+;(h3+;r)] 

+;lDobD;b(hS+fr)+fD,Zl(h3+fr) 

+;D;b2~+i2~+fr)]+;h2++;~+;r)]). 

The expressions corresponding to elementary elements can then easily be 

deduced by cancelling the relevant parameters in the general expressions of the 

integrals and one gets: 

Pure drift : 

1 

J fi (~)~ll (a) da =o 
0 

1 

J 
f&4&2(4 da =O 

0 
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Pure sextupole : 

c - 1 - 
J fi(+h(u) da =;rl D& +lDObD& + ;12Dbb2 
0 

1 
1 

J fl(o)R12(0) da =i r12 f D&, + i lDoaD& + a 12DAb2 1 0 

Pure quadrupole : 

1 

J fi (+hl(~) da = 
0 

1 

J fi (4R12 (a) da = 

0 

- ; [kS2Dob - (I - SC)D&,] - 

- ;k [(I + SC)&, + S2D&,] 

EDGES 

With O(o) as the angle between the pole face of the element and the particle 

trajectory the transfer matrix elements are defined as 

&I = 1, R12 = 0, R13 = 0, 

R2l = J h’tan 8 da, R22 = 1, R23 = 0, 

since the variation h’ of the curvature cannot be neglected. Moreover, for mag- 

netiLelements with inclined boundaries whose entrance or exit faces are not 

normal to the design trajectory, the local quadrupole k(a) and sextupole r(a) 

components acting on a particle passing through the fringe field of a magnetic 
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element along the design trajectory are given by(15): 

k(a) = h’tan0, 

r(a) = -2kk tan 8 $: h” tan2 9 + hh’ tan3 8 , 
F- - b 

where - -- 

e=ee- hda. J 
The sign convention for the entrance (exit) angle 0, is the same as in(12); the 

first and second derivatives with respect to the azimuth Q are denoted by ’ and 

” respectively and k, is the quadrupole component of the element. The upper 

sign corresponds to the entrance edge, the lower sign to an exit edge. Introducing 

these relations for the quadrupole and sextupole fields into the equation for fr (a) 

defined in eq. (2.9), integrating over the edges and applying the “hard edge” 

- approximation (S --) 0) gives 

5 5 
!% J f&)Rl&) da = !% f&d * J 

0 0 

= fh(Dk)eDoe(l + tan2 0,) - hDoe(l - hDoe) tan8, 

- kD& tan8, - f h’D&(l+ i tan2 0,) tan8, , 

where the index “m” has been omitted. The index “en denotes either the entrance 

of the entrance edge or the exit of the exit edge. After introducing 

(D& = Db, f fj hDoe tan& , 

the relation for the entrance (upper sign) and for the exit edge (lower sign) is 

8 

i:l J fl(o)Rll(a) da = fhDh,Doe(l + tan2B,) - hDoe(l - hDoe) tan8, 

0 

- kD& tan8, + i h2D& tan3 8, . 
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Similarly, one obtains 

8 8 

)ib~ J fl(a)R12(u) da = lim 
S+O J ufl(u)da = &ihD& tan2 8, . 

0 0 4 - - 

APPENDIX II 

Change of the dispersion function D1 due to different elements 

Introducing into eqs. (2.20) the expressions for the integrals derived in AP- 

- PENDIX I and rearranging the different terms, one obtains the relations for the 

transport of the function D1 through the different machine elements. 

COMBINED FUNCTION BENDING MAGNET 

01(l) = Dlbc + D;,s - ;(I- c) 

+ [(o,,-~)ls+~(s-1c)D~,] (;+;+$) 

++bb(DOb-;) (1-C) [&hb+r-2h3)-h] 

+I (Dob-;)2 [+ (2hk++h3) (2-C-C2)+;h(l-C)2] 

_ + &.2; ;C-;-C3)++[k(l+4C2-4C-C4)+h2C(2+C3-SC)] 

+&l-C)2 +#+g+g)(l-C) 
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D;(l) = - Dl&S + D;,C - hS 

+ [(Do”-;) (ic+s)+s@b] (;+;+$) 

+;D;b(Do,-$) (C+l-2C2) [+@hk+r-2h3)-h] 

++os-$)2[( 2k+&-h2)(2C+1)+K(11C)] - 

+ ;hSDb,a 
-I 

C3+;++[k(4+C3-SC)-h2(2+C3-3C)]+-&-C)} 

> 

In the particular case of K = h2 - k E 0, these equations simplify to 

01(Z) = Dlb + !D’,, - ;h12 

0: (1) = D;b - hl 

+fhDo++f(h’+;r)]+hiD;b[h+f(h3+fr)] 

+lDorDdb(hS+~r)+D~b(hg+~r) 

+D;b2[;+;~+fr)]+h2i2[;+f-~+;r)]) 

One can easily deduce the expressions corresponding to elementary elements 
by cancelling the relevant parameters: 

Pure drift : 

Dl(l) =Dlb i- D;,l 

D;(I) =Dib 

29 



Pure sextupole : 

01(l) =Dlb + D{,l + +-12 +ib + +o&bl + fD&,2l2 
> 

D{(l) =Dib -I- irl ?$, -I- DobDLbl i- iD&,2l2 _ - 

- 

Pure quadrupole : 

Dl(l) =D& + D;,s - f [kDo# - (s - lc)D;,] 

D;(l) =DlbkS + D;,c - ;k [(s + lC)Dob + D;,lS] 

EDGES 

Entrance edge : entrance angle 81 

(01, Di at the end of the entrance edge defined by the values at the begin- 

ning, index “b”) 

D1 = Dlb - ;hDjjb tan2 fll 

0: = Dlbh tan 01 + D;b 

+ hDbbDob(l + tan2 0,) - hDob(l - hDob) tan 81 - kD;, tan 81 

Exit edge : exit angle 02 

(01, 0: at the end of the exit edge defined by the values at the beginning, 

index ‘VI”) 

1 
D1 = Dlb + -hD;, tan2 & 

2 
D; =_Dlbh tan 02 + Dib 

- hDhbDo& + tan2 0,) - hDob tan t?2 - kD;, tan 62 - ; h2D,2, tan3 b$ 
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